用户名: 密码: 验证码:
肠源性内毒素在肝癌发生发展过程中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肠源性内毒素在肝癌发生发展过程中的作用及机制研究
     【研究背景及目的】
     原发性肝癌是世界范围内发病率较高的恶性肿瘤之一,在我国是导致居民肿瘤死亡原因的第二位。原发性肝癌的发生被认为是一个多因素,多途径,和长期作用的结果,其病理学基础是各种致癌因素引起的肝脏慢性炎症与肝硬化。我国大多数的肝癌病人存在程度不同的肝硬化。
     由于解剖学上的联系,肝脏处于防御肠源性细菌产物的第一线,并且是它们主要的过滤器官。当肝脏的功能受损时,肠源性细菌产物就可能通过门静脉或其侧支循环进入血液形成内毒素血症。已有文献报道,在多种肝脏疾病,如病毒性肝炎,肝硬化,肝癌和酒精性肝病中的病人中大部分存在肠道菌群的移位和肠源性内毒素血症,在动物实验中也证实肠源性内毒素在肝纤维化和酒精性肝病的发生发展中起重要作用。内毒素是强有力的致炎因子,可以引起肝内多种炎性因子的分泌,如TNFα, IL-6, TGFβ, IL-1α等的释放,而这些炎症因子导致了肝脏病变的发生发展。但现在不清楚肠道来源的LPS是如何促进肝脏肿瘤的发生发展。
     内毒素(LPS)通过其受体Toll样受体4(TLR4)起作用。TLR4与LPS结合后,通过MyD88通路和TRIF通路向下游传递信号,前者可引起多种炎性介质的释放,后者则可引起Ⅰ型和Ⅱ型干扰素的释放。在肝细胞,枯否氏细胞(KC)、星状细胞、胆管上皮细胞、内皮细胞和树突状细胞都表达TLR4,这都提示TLR4可能在肝脏疾病的发生中起重要作用。研究也证实,在酒精性肝损伤,肝纤维化,缺血再灌注损伤,肝部分切除后的肝再生以及肝的自身免疫性疾病中,TLR4信号通路的参与必不可少。到目前为止,TLR4在肝癌发生中的作用还未见报道,但可以推测TLR4在肝癌的发生中可能有重要作用。
     本项目拟应用大鼠的DEN模型研究肠源性内毒素在肝炎—肝硬化—肝癌这一过程中所起的作用,同时建立TLR4敲除的小鼠DEN模型,采用分子生物学和细胞学的方法探讨LPS发挥作用的机制,为肝癌的防治提供有潜在临床价值的实验数据。【实验方法】
     1.建立DEN诱导的大鼠肝癌模型,利用抗生素清除肠源性内毒素,比较抗生素处理组和未处理组DEN引起的肝癌负荷。
     2.建立小鼠DEN诱导的肝癌模型。比较LPS受体Toll样受体4(TLR4)敲除小鼠和对照小鼠的DEN引起的肿瘤负荷。
     3.建立DEN引起的肝脏急性损伤模型,比较TLR4-/-小鼠和野生型小鼠DEN引起的肝脏损伤、凋亡以及代偿性增殖情况。利用Real-time PCR方法检测TLR4-/-小鼠和野生型小鼠肝脏中细胞因子TNFa和IL-6的表达水平,以及DEN代谢酶、p53相关基因的表达变化。
     4.利用骨髓移植实验研究表达在实质细胞和非实质细胞上的TLR4在DEN诱导的肝损伤以及肝细胞代偿性增殖中的作用。
     5.用免疫组化方法检测DEN在TLR4-/-小鼠和野生型小鼠肝脏中引起的NF-κB的活化情况;利用Real-time PCR方法检测NF-κB下游基因的表达情况;检测DEN引起的肝脏内ROS的含量。
     6.用LPS预处理小鼠,研究LPS对DEN引起肝脏损伤的作用;
     7.利用TNF/GalN以及Jo-2引起的暴发性肝炎模型研究LPS在肝细胞凋亡中的保护作用。
     8.体外分离小鼠的原代肝细胞,用TNF/CHX诱导细胞凋亡,研究LPS保护肝细胞凋亡的机制。
     【实验结果】
     1.在DEN诱导的大鼠肝癌模型中存在血浆LPS水平的升高。在大鼠DEN模型中利用抗生素清除LPS可明显减少肝脏肿瘤的发生发展。
     2.小鼠中TLR4缺失明显减少DEN诱导的肝脏肿瘤的发生,肿瘤中浸润的巨噬细胞明显减少,TNFa和IL-6的含量也明显减少。
     3.TLR4缺失加重DEN诱导的肝损伤,但减轻DEN诱导的肝细胞的代偿性增殖。
     4.TLR4-/-小鼠DEN引起的TNFα和IL-6表达低于野生型小鼠。骨髓来源细胞上TLR4的活化可引起TNFa和IL-6表达,从而促进肝细胞的代偿性增殖。
     5.TLR4缺失可减少肝细胞内NFκB活化,使NF-κB下游抗凋亡基因Bcl-xl和A20的表达减少,清除活性氧族(ROS)的酶MnSOD的表达减少,肝内GSH减少,MDA增加,故TLR4-/-小鼠肝损伤加重。
     6.DEN可引起小鼠血液中LPS水平的升高。LPS处理可减少DEN诱导的细胞凋亡。
     7.LPS处理野生型小鼠可抵抗死亡受体配体引起的急性肝损伤,但对TLR4-/-小鼠无保护作用。
     8.LPS预处理肝细胞产生的抗凋亡效应是NF-κB介导的。
     【结论】
     本研究从细胞和动物学水平证明肠源性LPS在炎症性肝细胞癌的发生发展中起重要作用。LPS通过与其受体TLR4结合,在炎症细胞中可引起多种炎症因子的分泌,促进细胞的增殖,在实质细胞中可通过活化NF-κB引起多种抗凋亡蛋白的表达从而抑制细胞凋亡。抑制肠道细菌的异常转位以及清除LPS可能会有效改善肝硬化病人的肝功能,从而减少肿瘤的发生发展。
Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer that occurs two to four times more frequently in males than in females. The most prominent factors associated with HCC include chronic hepatitis B and C viral infection and other chronic necroinflammatory liver diseases, such as those caused by alcohol consumption or hepatic metabolic disorders. Chronic liver disease leads to continual injury and a wound-healing response that causes a torrent of problems, including advanced hepatic fibrosis or cirrhosis. A high level of plasmatic endotoxin or lipopolysaccharide (LPS), a cell-wall component of Gram-negative bacteria, is a common finding in the portal and systemic circulation of cirrhotic patients. This accumulation is likely due to changes in the intestinal mucosal permeability and increased bacterial translocation, coupled with a deficient clarification activity of the hepatic reticuloendothelial system. High levels of endotoxin may be responsible for the pathogenesis of the chronic inflammatory alterations that characterize cirrhosis and, hence, the major complications that arise in this disease.
     Toll-like receptor 4 (TLR4) is a pattern recognition receptor that recognizes endotoxin and signals through adaptor molecules myeloid differentiation factor 88 (MyD88) and Toll/IL-1 receptor domain-containing adaptor-inducing interferon-β(TRIF) to activate transcription factors nuclear factor NF-κB, activator protein 1 (AP-1), and interferon regulatory factors (IRFs), that initiate innate immunity. The liver is well equipped to respond to endotoxin because TLR4 is present on both parenchymal cells (hepatocytes) and nonparenchymal cells, which include Kupffer cells, sinusoidal endothelial cells, stellate cells, and hepatic dendritic cells. Both cell populations possess intact TLR4 signaling pathways. Kupffer cells are the best-characterized target of endotoxin in the liver, where they have a crucial role in causing hepatocellular damage by producing pro-inflammatory cytokines (e.g., TNF-a and IL-6) and affect hepatic sinusoids to increase vascular permeability. Although hepatocytes also express low levels of the TLR4 receptor, they are only weakly responsive to LPS and may serve to uptake and remove endotoxin from the portal and systemic circulation. However, the effects of endotoxin in vivo on hepatic function and tumorigenesis are not well defined.
     A causal link between inflammation and cancer is widely accepted. Robust clinical and epidemiologic data support the role of inflammation, induced by chronic hepatitis B or C viral infections and alcohol abuse, as a key player in HCC development. However, the exact molecular mechanisms and gatekeepers accounting for cellular transformation remain elusive. Given the important role of NF-κB signaling in mediating inflammatory signals, attention has been focused on its role in mediating the link between inflammation and the development of liver tumors. Inhibiting NF-κB obstructs later stages of tumor progression in Mdr2-deficient mice, which develop HCC in the context of chronic bile duct inflammation. By contrast, mice lacking the NF-κB upstream activator IκB kinaseβ(IKKβ) specifically in hepatocytes exhibit a marked increase in chemically induced hepatocarcinogenesis, suggesting that NF-κB has a protective function against HCC development. Interestingly, compared with the deletion of IKKβonly in hepatocytes, the additional deletion in Kupffer cells results in a remarkable decrease in tumor load. These apparently contradictory conclusions may reflect the distinct roles for inflammatory signals in epithelial cells and inflammatory cells during HCC formation.
     Here we found that the circulating levels of LPS were elevated in experimental models of carcinogen-induced hepatocarcinogenesis. Reduction of LPS using antibiotics regimen in rats or genetic ablation of its receptor TLR4 in mice prevented excessive tumor growth and multiplicity. Additional investigation revealed that TLR4 ablation sensitizes the liver to carcinogen-induced toxicity via blocking NF-κB activation and sensitizing the liver to reactive oxygen species (ROS)-induced liver injury, but lessens inflammation-mediated compensatory proliferation. Reconstitution of TLR4-expressing myeloid cells in TLR4-deficient mice restored DEN-induced hepatic inflammation and proliferation, indicating a paracrine mechanism of LPS in tumor promotion. By contrast, disruption of the mucosal barrier allowing microbial translocation or in vivo LPS pre-challenge protects hepatocytes against carcinogen or death-receptor-induced liver injury. The survival effects of LPS on normal or malignant hepatocytes are largely mediated by the transcription factor NF-κB, whose inactivation reversed the LPS-mediated hepatic protection. Thus, sustained LPS accumulation represents a pathological mediator of inflammation-associated hepatocellular carcinoma (HCC) and manipulation of the gut flora to prevent pathogenic bacterial translocation and endotoxin absorption may favorably influence liver function in cirrhotic patients who are at risk of developing HCC.
引文
1. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-867.
    2. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis:from genes to environment. Nat Rev Cancer 2006;6:674-687.
    3. Davis GL, Dempster J, Meler JD, Orr DW, Walberg MW, Brown B, Berger BD, O'Connor JK, Goldstein RM. Hepatocellular carcinoma:management of an increasingly common problem. Proceedings (Baylor University Medical Center) 2008;21:266.
    4. Schwabe RF, Seki E, Brenner DA. Toll-like receptor signaling in the liver. Gastroenterology 2006;130:1886-1900.
    5. Scott MJ, Billiar TR. β2-Integrin-induced p38 MAPK Activation Is a Key Mediator in the CD14/TLR4/MD2-dependent Uptake of Lipopolysaccharide by Hepatocytes. Journal of Biological Chemistry 2008;283:29433.
    6. Almeida J, Galhenage S, Yu J, Kurtovic J, Riordan SM. Gut flora and bacterial translocation in chronic liver disease. World J Gastroenterol 2006;12:1493-1502.
    7. Seki E, De Minicis S, sterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nature medicine 2007;13:1324-1332.
    8. Adachi Y, Moore LE, Bradford BU, Gao W, Thurman RG. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 1995;108:218-224.
    9. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005;121:977-990.
    10. Morrison DC, Jacobs DM. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 1976;13:813-818.
    11. Satoh H, Guth PH, Grossman MI. Role of bacteria in gastric ulceration produced by indomethacin in the rat:cytoprotective action of antibiotics. Gastroenterology 1983;84:483.
    12. Chuang SE, Cheng AL, Lin JK, Kuo ML. Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food and Chemical Toxicology 2000;38:991-995.
    13. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57-70.
    14. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. The Journal of Immunology 1984;133:1710.
    15. Gerlach C, Golding M, Larue L, Alison MR, Gerdes J. Ki-67 immunoexpression is a robust marker of proliferative cells in the rat. Laboratory investigation 1997;77:697-698.
    16. Gerlach C, Sakkab DY, Scholzen T, Dassler R, Alison MR, Gerdes J. Ki-67 expression during rat liver regeneration after partial hepatectomy. Hepatology 1997;26:573-578.
    17. Scholzen T, Gerdes J. The Ki-67 protein:from the known and the unknown. Journal of Cellular Physiology 2000; 182:311-322.
    18. De Palma GD, Rega M, Masone S, Persico F, Siciliano S, Patrone F, Matantuono L, Persico G. Mucosal abnormalities of the small bowel in patients with cirrhosis and portal hypertension:a capsule endoscopy study. Gastrointestinal endoscopy 2005;62:529-534.
    19. Kalaitzakis E, Johansson JE, Bjarnason I, Bj rnsson E. Intestinal permeability in cirrhotic patients with and without ascites. Scandinavian journal of gastroenterology 2006;41:326-330.
    20. Lee S, Son SC, Han MJ, Kim WJ, Kim SH, Kim HR, Jeon WK, Park KH, Shin MG. Increased intestinal macromolecular permeability and urine nitrite excretion associated with liver cirrhosis with ascites.2008.
    21. El-Serag HB, Rudolph KL. Hepatocellular carcinoma:epidemiology and molecular
    carcinogenesis. Gastroenterology 2007; 132:2557-2576.
    22.赵龙凤,韩德五.肝病患者肝病患者内毒素血症的临床意义.世界华人消化杂志1999;7(2):391-393.
    23. Goris H, Boer FD, van der Waaij D. Oral administration of antibiotics and intestinal flora associated endotoxin in mice. Scandinavian journal of infectious diseases 1986;18:55-63.
    24. Lopes J, Inniss WE. Electron microscopy of effect of polymyxin on Escherichia coli lipopolysaccharide. Journal of Bacteriology 1969;100:1128.
    25. Nanji AA, Khettry U, Sadrzadeh SM, Yamanaka T. Severity of liver injury in experimental alcoholic liver disease. Correlation with plasma endotoxin, prostaglandin E2, leukotriene B4, and thromboxane B2. The American journal of pathology 1993;142:367.
    26.赵瀛,李晓鸥,王佩.病毒病毒性肝炎后肝硬化患者肠道的通透性.中华传染病杂志2002;20(2):105-107
    27. Arii S, Monden K, Itai S, Sasaoki T, Shibagaki M, Tobe T. The three different phases of reticuloendothelial system phagocytic function in rats with liver injury. The Journal of surgical research 1988;45:314.
    28. Friedman SL. Liver fibrosis:from mechanisms to treatment. Gastroenterol Clin Biol 2007;31:812-814.
    29. Guarner C, Soriano G. Bacterial translocation and its consequences in patients with cirrhosis. Eur J Gastroenterol Hepatol 2005; 17:27-31.
    30. Adachi Y, Enomoto M, Adachi M, Suwa M, Nagamine Y, Nanno T, Hashimoto T, Inoue H, Yamamoto T. Enteric coated polymyxin B in the treatment of hyperammonemia and endotoxemia in liver cirrhosis. Gastroenterol Jpn 1982; 17:550-557.
    31. Pardo A, Bartoli R, Lorenzo-Zuniga V, Planas R, Vinado B, Riba J, Cabre E, Santos J, Luque T, Ausina V, Gassull MA. Effect of cisapride on intestinal bacterial overgrowth and bacterial translocation in cirrhosis. Hepatology 2000;31:858-863.
    32. Perez-Paramo M, Munoz J, Albillos A, Freile I, Portero F, Santos M, Ortiz-Berrocal J. Effect of propranolol on the factors promoting bacterial translocation in cirrhotic rats with ascites. Hepatology 2000;31:43-48.
    33. Madrid AM, Hurtado C, Venegas M, Cumsille F, Defilippi C. Long-Term treatment with cisapride and antibiotics in liver cirrhosis:effect on small intestinal motility, bacterial overgrowth, and liver function. Am J Gastroenterol 2001;96:1251-1255.
    34. Steffen EK, Berg RD, Deitch EA. Comparison of translocation rates of various indigenous bacteria from the gastrointestinal tract to the mesenteric lymph node. J Infect Dis 1988;157:1032-1038.
    35. Ljungdahl M, Lundholm M, Katouli M, Rasmussen I, Engstrand L, Haglund U. Bacterial translocation in experimental shock is dependent on the strains in the intestinal flora. Scand J Gastroenterol 2000;35:389-397.
    36. Nanji AA, Khettry U, Sadrzadeh SM. Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver (disease). Proc Soc Exp Biol Med 1994;205:243-247.
    37. Liu Q, Duan ZP, Ha DK, Bengmark S, Kurtovic J, Riordan SM. Synbiotic modulation of gut flora:effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology 2004;39:1441-1449.
    1. Karin M, Greten FR. NF-kappaB:linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005;5:749-759.
    2. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-867.
    3. Balkwill F, Mantovani A. Inflammation and cancer:back to Virchow? Lancet 2001;357:539-545.
    4. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003;21:335-376.
    5. Lee MS, Kim YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem 2007;76,447-480.
    6. Medzhitov R, Preston-Hurlburt P, Janeway Jr CA. A human homologue of the Drosophila Toll proteins signals activation of adaptive immunity. Nature 1997;388:394-397.
    7. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. nature immunology 2001;2:947-950.
    8. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell
    2004; 118:229-241.
    9. Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K, Krishnareddy S, Hsu D, Xu R, Harpaz N, Dannenberg AJ. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 2007; 133:1869-1881.
    10. Bauer AK, Dixon D, DeGraff LM, Cho HY, Walker CR, Malkinson AM, Kleeberger SR. Toll-like receptor 4 in butylated hydroxytoluene-induced mouse pulmonary inflammation and tumorigenesis. JNCI Journal of the National Cancer Institute 2005;97:1778.
    11. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007;317:121-124.
    12. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature medicine 2007;13:1050-1059.
    13. Killeen SD, Wang JH, Andrews EJ, Redmond HP. Exploitation of the Toll-like receptor system in cancer:a doubled-edged sword? British journal of cancer 2006;95:247.
    14. Liu S, Gallo DJ, Green AM, Williams DL, Gong X, Shapiro RA, Gambotto AA, Humphris EL, Vodovotz Y, Billiar TR. Role of toll-like receptors in changes in gene expression and NF-kappa B activation in mouse hepatocytes stimulated with lipopolysaccharide. Infect Immun 2002;70:3433-3442.
    15. Su GL, Klein RD, Aminlari A, Zhang HY, Steinstraesser L, Alarcon WH, Remick DG, Wang SC. Kupffer cell activation by lipopolysaccharide in rats:role for lipopolysaccharide binding protein and toll-like receptor 4. Hepatology 2000;31:932-936.
    16. Schwabe RF, Seki E, Brenner DA. Toll-like receptor signaling in the liver. Gastroenterology 2006; 130:1886-1900.
    17. Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 1995;269:G467-G475.
    18. Scott MJ, Liu S, Shapiro RA, Vodovotz Y, Billiar TR. Endotoxin uptake in mouse liver is blocked by endotoxin pretreatment through a suppressor of cytokine signaling-1-dependent mechanism. Hepatology 2009;49:1695-1708.
    19. Shariff MI, Cox IJ, Gomaa AI, Khan SA, Gedroyc W, Taylor-Robinson SD. Hepatocellular carcinoma:current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics. Expert Rev Gastroenterol Hepatol 2009;3:353-367.
    20. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004;431:461-466.
    21. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005;121:977-990.
    22. Verna L, Whysner J, Williams GM. N-nitrosodiethylamine mechanistic data and risk assessment:bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol Ther 1996;71:57-81.
    23. Eferl R, Ricci R, Kenner L, Zenz R, David JP, Rath M, Wagner EF. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell 2003;112:181-192.
    24. Kalinichenko VV, Major ML, Wang X, Petrovic V, Kuechle J, Yoder HM, Dennewitz MB, Shin B, Datta A, Raychaudhuri P, Costa RH. Foxmlb transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev 2004; 18:830-850.
    25. Liu ZX, Han D, Gunawan B, Kaplowitz N. Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology 2006;43:1220-1230.
    26. Seglen PO. Preparation of rat liver cells. Ⅱ. Effects of ions and chelators on tissue dispersion. Experimental cell research 1973;76:25.
    27. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004; 118:229-241.
    28. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004;118:285-296.
    29. Sarma DS, Rao PM, Rajalakshmi S. Liver tumour promotion by chemicals:models and mechanisms. Cancer Surv 1986;5:781-798.
    30. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology 2006;43:S45-S53.
    31. Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 2008;105:2415-2420.
    32. Hatano E, Bennett BL, Manning AM, Qian T, Lemasters JJ, Brenner DA. NF-kappaB stimulates inducible nitric oxide synthase to protect mouse hepatocytes from TNF-alpha-and
    Fas-mediated apoptosis. Gastroenterology 2001; 120:1251-1262.
    33. Iimuro Y, Nishiura T, Hellerbrand C, Behrns KE, Schoonhoven R, Grisham JW, Brenner DA. NFkappaB prevents apoptosis and liver dysfunction during liver regeneration. J Clin Invest 1998;101:802-811.
    34. Wong GH, Goeddel DV. Induction of manganous superoxide dismutase by tumor necrosis factor:possible protective mechanism. Science 1988;242:941-944.
    35. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 1990; 186:407-421.
    36. Xu Y, Bialik S, Jones BE, Iimuro Y, Kitsis RN, Srinivasan A, Brenner DA, Czaja MJ. NF-kappaB inactivation converts a hepatocyte cell line TNF-alpha response from proliferation to apoptosis. Am J Physiol 1998;275:C1058-C1066.
    37. Gao B, Jeong WI, Tian Z. Liver:An organ with predominant innate immunity. Hepatology 2008:47:729-736.
    38. Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease:update. Hepatology 2008;48:322-335.
    39. Nolan JP, Leibowitz AI. Endotoxins in liver disease. Gastroenterology 1978;75:765-766.
    40. Fukui H, Brauner B, Bode JC, Bode C. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease:reevaluation with an improved chromogenic assay. J Hepatol 1991;12:162-169.
    41. Lin RS, Lee FY, Lee SD, Tsai YT, Lin HC, Lu RH, Hsu WC, Huang CC, Wang SS, Lo KJ. Endotoxemia in patients with chronic liver diseases:relationship to severity of liver diseases, presence of esophageal varices, and hyperdynamic circulation. J Hepatol 1995;22:165-172.
    42. Chan CC, Hwang SJ, Lee FY, Wang SS, Chang FY, Li CP, Chu CJ, Lu RH, Lee SD. Prognostic value of plasma endotoxin levels in patients with cirrhosis. Scand J Gastroenterol 1997;32:942-946.
    43. Such J, Frances R, Munoz C, Zapater P, Casellas JA, Cifuentes A, Rodriguez-Valera F, Pascual S, Sola-Vera J, Carnicer F, Uceda F, Palazon JM, Perez-Mateo M. Detection and identification of bacterial DNA in patients with cirrhosis and culture-negative, nonneutrocytic ascites. Hepatology 2002;36:135-141.
    44. Friedman SL. Liver fibrosis:from mechanisms to treatment. Gastroenterol Clin Biol 2007;31:812-814.
    45. Guarner C, Soriano G. Bacterial translocation and its consequences in patients with cirrhosis. Eur J Gastroenterol Hepatol 2005;17:27-31.
    46. Rao RK, Seth A, Sheth P. Recent Advances in Alcoholic Liver Disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2004;286:G881-G884.
    47. Fijen JW, Kobold AC, de BP, Jones CR, van der Werf TS, Tervaert JW, Zijlstra JG, Tulleken JE. Leukocyte activation and cytokine production during experimental human endotoxemia. Eur J Intern Med 2000;11:89-95.
    48. Uesugi T, Froh M, Arteel GE, Bradford BU, Thurman RG. Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice. Hepatology 2001;34:101-108.
    49. Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, Yang H, Li J, Tracey KJ, Geller DA, Billiar TR. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 2005;201:1135-1143.
    50. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57-70.
    51. Luedde T, Beraza N, Kotsikoris V, van LG, Nenci A, De VR, Roskams T, Trautwein C, Pasparakis M. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 2007; 11:119-132.
    52. Taub R. Hepatoprotection via the IL-6/Stat3 pathway. J Clin Invest 2003;112:978-980.
    53. Hoek JB, Pastorino JG Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol 2002;27:63-68.
    1. Balkwill F, Mantovani A. Inflammation and cancer:back to Virchow? The Lancet 2001:357:539-545.
    2. Coussens LM, Werb Z. Inflammation and cancer. NATURE-LONDON-2002;860-867.
    3. Karin M, Greten FR. NF-kappaB:linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology 2005;5:749.
    4. Lee MS, Kim YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk.2007.
    5. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nature immunology 2003;4:1144-1150.
    6. Medzhitov R, Preston-Hurlburt P, Janeway Jr CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394-397.
    7. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003;21:335-376.
    8. O'Neill LA. How Toll-like receptors signal:what we know and what we don't know. Curr Opin Immunol 2006; 18:3-9.
    9. Kawai T, Akira S. TLR signaling. Cell Death Differ 2006;13:816-825.
    10. Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007; 13:552-559.
    11. Kleinert H, Pautz A, Linker K, Schwarz PM. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 2004;500:255-266.
    12. Laudanna C, Kim JY, Constantin G, Butcher EC. Rapid leukocyte integrin activation by chemokines. Immunological reviews 2002; 186:37-46.
    13. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. European journal of immunology 1998;28:2760-2769.
    14. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. Journal of Experimental Medicine 1999; 189:451.
    15. Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394-397.
    16. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. nature immunology 2001;2:947-950.
    17. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 2003;299:1033-1066.
    18. Gerondakis S, Grumont RJ, Banerjee A. Regulating B-cell activation and survival in response to TLR signals. Immunology and Cell Biology 2007;85:471-475.
    19. Reiner SL, Sallusto F, Lanzavecchia A. Division of labor with a workforce of one:challenges in specifying effector and memory T cell fate. Science 2007;317:622-625.
    20. Larsen PH, Holm TH, Owens T. Toll-like receptors in brain development and homeostasis. Sci STKE 2007;2007:e47.
    21. Michelsen KS, Arditi M. Toll-like receptors and innate immunity in gut homeostasis and pathology. Current opinion in hematology 2007; 14:48-54.
    22. Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M. Toll-like receptors modulate adult hippocampal neurogenesis. Nature cell biology 2007;9:1081-1088.
    23. Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 2007; 132:1359-1374.
    24. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004; 118:229-241.
    25. Pull SL, Doherty JM, Mills JC, Gordon JI, Stappenbeck TS. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proceedings of the National Academy of Sciences of the United States of America 2005;102:99-104.
    26. Taylor KR, Yamasaki K, Radek KA, Di NA, Goodarzi H, Golenbock D, Beutler B, Gallo RL. Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. J Biol Chem 2007;282:18265-18275.
    27. Araki A, Kanai T, Ishikura T, Makita S, Uraushihara K, Iiyama R, Totsuka T, Takeda K, Akira S, Watanabe M. MyD88-deficient mice develop severe intestinal inflammation in dextran sodium sulfate colitis. Journal of gastroenterology 2005;40:16-23.
    28. Zhang X, Shan P, Qureshi S, Homer R, Medzhitov R, Noble PW, Lee PJ. Cutting edge:TLR4 deficiency confers susceptibility to lethal oxidant lung injury. The Journal of Immunology 2005; 175:4834-4838.
    29. Macedo L, Pinhal-Enfield G, Alshits V, Elson G, Cronstein BN, Leibovich SJ. Wound healing is impaired in MyD88-deficient mice:A role for MyD88 in the regulation of wound healing by adenosine A2A receptors. American Journal of Pathology 2007; 171:1774-1788.
    30. Seki E, De Minicis S, sterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nature medicine 2007;13:1324-1332.
    31. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature medicine 2007;13:1050-1059.
    32. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002;418:191-195.
    33. Jiang D, Liang J, Li Y, Noble PW. The role of Toll-like receptors in non-infectious lung injury. Cell Research 2006;16:693-701.
    34. Martin M, Katz J, Vogel SN, Michalek SM. Differential induction of endotoxin tolerance by lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli. J Immunol 2001;167:5278-5285.
    35. Martin M, Rehani K, Jope RS, Michalek SM. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 2005;6:777-784.
    36. Monick MM, Carter AB, Robeff PK, Flaherty DM, Peterson MW, Hunninghake GW. Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of beta-catenin. J Immunol 2001; 166:4713-4720.
    37. Salaun B, Romero P, Lebecque S. Toll-like receptors' two-edged sword:when immunity meets apoptosis. Eur J Immunol 2007;37:3311-3318.
    38. Hsu LC, Park JM, Zhang K, Luo JL, Maeda S, Kaufman RJ, Eckmann L, Guiney DG, Karin M.
    The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 2004;428:341-345.
    39. De TC, Pajak B, Brait M, Glaichenhaus N, Urbain J, Moser M, Lauvau G, Muraille E. TLR4 and Toll-IL-1 receptor domain-containing adapter-inducing IFN-beta, but not MyD88, regulate Escherichia coli-induced dendritic cell maturation and apoptosis in vivo. J Immunol 2005;175:839-846.
    40. Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting:the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 2006;90:1-50.
    41. Garay RP, Viens P, Bauer J, Normier G, Bardou M, Jeannin JF, Chiavaroli C. Cancer relapse under chemotherapy:why TLR2/4 receptor agonists can help. European journal of pharmacology 2007;563:1-17.
    42. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases.1893. Clin Orthop Relat Res 1991;3-11.
    43. Okamoto H, Shoin S, Koshimura S, Shimizu R. Studies on the anticancer and streptolysin S-forming abilities of hemolytic streptococci. Jpn J Microbiol 1967;11:323-326.
    44. Hironaka K, Yamaguchi Y, Okita R, Okawaki M, Nagamine I. Essential requirement of toll-like receptor 4 expression on CD11c+cells for locoregional immunotherapy of malignant ascites using a streptococcal preparation OK-432. Anticancer Res 2006;26:3701-3707.
    45. Uehori J, Fukase K, Akazawa T, Uematsu S, Akira S, Funami K, Shingai M, Matsumoto M, Azuma I, Toyoshima K, Kusumoto S, Seya T. Dendritic cell maturation induced by muramyl dipeptide (MDP) derivatives:monoacylated MDP confers TLR2/TLR4 activation. J Immunol 2005;174:7096-7103.
    46. Herr HW, Morales A. History of bacillus Calmette-Guerin and bladder cancer:an immunotherapy success story. J Urol 2008; 179:53-56.
    47. Krieg AM. Development of TLR9 agonists for cancer therapy. Journal of Clinical Investigation 2007;117:1184-1194.
    48. Chicoine MR, Zahner M, Won EK, Kalra RR, Kitamura T, Perry A, Higashikubo R. The in vivo antitumoral effects of lipopolysaccharide against glioblastoma multiforme are mediated in part by Toll-like receptor 4. Neurosurgery 2007;60:372-380.
    49. Sfondrini L, Rossini A, Besusso D, Merlo A, Tagliabue E, Menard S, Balsari A. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J Immunol
    2006; 176:6624-6630.
    50. Scheel B, Aulwurm S, Probst J, Stitz L, Hoerr I, Rammensee HG, Weller M, Pascolo S. Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur J Immunol 2006;36:2807-2816.
    51. Spaner DE, Masellis A. Toll-like receptor agonists in the treatment of chronic lymphocytic leukemia. Leukemia 2007;21:53-60.
    52. Carpentier A, Laigle-Donadey F, Zohar S, Capelle L, Behin A, Tibi A, Martin-Duverneuil N, Sanson M, Lacomblez L, Taillibert S, Puybasset L, Van ER, Delattre JY, Carpentier AF. Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro Oncol 2006;8:60-66.
    53. Yusuf N, Nasti TH, Long JA, Naseemuddin M, Lucas AP, Xu H, Elmets CA. Protective role of Toll-like receptor 4 during the initiation stage of cutaneous chemical carcinogenesis. Cancer Res 2008;68:615-622.
    54. Gaudreault E, Fiola S, Olivier M, Gosselin J. Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2. J Virol 2007;81:8016-8024.
    55. Huang B, Zhao J, Shen S, Li H, He KL, Shen GX, Mayer L, Unkeless J, Li D, Yuan Y, Zhang GM, Xiong H, Feng ZH. Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res 2007;67:4346-4352.
    56. Harmey JH, Bucana CD, Lu W, Byrne AM, McDonnell S, Lynch C, Bouchier-Hayes D, Dong Z. Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int J Cancer 2002;101:415-422.
    57. Luo JL, Maeda S, Hsu LC, Yagita H, Karin M. Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 2004;6:297-305.
    58. Jego G, Bataille R, Geffroy-Luseau A, Descamps G, Pellat-Deceunynck C. Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors. Leukemia 2006;20:1130-1137.
    59. Bohnhorst J, Rasmussen T, Moen SH, Flottum M, Knudsen L, Borset M, Espevik T, Sundan A. Toll-like receptors mediate proliferation and survival of multiple myeloma cells. Leukemia 2006;20:1138-1144.
    60. Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, Mayer L, Unkeless JC, Xiong H. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 2005;65:5009-5014.
    61. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005;121:977-990.
    62. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007;317:121-124.
    63. Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 2007;317:124-127.
    64. Chulada PC, Thompson MB, Mahler JF, Doyle CM, Gaul BW, Lee C, Tiano HF, Morham SG, Smithies O, Langenbach R. Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res 2000;60:4705-4708.
    65. Hong KH, Bonventre JC, O'Leary E, Bonventre JV, Lander ES. Deletion of cytosolic phospholipase A(2) suppresses Apc(Min)-induced tumorigenesis. Proc Natl Acad Sci U S A 2001;98:3935-3939.
    66. Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, Smyth MJ. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci U S A 2008;105:652-656.
    67. Rakoff-Nahoum S, Hao L, Medzhitov R. Role of toll-like receptors in spontaneous commensal-dependent colitis. Immunity 2006;25:319-329.
    68. Ferrero RL. Innate immune recognition of the extracellular mucosal pathogen, Helicobacter pylori. Mol Immunol 2005;42:879-885.
    69. Okazaki IM, Kotani A, Honjo T. Role of AID in tumorigenesis. Adv Immunol 2007;94:245-273.
    70. Xu Z, Pone EJ, Al-Qahtani A, Park SR, Zan H, Casali P. Regulation of aicda expression and AID activity:relevance to somatic hypermutation and class switch DNA recombination. Crit Rev Immunol 2007;27:367-397.
    71. Pidgeon GP, Harmey JH, Kay E, Da CM, Redmond HP, Bouchier-Hayes DJ. The role of endotoxin/lipopolysaccharide in surgically induced tumour growth in a murine model of metastatic disease. Br J Cancer 1999;81:1311-1317.
    72. Li M, Carpio DF, Zheng Y, Bruzzo P, Singh V, Ouaaz F, Medzhitov RM, Beg AA. An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and
    tissue-repair gene expression by necrotic cells. J Immunol 2001; 166:7128-7135.
    73. Dvorak HF. Tumors:wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986;315:1650-1659.
    1. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol 2001;2:533-543.
    2. Badvie S. Hepatocellular carcinoma. Postgrad Med J 2000;76:4-11.
    3. Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 2004; 11:97-107.
    4. Chen CJ, Yang HI, Su J, Jen CL, You SL, Lu SN, Huang GT, Iloeje UH. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 2006;295:65-73.
    5. Chisari FV. Unscrambling hepatitis C virus-host interactions. Nature 2005;436:930-932.
    6. Bowen DG, Walker CM. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 2005;436:946-952:
    7. Block TM, Mehta AS, Fimmel CJ, Jordan R. Molecular viral oncology of hepatocellular carcinoma. Oncogene 2003;22:5093-5107.
    8. Tokino T, Tamura H, Hori N, Matsubara K. Chromosome deletions associated with hepatitis B virus integration. Virology 1991;185:879-882.
    9. Murakami Y, Saigo K, Takashima H, Minami M, Okanoue T, Brechot C, Paterlini-Brechot P. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut 2005;54:1162-1168.
    10. Feitelson MA, Sun B, Satiroglu Tufan NL, Liu J, Pan J, Lian Z. Genetic mechanisms of hepatocarcinogenesis. Oncogene 2002;21:2593-2604.
    11. Ueda H, Ullrich SJ, Gangemi JD, Kappel CA, Ngo L, Feitelson MA, Jay G. Functional inactivation but not structural mutation of p53 causes liver cancer. Nat Genet 1995;9:41-47.
    12. Yu DY, Moon HB, Son JK, Jeong S, Yu SL, Yoon H, Han YM, Lee CS, Park JS, Lee CH, Hyun BH, Murakami S, Lee KK. Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein. J Hepatol 1999;31:123-132.
    13. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005;5:215-229.
    14. Weiner A, Erickson AL, Kansopon J, Crawford K, Muchmore E, Hughes AL, Houghton M, Walker CM. Persistent hepatitis C virus infection in a chimpanzee is associated with emergence of a cytotoxic T lymphocyte escape variant. Proc Natl Acad Sci U S A 1995;92:2755-2759.
    15. McClain CJ, Hill DB, Song Z, Deaciuc I, Barve S. Monocyte activation in alcoholic liver disease. Alcohol 2002;27:53-61.
    16. Hoek JB, Pastorino JG. Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol 2002;27:63-68.
    17. Campbell JS, Hughes SD, Gilbertson DG, Palmer TE, Holdren MS, Haran AC, Odell MM, Bauer RL, Ren HP, Haugen HS, Yeh MM, Fausto N. Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci U S A 2005;102:3389-3394.
    18. Comporti M, Arezzini B, Signorini C, Sgherri C, Monaco B, Gardi C. F2-isoprostanes stimulate collagen synthesis in activated hepatic stellate cells:a link with liver fibrosis? Lab Invest 2005;85:1381-1391.
    19. Osna NA, Clemens DL, Donohue TM, Jr. Ethanol metabolism alters interferon gamma signaling in recombinant HepG2 cells. Hepatology 2005;42:1109-1117.
    20. Marrogi AJ, Khan MA, van Gijssel HE, Welsh JA, Rahim H, Demetris AJ, Kowdley KV, Hussain SP, Nair J, Bartsch H, Okby N, Poirier MC, Ishak KG, Harris CC. Oxidative stress and p53 mutations in the carcinogenesis of iron overload-associated hepatocellular carcinoma. J Natl Cancer Inst 2001;93:1652-1655.
    21. Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimsky JD. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci 2004; 117:2417-2426.
    22. Aguilar F, Harris CC, Sun T, Hollstein M, Cerutti P. Geographic variation of p53 mutational profile in nonmalignant human liver. Science 1994;264:1317-1319.
    23. Riley J, Mandel HG, Sinha S, Judah DJ, Neal GE. In vitro activation of the human Harvey-ras proto-oncogene by aflatoxin B1. Carcinogenesis 1997; 18:905-910.
    24. Kew MC. Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. Liver Int 2003;23:405-409.
    25. Barbason H, Rassenfosse C, Betz EH. Promotion mechanism of phenobarbital and partial hepatectomy in DENA hepatocarcinogenesis cell kinetics effect. Br J Cancer 1983;47:517-525.
    26. Kawai H, Suda T, Aoyagi Y, Isokawa O, Mita Y, Waguri N, Kuroiwa T, Igarashi M, Tsukada K, Mori S, Shimizu T, Suzuki Y, Abe Y, Takahashi T, Nomoto M, Asakura H. Quantitative evaluation of genomic instability as a possible predictor for development of hepatocellular carcinoma:comparison of loss of heterozygosity and replication error. Hepatology 2000;31:1246-1250.
    27. Delhaye M, Louis H, Degraef C, Le MO, Deviere J, Gulbis B, Jacobovitz D, Adler M, Galand P. Relationship between hepatocyte proliferative activity and liver functional reserve in human cirrhosis. Hepatology 1996;23:1003-1011.
    28. Wege H, Chui MS, Le HT, Strom SC, Zern MA. In vitro expansion of human hepatocytes is restricted by telomere-dependent replicative aging. Cell Transplant 2003;12:897-906.
    29. d'Adda di FF, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von ZT, Saretzki G, Carter NP, Jackson SP. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003;426:194-198.
    30. Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de LT. DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 2002;12:1635-1644.
    31. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000;406:641-645.
    32. Farazi PA, Glickman J, Jiang S, Yu A, Rudolph KL, DePinho RA. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res 2003;63:5021-5027.
    33. Satyanarayana A, Manns MP, Rudolph KL. Telomeres and telomerase:a dual role in hepatocarcinogenesis. Hepatology 2004;40:276-283.
    34. Plentz RR, Caselitz M, Bleck JS, Gebel M, Flemming P, Kubicka S, Manns MP, Rudolph KL. Hepatocellular telomere shortening correlates with chromosomal instability and the development of human hepatoma. Hepatology 2004;40:80-86.
    35. Plentz RR, Schlegelberger B, Flemming P, Gebel M, Kreipe H, Manns MP, Rudolph KL, Wilkens L. Telomere shortening correlates with increasing aneuploidy of chromosome 8 in human hepatocellular carcinoma. Hepatology 2005;42:522-526.
    36. Laconi S, Pani P, Pillai S, Pasciu D, Sarma DS, Laconi E. A growth-constrained environment drives tumor progression invivo. Proc Natl Acad Sci U S A 2001;98:7806-7811.
    37. Bilousova G, Marusyk A, Porter CC, Cardiff RD, DeGregori J. Impaired DNA replication within progenitor cell pools promotes leukemogenesis. PLoS Biol 2005;3:e401.
    38. Satyanarayana A, Wiemann SU, Buer J, Lauber J, Dittmar KE, Wustefeld T, Blasco MA, Manns MP, Rudolph KL. Telomere shortening impairs organ regeneration by inhibiting cell cycle re-entry of a subpopulation of cells. EMBO J 2003;22:4003-4013.
    39. Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, Jiang H, Stepczynska A, Wang C, Buer J, Lee HW, von ZT, Ganser A, Schirmacher P, Nakauchi H, Rudolph KL. Cdknla deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 2007;39:99-105.
    40. Wagayama H, Shiraki K, Yamanaka T, Sugimoto K, Ito T, Fujikawa K, Takase K, Nakano T. p21WAF1/CTP1 expression and hepatitis virus type. Dig Dis Sci 2001;46:2074-2079.
    41. Iakova P, Awad SS, Timchenko NA. Aging reduces proliferative capacities of liver by switching pathways of C/EBPalpha growth arrest. Cell 2003;113:495-506.
    42. Poynard T, Mathurin P, Lai CL, Guyader D, Poupon R, Tainturier MH, Myers RP, Muntenau M, Ratziu V, Manns M, Vogel A, Capron F, Chedid A, Bedossa P. A comparison of fibrosis progression in chronic liver diseases. J Hepatol 2003;38:257-265.
    43. Wang GL, Iakova P, Wilde M, Awad S, Timchenko NA. Liver tumors escape negative control of proliferation via PI3K/Akt-mediated block of C/EBP alpha growth inhibitory activity. Genes Dev 2004;18:912-925.
    44. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005;115:209-218.
    45. Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S. Laminin-5 with transforming growth factor-betal induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 2005;129:1375-1383.
    46. Ogata H, Kobayashi T, Chinen T, Takaki H, Sanada T, Minoda Y, Koga K, Takaesu G, Maehara Y, Iida M, Yoshimura A. Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis. Gastroenterology 2006; 131:179-193.
    47. Sakurai T, Maeda S, Chang L, Karin M. Loss of hepatic NF-kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci U S A 2006;103:10544-10551.
    48. Luedde T, Beraza N, Kotsikoris V, van LG, Nenci A, De VR, Roskams T, Trautwein C, Pasparakis M. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 2007; 11:119-132.
    49. Parrinello S, Coppe JP, Krtolica A, Campisi J. Stromal-epithelial interactions in aging and cancer:senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 2005; 118:485-496.
    50. Wiemann SU, Satyanarayana A, Tsahuridu M, Tillmann HL, Zender L, Klempnauer J, Flemming P, Franco S, Blasco MA, Manns MP, Rudolph KL. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J 2002; 16:935-942.
    51. Wright WE, Shay JW. The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol 1992;27:383-389.
    52. Di MR, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre' M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d'Adda di FF. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006;444:638-642.
    53. Weber A, Bellmann U, Bootz F, Wittekind C, Tannapfel A. INK4a-ARF alterations and p53 mutations in primary and consecutive squamous cell carcinoma of the head and neck. Virchows Arch 2002;441:133-142.
    54. Jablkowski M, Bocian A, Bialkowska J, Bartkowiak J. A comparative study of P53/MDM2 genes alterations and P53/MDM2 proteins immunoreactivity in liver cirrhosis and hepatocellular carcinoma. J Exp Clin Cancer Res 2005;24:117-125.
    55. Llovet JM, Chen Y, Wurmbach E, Roayaie S, Fiel MI, Schwartz M, Thung SN, Khitrov G, Zhang W, Villanueva A, Battiston C, Mazzaferro V, Bruix J, Waxman S, Friedman SL. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology 2006; 131:1758-1767.
    56. Higashitsuji H, Higashitsuji H, Itoh K, Sakurai T, Nagao T, Sumitomo Y, Masuda T, Dawson S, Shimada Y, Mayer RJ, Fujita J. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 2005;8:75-87.
    57. Plentz RR, Park YN, Lechel A, Kim H, Nellessen F, Langkopf BH, Wilkens L, Destro A, Fiamengo B, Manns MP, Roncalli M, Rudolph KL. Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. Hepatology 2007;45:968-976.
    58. Kalinichenko VV, Major ML, Wang X, Petrovic V, Kuechle J, Yoder HM, Dennewitz MB, Shin B, Datta A, Raychaudhuri P, Costa RH. Foxmlb transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev 2004; 18:830-850.
    59. Ito Y, Matsuura N, Sakon M, Miyoshi E, Noda K, Takeda T, Umeshita K, Nagano H, Nakamori S, Dono K, Tsujimoto M, Nakahara M, Nakao K, Taniguchi N, Monden M. Expression and prognostic roles of the G1-S modulators in hepatocellular carcinoma:p27 independently predicts the recurrence. Hepatology 1999;30:90-99.
    60. Azechi H, Nishida N, Fukuda Y, Nishimura T, Minata M, Katsuma H, Kuno M, Ito T, Komeda T, Kita R, Takahashi R, Nakao K. Disruption of the p16/cyclin D1/retinoblastoma protein pathway in the majority of human hepatocellular carcinomas. Oncology 2001;60:346-354.
    61. Higashitsuji H, Itoh K, Nagao T, Dawson S, Nonoguchi K, Kido T, Mayer RJ, Arii S, Fujita J. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med 2000;6:96-99.
    62. Matsuda Y, Yamagiwa S, Takamura M, Honda Y, Ishimoto Y, Ichida T, Aoyagi Y. Overexpressed Id-1 is associated with a high risk of hepatocellular carcinoma development in patients with cirrhosis without transcriptional repression of p16. Cancer 2005;104:1037-1044.
    63. Higashitsuji H, Higashitsuji H, Nagao T, Nonoguchi K, Fujii S, Itoh K, Fujita J. A novel protein overexpressed in hepatoma accelerates export of NF-kappa B from the nucleus and inhibits p53-dependent apoptosis. Cancer Cell 2002;2:335-346.
    64. Martin J, Magnino F, Schmidt K, Piguet AC, Lee JS, Semela D, St-Pierre MV, Ziemiecki A,
    Cassio D, Brenner C, Thorgeirsson SS, Dufour JF. Hint2, a mitochondrial apoptotic sensitizer down-regulated in hepatocellular carcinoma. Gastroenterology 2006;130:2179-2188.
    65. Gregorieff A, Clevers H. Wnt signaling in the intestinal epithelium:from endoderm to cancer. Genes Dev 2005;19:877-890.
    66. Ishizaki Y, Ikeda S, Fujimori M, Shimizu Y, Kurihara T, Itamoto T, Kikuchi A, Okajima M, Asahara T. Immunohistochemical analysis and mutational analyses of beta-catenin, Axin family and APC genes in hepatocellular carcinomas. Int J Oncol 2004;24:1077-1083.
    67. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 2002;31:339-346.
    68. An FQ, Matsuda M, Fujii H, Tang RF, Amemiya H, Dai YM, Matsumoto Y. Tumor heterogeneity in small hepatocellular carcinoma:analysis of tumor cell proliferation, expression and mutation of p53 AND beta-catenin. Int J Cancer 2001;93:468-474.
    69. Cha MY, Kim CM, Park YM, Ryu WS. Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology 2004;39:1683-1693.
    70. Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH, Felsher DW. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004;431:1112-1117.
    71. Wang Y, Wu MC, Sham JS, Zhang W, Wu WQ, Guan XY. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer 2002;95:2346-2352.
    72. Wilkens L, Flemming P, Gebel M, Bleck J, Terkamp C, Wingen L, Kreipe H, Schlegelberger B. Induction of aneuploidy by increasing chromosomal instability during dedifferentiation of hepatocellular carcinoma. Proc Natl Acad Sci U S A 2004; 101:1309-1314.
    73. Lechel A, Holstege H, Begus Y, Schienke A, Kamino K, Lehmann U, Kubicka S, Schirmacher P, Jonkers J, Rudolph KL. Telomerase deletion limits progression of p53-mutant hepatocellular carcinoma with short telomeres in chronic liver disease. Gastroenterology 2007;132:1465-1475.
    74. Daveau M, Scotte M, Francois A, Coulouarn C, Ros G, Tallet Y, Hiron M, Hellot MF, Salier JP. Hepatocyte growth factor, transforming growth factor alpha, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Mol Carcinog 2003;36:130-141.
    75. Sakata H, Takayama H, Sharp R, Rubin JS, Merlino G, LaRochelle WJ. Hepatocyte growth factor/scatter factor overexpression induces growth, abnormal development, and tumor formation in transgenic mouse livers. Cell Growth Differ 1996;7:1513-1523.
    76. Wang R, Ferrell LD, Faouzi S, Maher JJ, Bishop JM. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol 2001;153:1023-1034.
    77. Djojosubroto MW, Chin AC, Go N, Schaetzlein S, Manns MP, Gryaznov S, Harley CB, Rudolph KL. Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology 2005;42:1127-1136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700