用户名: 密码: 验证码:
不同方式运动对生长期小鼠骨合成代谢和Wnt信号通路的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨的主要功能是保护内部器官和支撑身体,另外,还参与钙的代谢。骨组织在整个生命过程中都是动态变化的,受内、外环境变化的影响,其中包括遗传、生活方式和运动锻炼。运动造成的机械刺激能够调节骨的发育,影响骨生长的速率和骨的形状、大小、强度以及解剖学结构。运动锻炼能够增加骨密度,降低骨质疏松症的发生,并且对生长期骨合成代谢的影响要比老年更有效。骨量在生长期不断提高,在成熟期达到峰值,以后会随年龄增长开始降低,生长期骨量积累减少骨折发生,也能延缓骨质疏松症的发生。PTH和CT在骨代谢中起到主要作用,这两种激素已被美国食品与药品管理局(FDA)批准在临床上用来治疗骨质疏松。运动对骨合成代谢的影响是否通过诱导内源性PTH和CT浓度升高进行调控;Wnt信号通路是调节骨代谢的主要信号通路,PTH和CT是否通过Wnt信号通路调节骨形成,这些机制尚未得到证实。
     目的:观察下坡跑台运动、平坡跑台运动和游泳运动对骨密度、骨矿含量和骨组织骨合成代谢相关细胞因子基因及蛋白表达的影响,检测8周运动后原代MSCs增殖和分化差别,寻求对骨合成代谢影响更为显著的运动方式。对比不同方式运动对小鼠血清PTH和CT浓度影响,体外PTH和CT浓度变化对成骨细胞增殖和分化的影响,研究不同方式运动诱导内源性PTH和CT浓度变化对骨合成代谢产生影响,探讨不同方式运动健骨机制,丰富运动健骨的理论知识,为骨代谢疾病的治疗寻找合适的靶点。
     方法:C57BL/6小鼠120只,分4组,下坡跑台组(DT组)、平坡跑台组(T组)、游泳组(S组)、安静对照组(C组),每组30只。训练方案为:DT组训练,跑速均为0.8km/h,坡度分别为-9°;T组跑速与DT组相同,坡度为0°;S组游泳训练,不负重,漂浮不动时用毛刷驱赶。即刻运动组在一次运动后处死,运动时间40min,Elisa法测血清PTH和CT浓度,qRT-PCR法测甲状腺PTH、CT和Destrin基因表达。长期运动组每次训练40分钟,每周训练5次,共训练8周,用Elisa法测运动后即刻和运动后休息24小时血清PTH和CT浓度,用双能X射线测肱骨远端骨密度,原子吸收法测胫骨骨矿含量,qRT-PCR检测胫骨ALP、OCN、Runx2、RANKL、 Destrin、PTH1R、 CTR、Fz、DVL、LRP5/LRP6、β-catenin、JNK、ROCK、NLK、NFAT、Bax和Bc12基因表达。8周训练后,4组小鼠分别取原代MSCs体外培养,结晶紫染色检测MSCs增殖;诱导分化后ALP染色法检测成骨细胞ALP活性,Von Kossa染色检测成骨细胞矿化能力,qRT-PCR测相关基因表达,Western Blot法测相关蛋白表达,以检测运动对原代MSCs细胞影响的效果在体外培养过程中是否能够持续存在。在MSCs细胞培养过程中添加PTH和CT,分为4组,P+C组两种激素同时添加,P组只添加PTH, C组只添加CT,O组为对照组,不添加激素,MTS法检测MSCs细胞增殖情况,诱导分化后ALP染色法检测成骨细胞ALP活性,Von Kossa染色检测成骨细胞矿化能力,qRT-PCR测相关基因表达,Western Blot法测相关蛋白表达,以检测PTH和CT对MSCs增殖和分化的影响。
     结果:(1)跑台运动和游泳运动对生长期小鼠体重没有显著影响(P>0.05);游泳运动和跑台运动都提高了生长期小鼠肱骨骨密度(P<0.05),提高了胫骨骨矿含量,并且下坡跑台运动效果更显著(P<0.01)。不同方式运动对胫骨Runx2、Destr1R、 CTR、Fz、DVL、β-catenin、ROCK、JNK、Bcl-2和Bax这11种基因的表达产生显著影响(P<0.05);跑台运动和游泳运动运动后胫骨Destrin、Fz和DVL基因表达有一致性变化,相对于对照组有上调趋势,另外8种基因表达受运动方式影响较显著。
     (2)DT组原代MSCs增殖优于T组和S组(P<0.01);T组和S组成骨细胞ALP活性要优于DT组;成骨细胞骨矿化能力不同,T组>DT组>S组>C组。
     (3)不同方式运动后,3个运动组原代MSCs诱导分化的成骨细胞Fz、DVL和RANKL基因表达显著上调(P<0.05),OCN基因表达显著下调(P<0.05)。另外,DT组原代MSCs诱导分化的成骨细胞CTR、LRP5、ROCK和Destrin基因表达显著上调(P<0.05),ALP基因表达显著下调(P<0.05);S组原代MSCs诱导分化的成骨细胞CTR和ROCK基因表达显著上调(P<0.05)。PTHIR、CTR和RANKL蛋白表达跟基因表达趋势相同,而β-catenin蛋白表达与基因表达不同。
     (4)一次训练后即刻和8周训练后即刻,不同方式运动导致小鼠血清PTH和CT浓度呈现非常显著性差异(P<0.01),在8周训练休息24小时后,不同方式运动对小鼠血清PTH和CT浓度变化没有显著影响。一次训练后即刻,DT组小鼠血清PTH和CT浓度显著升高(P<0.05);8周训练后即刻,S组小鼠血清PTH浓度显著降低(P<0.01),DT组和T组小鼠血清CT浓度都显著升高(P<0.01),其中DT组小鼠血清浓度升高最为显著。一次不同方式运动对小鼠甲状腺CT和Destrin基因表达产生显著影响(P<0.05)。
     (5)P组MSCs增殖能力强于C组和O组(P<0.05),P+C组和C组成骨细胞ALP活性优于P组和O组,C组成骨细胞矿化能力强于其他3组。
     (6)P+C组和C组PTH1R基因表达相对于另外两组显著上调(P<0.01);相对O组,P+C组、P组和C组CTR基因表达都显著上调(P<0.05)。P组和C组成骨细胞相对于其他两组Fz基因表达显著上调(P<0.05);激素干预的3组LRP5基因表达都显著上调(P<0.05),P+C组>P组>C组。激素干预后成骨细胞表达DVL基因也显著上调(P<0.05);P+C组成骨细胞Wnt信号通路效应蛋白β-catenin、ROCK、JNK和NFAT基因表达相对于P组或者C组都有显著下调趋势; C组的ROCK和NFAT基因相对于其他几组显著上调(P<0.05)。PTH和CT浓度升高后,成骨细胞Marker基因ALP、OCN和RANKL表达出现显著差异(P<0.05),P+C组和C组ALP和RANKL基因表达显著上调(P<0.01),P+C组和P组OCN基因表达显著下调(P<0.01),C组Runx2基因表达显著上调(P<0.05)。
     结论:(1)跑台运动和游泳运动对生长期小鼠体重没有影响,但是能够显著增强生长期小鼠骨密度,并且下坡跑台运动对生长期小鼠骨密度和骨矿含量的提高更为有效。
     (2)骨组织基因表达结果显示,跑台运动主要通过抑制Wnt/PCP信号通路的效应蛋白ROCK和JNK基因表达,促进骨合成代谢。不同方式运动能够诱导Destrin基因表达上调,并且上调幅度跟重力负荷相关,表明Destrin基因对力学刺激敏感。
     (3)不同方式运动会对生长期小鼠血清PTH和CT浓度产生显著影响,下坡跑台运动能够显著提高血清PTH和CT浓度,平坡跑台运动也能提高血清PTH和CT浓度,效果没有下坡跑台显著,游泳运动不能有效促进血清PTH和CT浓度的提高。表明跑台运动能够通过提高内源性PTH和CT浓度进而促进骨合成代谢。
     (4)在体外细胞培养实验中,单独添加PTH促进MSCs细胞增殖效果最明显,单独添加CT有效促进成骨细胞活性和骨矿沉积,同时添加PTH和CT能促进受体蛋白PTHIR和CTR表达,促进经典Wnt信号通路受体蛋白LRP5的基因表达和经典Wnt信号通路效应蛋白β-catenin蛋白表达,增加骨矿沉积。另外,单独添加CT促进Wnt/Ca2+信号通路NFAT基因表达。
     (5)PTH和CT浓度变化对成骨细胞Marker基因表达产生不同影响。CT浓度升高促进ALP、RANKL和Runx2基因表达上调,提高成骨细胞活性。PTH浓度升高诱导成骨细胞OCN基因表达显著下调,促进骨合成。
The main function of bone is to protect the internal organs and support the body. It is also involved in calcium metabolism. Bone is a dynamic metabolic organ which is essential for maintaining the fundamental life processes, and it can be affected by the internal and external environment changes, genetic, lifestyle and exercise. Mechanical stimulation by any motion can modulate bone growth, such as its shape, size, strength, and the anatomical structure. Exercise training can increase its density, reduce the occurrence of osteoporosis, and affect the growth of bone metabolism. These have been proved to be more effective on young people rather than the old people. Bone mass increases during the growing period, it reaches the peak in the mature stage, and then starts to decrease with the increase of age. The accumulation of bone mass during growth period can reduce fracture probability, and delay the occurrence of osteoporosis. PTH and CT play a major role in bone metabolism, and they have been clinically applied to treat osteoporosis by America food and Drug Administration (FDA).However, it has not been reported whether exercise could increase the endogenous PTH and CT concentration and if it has an impact on bone metabolism.
     Objective: In order to seek the mode of motion this can influence bone synthesis and metabolism more significant. We compare the downhill running, flat slope treadmill and swimming exercise on bone density, bone mineral content and bone metabolism related cytokine gene and protein expression, and compare proliferation and differentiation of primary MSCs after8weeks exercise in order to find out the effect on bone metabolism of concentration changes of endogenous PTH and CT which induced by different exercise. Furthermore, with the aim of enriching the theoretical knowledge of exercise, we hope to make human bones strong and seek out a best way that is effective on the treatment of metabolic bone disease. We compare the differences between serum PTH and CT concentrations through different exercises, the effect of PTH and CT concentration on the proliferation and differentiation of osteoblasts In vitro.
     Methods: We divide120C57BL/6mice into4groups and30rats in each group. The4groups consist of downhill treadmill group (group DT), flat slope treadmill group (group T), swimming group (group S), and control group (group C). Training program:DT group training, the running speed is0.8km/h, the slope is-9°; The running speed of group T is same as the speed of group DT, the slope is0°; The training of S group is swimming without weight bearing. Using brush stir the mice when they are floating motionless. The time of immediate exercise group is40minutes and mice were all dead within30minutes after exercise. The concentration of serum PTH and CT is determined by Elisa assay and the gene expression of thyroid PTH, CT and Destrin gene is determined by qRT-PCR method. Long term exercises are set to be5times a week and every times40minutes. The exercitation usually lasts8weeks. Serum PTH and CT concentration is measured by Elisa assay in30minutes after exercise and24hours after training. Bone mineral density of the lateral humerus is measured by dual energy X ray. The bone mineral content of tibia is measured by atomic absorption method and the expression of OCN, Runx2, ALP, RANKL, Destrin, PTH1R, CTR, Fz, DVL, LRP5/LRP6, β-catenin, JNK, ROCK, NLK, NFAT, Bax and Bcl2gene is detected by qRT-PCR. Crystal violet staining and MTS methods are used for detecting the proliferation of MSCs and the ALP staining is used for detecting the ALP activity of osteoblasts. Von Kossa staining was used to detect the osteoblast mineralization ability. The characteristics of proliferation and differentiation of bone marrow-derived MSC is detected in vitro in primary cultures. Furthermore, effects of hormone treatment of PTH and CT on bone metabolism are detected in vitro in primary bone marrow-derived MSC cultures. The protein expression of PTH1R, CTR, RANKL and β-catenin is detected by Western-blotting technology.
     Results:(1) Running and swimming exercise had no significant effect on changing body weight in growing mice (P>0.05).Swimming and treadmill exercise improved the humerus bone density(P<0.05) and the tibia bone mineral content in growing mice, and then effects of downhill running exercise is more significant (P<0.01). It is more significant to influence of different types of exercise on the11genes expression of Runx2, Destrin, PTH1R, CTR, Fz, DVL, p-catenin, ROCK, JNK, Bcl-2and Bax (P<0.05). It is in consistency that the gene expression changes of Destrin, Fz and DVL affected by treadmill and swimming exercise, and it also has upward trend than control group. The expressions of other8genes are obviously influenced by the different types of exercise.
     (2) In group DT, the proliferation of primary MSCs is better than that of T group and S group (P<0.01). The activity of ALP in T group and S group is better than that of DT group. It is different in aspect of osteoblast mineralization ability, the result is this:T group> DT group>S group>C group.
     (3) It is significant difference (P<0.05) of gene expression of Fz, DVL, LRP5/6, ROCK, ALP, OCN and RANKL of osteoblasts which differentiated from primary MSCs after different modes of exercise. It is in the same trend between the protein expression and the gene expression of RANKL and PTH1R in osteoblasts.
     (4) It has very significant difference (P<0.01) in serum PTH and CT concentration in mice, both detection immediately after one training and detection immediately after8weeks training. However, it has no significant effect of different ways of motion on serum PTH and CT concentration in mice which rested24hours after8weeks training. Only time training of different types can induce the gene expression of mouse thyroid CT and Destrin varying significantly (P<0.05).
     (5) In group P, the proliferation ability of MSCs is better than that in C group and O group (P<0.05). ALP activity of osteoblasts in P+C group and C is better than P group and O group. The mineralization ability of osteoblasts in C group is the best among4groups.
     (6) In group P+C and group C, the gene expression of PTH1R is increased more significantly than that in other two groups (P<0.01). Relative to the O group, the gene expression of CTR gene is significantly up-regulated in other groups (P<0.05). The gene expression of Fz in osteoblasts in group P and C is significantly higher than the other two groups (P<0.05). Compared to control group, it is highly increased the gene expression of LRP5in3groups treated by hormone intervention (P<0.05), that in P+C group is more obvious than P group and P group than C group. Expression of DVL gene in osteoblasts was obviously unregulated after hormone intervention (P<0.05). Compared with P group or C group, it has a significant down regulation of gene expression of Wnt signaling pathway effectors protein such as beta-catenin, ROCK, JNK and NFAT. Compared to other groups, ROCK and NFAT gene in C group increased significantly (P<0.05). Due to the increased of PTH and CT concentration, it has significant difference in expression of osteoblast marker gene ALP, OCN and RANKL(P<0.05).
     Conclusion:(1) It has no effect on mouse's weight by running and swimming exercise, but it can increase their bone density, but downhill running is the most effective exercise in changing the growth of the mouse's bone mineral density and mineral content.
     (2) The results of gene expression of bone tissue show that different mechanism of regulating bone metabolism can be affected by different ways of motion. Treadmill exercise promotes bone anabolism by inhibiting the gene expression of ROCK and JNK, which are effector proteins in the Wnt/PCP pathway. Different types of exercise can induce Destrin gene expression up-regulated, but the extent of the increasing of gene expression is related to the exercise strength and gravitational loading.
     (3) It has a significant impact of different types of exercise on the growth of mouse serum PTH and CT concentration. The increase of serum PTH and CT concentration can be induced by treadmill exercise but swimming training cannot effectively promote the increase of serum PTH and CT concentration. It is well proved that treadmill exercise can promote and regulate bone anabolism by increasing endogenous PTH and CT concentration.
     (4) In the in vitro experiment, the increase of PTH and CT concentration can change gene expression of Fz and LRP5, the receptor protein of Wnt signal pathway. The change of receptor proteins and effector proteins of Wnt signal pathway show that PTH and CT not only through the classic Wnt signal pathway regulating bone metabolism, but it is also through the activation of Wnt/PCP signaling pathway and Wnt/Ca2+signaling pathways to regulate bone metabolism. Effect of PTH and CT on the regulation of Wnt signaling pathway is not the same and the mainly difference in the two non canonical Wnt signal pathways.
     (5) The changes of PTH and CT concentration have different effects on the expression of Marker gene in osteoblasts. The increase of CT concentration can urge the gene expression of ALP, RANKL and Runx2. Elevated PTH concentration promote bone anabolism by inducing gene expression of OCN down regulated significantly
引文
[1]Harada S, Rodan G A. Control of osteoblast function and regulation of bone mass[J]. Nature.2003,423(6937):349-355.
    [2]Dennison E, Cooper C. Epidemiology of osteoporotic fractures[J]. Horm Res.2000,54 Suppl 1:58-63.
    [3]Chang K P, Center J R, Nguyen T V, et al. Incidence of hip and other osteoporotic fractures in elderly men and women:Dubbo Osteoporosis Epidemiology Study [J]. J Bone Miner Res.2004,19(4):532-536.
    [4]Boreham C A, Mckay H A. Physical activity in childhood and bone health[J]. Br J Sports Med.2011,45(11):877-879.
    [5]Riggs B L, Khosla S, Melton L R. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men[J]. J Bone Miner Res.1998,13(5):763-773.
    [6]Hughes-Fulford M, Lewis M L. Effects of microgravity on osteoblast growth activation[J]. Exp Cell Res.1996,224(1):103-109.
    [7]Smith S M, Wastney M E, O'Brien K O, et al. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station[J]. J Bone Miner Res.2005,20(2):208-218.
    [8]Smith S M, Nillen J L, Leblanc A, et al. Collagen cross-link excretion during space flight and bed rest[J]. J Clin Endocrinol Metab.1998,83(10):3584-3591.
    [9]Heer M, Baecker N, Mika C, et al. Immobilization induces a very rapid increase in osteoclast activity[J]. Acta Astronaut.2005,57(1):31-36.
    [10]Frost H M, Jee W S. On the rat model of human osteopenias and osteoporoses[J]. Bone Miner.1992,18(3):227-236.
    [11]van der Wiel H E, Lips P, Nauta J, et al. Biochemical parameters of bone turnover during ten days of bed rest and subsequent mobilization[J]. Bone Miner.1991,13(2): 123-129.
    [12]Doty S B, Dicarlo E F. Pathophysiology of immobilization osteoporosis[J]. Curr Opin Orthop.1995,6(5):45-49.
    [13]Bourrin S, Palle S, Genty C, et al. Physical exercise during remobilization restores a normal bone trabecular network after tail suspension-induced osteopenia in young rats[J]. J Bone Miner Res.1995,10(5):820-828.
    [14]Baxter-Jones A D, Kontulainen S A, Faulkner R A, et al. A longitudinal study of the relationship of physical activity to bone mineral accrual from adolescence to young adulthood[J]. Bone.2008,43(6):1101-1107.
    [15]Serezani C H, Kane S, Medeiros A I, et al. PTEN directly activates the actin depolymerization factor cofilin-1 during PGE2-mediated inhibition of phagocytosis of fungi[J]. Sci Signal.2012,5(210):a12.
    [16]Galkin V E, Orlova A, Kudryashov D S, et al. Remodeling of actin filaments by ADF/cofilin proteins[J]. Proc Natl Acad Sci U S A.2011,108(51):20568-20572.
    [17]Guo D, Keightley A, Guthrie J, et al. Identification of osteocyte-selective proteins[J]. Proteomics.2010,10(20):3688-3698.
    [18]Gunter K, Baxter-Jones A D, Mirwald R L, et al. Jump starting skeletal health:a 4-year longitudinal study assessing the effects of jumping on skeletal development in pre and circum pubertal children[J]. Bone.2008,42(4):710-718.
    [19]Bonucci E, Ballanti P. Osteoporosis--Bone Remodeling and Animal Models[J]. Toxicol Pathol.2013.
    [20]Binkley N, Bolognese M, Sidorowicz-Bialynicka A, et al. A phase 3 trial of the efficacy and safety of oral recombinant calcitonin: the Oral Calcitonin in Postmenopausal Osteoporosis (ORACAL) trial[J]. J Bone Miner Res.2012,27(8):1821-1829.
    [21]Christenson E S, Jiang X, Kagan R, et al. Osteoporosis management in post-menopausal women[J]. Minerva Ginecol.2012,64(3):181-194.
    [22]Mosekilde L, Vestergaard P, Rejnmark L. The pathogenesis, treatment and prevention of osteoporosis in men[J]. Drugs.2013,73(1):15-29.
    [23]Reginster J Y, Pelousse F, Bruyere O. Safety concerns with the long-term management of osteoporosis[J]. Expert Opin Drug Saf.2013,12(4):507-522.
    [24]Silverman S, Christiansen C. Individualizing osteoporosis therapy[J]. Osteoporos Int. 2012,23(3):797-809.
    [25]Tural S, Kara N, Alayli G, et al. Association between osteoporosis and polymorphisms of the bone Gla protein, estrogen receptor 1, collagen 1-A1 and calcitonin receptor genes in Turkish postmenopausal women[J]. Gene.2013,515(1):167-172.
    [26]Seeman E, Tsalamandris C, Bass S, et al. Present and future of osteoporosis therapy[J]. Bone.1995,17(2 Suppl):23S-29S.
    [27]Plotkin H, Gundberg C, Mitnick M, et al. Dissociation of bone formation from resorption during 2-week treatment with human parathyroid hormone-related peptide-(l-36) in humans:potential as an anabolic therapy for osteoporosis [J]. J Clin Endocrinol Metab. 1998,83(8):2786-2791.
    [28]Rubin M R, Bilezikian J P. The potential of parathyroid hormone as a therapy for osteoporosis[J]. Int J Fertil Womens Med.2002,47(3):103-115.
    [29]Parhampour B, Torkaman G, Hoorfar H, et al. Effects of short-term resistance training and pulsed electromagnetic fields on bone metabolism and joint function in severe haemophilia A patients with osteoporosis: a randomized controlled trial[J]. Clin Rehabil. 2013.
    [30]Campos R M, Tulio D M M, Tock L, et al. Aerobic Plus Resistance Training Improves Bone Metabolism and Inflammation in Obese Adolescents[J]. J Strength Cond Res.2013.
    [31]Zhou Z, Zheng L, Wei D, et al. Muscular strength measurements indicate bone mineral density loss in postmenopausal women[J]. Clin Interv Aging.2013,8:1451-1459.
    [32]Schipilow J D, Macdonald H M, Liphardt A M, et al. Bone micro-architecture, estimated bone strength, and the muscle-bone interaction in elite athletes: an HR-pQCT study[J]. Bone.2013,56(2):281-289.
    [33]Yoon J S, Lee J H, Kim J S. The effect of swiss ball stabilization exercise on pain and bone mineral density of patients with chronic low back pain[J]. J Phys Ther Sci.2013,25(8): 953-956.
    [34]Babatunde O, Forsyth J. Effects of lifestyle exercise on premenopausal bone health: a randomised controlled trial[J]. J Bone Miner Metab.2013.
    [35]Reza S M, Rasool H, Mansour S, et al. Effects of calcium and training on the development of bone density in children with Down syndrome[J]. Res Dev Disabil.2013, 34(12):4304-4309.
    [36]Ma D, Wu L, He Z. Effects of walking on the preservation of bone mineral density in perimenopausal and postmenopausal women:a systematic review and meta-analysis[J]. Menopause.2013,20(11):1216-1226.
    [37]郑庆云,李世昌.BMP-2在不同运动方式中的表达及对骨代谢的影响[J].山东体育学院学报.2011(08):47-51.
    [38]房冬梅.不同方式的运动对生长期大鼠骨代谢及其相关激素的影响[J].天津体育学院学报.2009(04):337-340.
    [39]Goltzman D. Studies on the mechanisms of the skeletal anabolic action of endogenous and exogenous parathyroid hormone[J]. Arch Biochem Biophys.2008,473(2):218-224.
    [40]Pettway G J, Schneider A, Koh A J, et al. Anabolic actions of PTH (1-34):use of a novel tissue engineering model to investigate temporal effects on bone[J]. Bone.2005,36(6): 959-970.
    [41]Iida-Klein A, Lu S S, Cosman F, et al. Effects of cyclic vs. daily treatment with human parathyroid hormone (1-34) on murine bone structure and cellular activity[J]. Bone.2007, 40(2):391-398.
    [42]Jilka R L, Weinstein R S, Bellido T, et al. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone[J]. J Clin Invest.1999,104(4):439-446.
    [43]Dempster D W, Cosman F, Kurland E S, et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study[J]. J Bone Miner Res.2001,16(10):1846-1853.
    [44]Hirano T, Burr D B, Turner C H, et al. Anabolic effects of human biosynthetic parathyroid hormone fragment (1-34), LY333334, on remodeling and mechanical properties of cortical bone in rabbits[J]. J Bone Miner Res.1999,14(4):536-545.
    [45]Lindsay R, Zhou H, Cosman F, et al. Effects of a one-month treatment with PTH(1-34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium[J]. J Bone Miner Res.2007,22(4):495-502.
    [46]Finkelstein J S, Arnold A L. Increases in bone mineral density after discontinuation of daily human parathyroid hormone and gonadotropin-releasing hormone analog administration in women with endometriosis[J]. J Clin Endocrinol Metab.1999,84(4):1214-1219.
    [47]Finkelstein J S, Klibanski A, Arnold A L, et al. Prevention of estrogen deficiency-related bone loss with human parathyroid hormone-(1-34):a randomized controlled trial[J]. JAMA.1998,280(12):1067-1073.
    [48]Meng X W, Liang X G, Birchman R, et al. Temporal expression of the anabolic action of PTH in cancellous bone of ovariectomized rats[J]. J Bone Miner Res.1996,11(4): 421-429.
    [49]Mohan S, Kutilek S, Zhang C, et al. Comparison of bone formation responses to parathyroid hormone(1-34), (1-31), and (2-34) in mice[J]. Bone.2000,27(4):471-478.
    [50]Reeve J, Meunier P J, Parsons J A, et al. Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis:a multicentre trial [J]. Br Med J. 1980,280(6228):1340-1344.
    [51]Tazawa K, Hoshi K, Kawamoto S, et al. Osteocytic osteolysis observed in rats to which parathyroid hormone was continuously administered[J]. J Bone Miner Metab.2004,22(6): 524-529.
    [52]Kamioka H, Honjo T, Takano-Yamamoto T. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy [J]. Bone.2001,28(2):145-149.
    [53]Zhao S, Zhang Y K, Harris S, et al. MLO-Y4 osteocyte-like cells support osteoclast formation and activation[J]. J Bone Miner Res.2002,17(11):2068-2079.
    [54]Baylink D, Sipe J, Wergedal J, et al. Vitamin D-enhanced osteocytic and osteoclastic bone resorption[J]. Am J Physiol.1973,224(6):1345-1357.
    [55]Heino T J, Hentunen T A, Vaananen H K. Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts[J]. Exp Cell Res.2004,294(2):458-468.
    [56]Bonewald L F, Johnson M L. Osteocytes, mechanosensing and Wnt signaling[J]. Bone. 2008,42(4):606-615.
    [57]Nicolella D P, Nicholls A E, Lankford J, et al. Machine vision photogrammetry: a technique for measurement of microstructural strain in cortical bone[J]. J Biomech.2001, 34(1):135-139.
    [58]Nicolella D P, Moravits D E, Gale A M, et al. Osteocyte lacunae tissue strain in cortical bone[J]. J Biomech.2006,39(9):1735-1743.
    [59]韩金祥.骨分子生物学[M].科学出版社,2010.
    [60]Jilka R L, O'Brien C A, Ali A A, et al. Intermittent PTH stimulates periosteal bone formation by actions on post-mitotic preosteoblasts[J]. Bone.2009,44(2):275-286.
    [61]Takyar F M, Tonna S, Ho P W, et al. EphrinB2/EphB4 inhibition in the osteoblast lineage modifies the anabolic response to parathyroid hormone[J]. J Bone Miner Res.2012.
    [62]Simonet W S, Lacey D L, Dunstan C R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density[J]. Cell.1997,89(2):309-319.
    [63]Pham V, Wade J D, Purdue B W, et al. Spatial proximity between a photolabile residue in position 19 of salmon calcitonin and the amino terminus of the human calcitonin receptor[J]. J Biol Chem.2004,279(8):6720-6729.
    [64]Kobayashi Y, Maeda K, Takahashi N. Roles of Wnt signaling in bone formation and resorption[J]. Japanese Dental Science Review.2008(44):76-82.
    [65]Li V S, Ng S S, Boersema P J, et al. Wnt signaling through inhibition of beta-catenin degradation in an intact Axinl complex[J]. Cell.2012,149(6):1245-1256.
    [66]Dong Y F, Soung D Y, Schwarz E M, et al. Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor[J]. J Cell Physiol.2006,208(1):77-86.
    [67]Si W, Kang Q, Luu H H, et al. CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells[J]. Mol Cell Biol.2006,26(8):2955-2964.
    [68]Spencer G J, Utting J C, Etheridge S L, et al. Wnt signalling in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro[J]. J Cell Sci.2006,119(Pt 7):1283-1296.
    [69]Kuhl M. The WNT/calcium pathway:biochemical mediators, tools and future requirements[J]. Front Biosci.2004,9:967-974.
    [70]Davis R J. Signal transduction by the JNK group of MAP kinases[J]. Cell.2000,103(2): 239-252.
    [71]Boudin E, Piters E, Fijalkowski I, et al. Mutations in sFRPl or sFRP4 are not a common cause of craniotubular hyperostosis[J]. Bone.2013,52(1):292-295.
    [72]Tian Y, Xu Y, Fu Q, et al. Parathyroid hormone regulates osteoblast differentiation in a Wnt/beta-catenin-dependent manner[J]. Mol Cell Biochem.2011,355(1-2):211-216.
    [73]Hisa I, Inoue Y, Hendy G N, et al. Parathyroid hormone-responsive Smad3-related factor, Tmemll9, promotes osteoblast differentiation and interacts with the bone morphogenetic protein-Runx2 pathway[J]. J Biol Chem.2011,286(11):9787-9796.
    [74]Terauchi M, Li J Y, Bedi B, et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wntl0b signaling[J]. Cell Metab.2009,10(3):229-240.
    [75]Lee M, Partridge N C. Parathyroid hormone signaling in bone and kidney [J]. Curr Opin Nephrol Hypertens.2009,18(4):298-302.
    [76]Wan M, Li J, Herbst K, et al. LRP6 mediates cAMP generation by G protein-coupled receptors through regulating the membrane targeting of Galpha(s)[J]. Sci Signal.2011,4(164): al5.
    [77]Yao W, Cheng Z, Shahnazari M, et al. Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects[J]. J Bone Miner Res.2010,25(2):190-199.
    [78]Kobayashi T. [Hormones and osteoporosis update. Mechanisms of anabolic and catabolic effects of PTH on bone][J]. Clin Calcium.2009,19(7):911-918.
    [79]Keller H, Kneissel M. SOST is a target gene for PTH in bone[J]. Bone.2005,37(2): 148-158.
    [80]Takada I, Mihara M, Suzawa M, et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation[J]. Nat Cell Biol. 2007,9(11):1273-1285.
    [81]Kobayashi Y. [Roles of Wnt signaling in bone metabolism] [J]. Clin Calcium.2012, 22(11):1701-1706.
    [82]Koay M A, Brown M A. Genetic disorders of the LRP5-Wnt signalling pathway affecting the skeleton[J]. Trends Mol Med.2005,11(3):129-137.
    [83]Yadav V K, Ryu J H, Suda N, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum[J]. Cell.2008,135(5):825-837.
    [84]Mahalingam C D, Datta T, Patil R V, et al. Mitogen-activated protein kinase phosphatase 1 regulates bone mass, osteoblast gene expression, and responsiveness to parathyroid hormone[J]. J Endocrinol.2011,211(2):145-156.
    [85]Outila T A, Karkkainen M U, Seppanen R H, et al. Dietary intake of vitamin D in premenopausal, healthy vegans was insufficient to maintain concentrations of serum 25-hydroxyvitamin D and intact parathyroid hormone within normal ranges during the winter in Finland[J]. J Am Diet Assoc.2000,100(4):434-441.
    [86]Motyl K J, Mccauley L K, Mccabe L R. Amelioration of type Ⅰ diabetes-induced osteoporosis by parathyroid hormone is associated with improved osteoblast survival [J]. J Cell Physiol.2012,227(4):1326-1334.
    [87]Weinstein R S, Jilka R L, Almeida M, et al. Intermittent parathyroid hormone administration counteracts the adverse effects of glucocorticoids on osteoblast and osteocyte viability, bone formation, and strength in mice[J]. Endocrinology.2010,151(6):2641-2649.
    [88]Saquib N, von Muhlen D, Garland C F, et al. Serum 25-hydroxyvitamin D, parathyroid hormone, and bone mineral density in men: the Rancho Bernardo study[J]. Osteoporos Int. 2006,17(12):1734-1741.
    [89]Davey R A, Findlay D M. Calcitonin: physiology or fantasy?[J]. J Bone Miner Res. 2013.
    [90]Wallach S, Rousseau G, Martin L, et al. Effects of calcitonin on animal and in vitro models of skeletal metabolism[J]. Bone.1999,25(5):509-516.
    [91]Sexton P M, Findlay D M, Martin T J. Calcitonin[J]. Curr Med Chem.1999,6(11): 1067-1093.
    [92]Findlay D M. Regulation of cell growth mediated by the calcitonin receptor[J]. Cell Mol Biol (Noisy-le-grand).2006,52(3):3-8.
    [93]Zhong Y, Armbrecht H J, Christakos S. Calcitonin, a regulator of the 25-hydroxyvitamin D3 lalpha-hydroxylase gene[J]. J Biol Chem.2009,284(17): 11059-11069.
    [94]Shinki T, Ueno Y, Deluca H F, et al. Calcitonin is a major regulator for the expression of renal 25-hydroxyvitamin D3-lalpha-hydroxylase gene in normocalcemic rats[J]. Proc Natl Acad Sci U S A.1999,96(14):8253-8258.
    [95]Kawashima H, Torikai S, Kurokawa K. Calcitonin selectively stimulates 25-hydroxyvitamin D3-1 alpha-hydroxylase in proximal straight tubule of rat kidney[J]. Nature.1981,291(5813):327-329.
    [96]Jaeger P, Jones W, Clemens T L, et al. Evidence that calcitonin stimulates 1,25-dihydroxyvitamin D production and intestinal absorption of calcium in vivo[J]. J Clin Invest.1986,78(2):456-461.
    [97]Findlay D M, Sexton P M. Calcitonin[J]. Growth Factors.2004,22(4):217-224.
    [98]Naot D, Cornish J. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism[J]. Bone.2008,43(5):813-818.
    [99]Turner A G, Tjahyono F, Chiu W S, et al. The role of the calcitonin receptor in protecting against induced hypercalcemia is mediated via its actions in osteoclasts to inhibit bone resorption[J]. Bone.2011,48(2):354-361.
    [100]Dacquin R, Davey R A, Laplace C, et al. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo[J]. J Cell Biol.2004,164(4):509-514.
    [101]Suzuki H, Nakamura I, Takahashi N, et al. Calcitonin-induced changes in the cytoskeleton are mediated by a signal pathway associated with protein kinase A in osteoclasts[J]. Endocrinology.1996,137(11):4685-4690.
    [102]Granholm S, Lundberg P, Lerner U H. Calcitonin inhibits osteoclast formation in mouse haematopoetic cells independently of transcriptional regulation by receptor activator of NF-{kappa}B and c-Fms[J]. J Endocrinol.2007,195(3):415-427.
    [103]Samura A, Wada S, Suda S, et al. Calcitonin receptor regulation and responsiveness to calcitonin in human osteoclast-like cells prepared in vitro using receptor activator of nuclear factor-kappaB ligand and macrophage colony-stimulating factor[J]. Endocrinology.2000, 141(10):3774-3782.
    [104]Zhang Z, Neff L, Bothwell A L, et al. Calcitonin induces dephosphorylation of Pyk2 and phosphorylation of focal adhesion kinase in osteoclasts[J]. Bone.2002,31(3):359-365.
    [105]Raggatt L J, Evdokiou A, Findlay D M. Sustained activation of Erkl/2 MAPK and cell growth suppression by the insert-negative, but not the insert-positive isoform of the human calcitonin receptor [J]. J Endocrinol.2000,167(1):93-105.
    [106]Sexton P M, Poyner D R, Simms J, et al. Modulating receptor function through RAMPs: can they represent drug targets in themselves?[J]. Drug Discov Today.2009,14(7-8): 413-419.
    [107]Beaudreuil J, Taboulet J, Orcel P, et al. Calcitonin receptor mRNA in mononuclear leucocytes from postmenopausal women:decrease during osteoporosis and link to bone markers with specific isoform involvement[J]. Bone.2000,27(1):161-168.
    [108]Nielsen R H, Bay-Jensen A C, Byrjalsen I, et al. Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover[J]. Osteoarthritis Cartilage.2011,19(4):466-473.
    [109]Sondergaard B C, Madsen S H, Segovia-Silvestre T, et al. Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes[J]. BMC Musculoskelet Disord.2010,11:62.
    [110]Cheng T, Zhang L, Fu X, et al. The potential protective effects of calcitonin involved in coordinating chondrocyte response, extracellular matrix, and subchondral trabecular bone in experimental osteoarthritis[J]. Connect Tissue Res.2013,54(2):139-146.
    [111]Gruber H E, Grigsby J, Chesnut I C. Osteoblast numbers after calcitonin therapy: a retrospective study of paired biopsies obtained during long-term calcitonin therapy in postmenopausal osteoporosis [J]. Calcif Tissue Int.2000,66(1):29-34.
    [112]Tian Q X, Huang G Y, Zhou J L, et al. [Effects of calcitonin on osteoblast cell proliferation and OPG/RANKL expression:experiment with mouse osteoblasts][J]. Zhonghua Yi Xue Za Zhi.2007,87(21):1501-1505.
    [113]Farley J, Dimai H P, Stilt-Coffing B, et al. Calcitonin increases the concentration of insulin-like growth factors in serum-free cultures of human osteoblast-line cells [J]. Calcif Tissue Int.2000,67(3):247-254.
    [114]Rosen C J, Donahue L R, Hunter S J. Insulin-like growth factors and bone:the osteoporosis connection[J]. Proc Soc Exp Biol Med.1994,206(2):83-102.
    [115]Hayden J M, Mohan S, Baylink D J. The insulin-like growth factor system and the coupling of formation to resorption[J]. Bone.1995,17(2 Suppl):93S-98S.
    [116]Liu Y, Fan Y, Cao D, et al. Calcitonin enhanced lumbar spinal fusion in a New Zealand rabbit model: a study with morphologic and molecular analysis[J]. Spine (Phila Pa 1976). 2012,37(3):E139-E146.
    [117]Lehman R J, Dmitriev A E, Cardoso M J, et al. Effect of teriparatide [rhPTH(1,34)] and calcitonin on intertransverse process fusion in a rabbit model[J]. Spine (Phila Pa 1976).2010, 35(2):146-152.
    [118]Arnett T R, Dempster D W. A comparative study of disaggregated chick and rat osteoclasts in vitro:effects of calcitonin and prostaglandins[J]. Endocrinology.1987,120(2): 602-608.
    [119]Nicholson G C, Moseley J M, Sexton P M, et al. Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization[J]. J Clin Invest. 1986,78(2):355-360.
    [120]Jilka R L, Takahashi K, Munshi M, et al. Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption[J]. J Clin Invest.1998,101(9):1942-1950.
    [121]Moonga B S, Moss D W, Patchell A, et al. Intracellular regulation of enzyme secretion from rat osteoclasts and evidence for a functional role in bone resorption[J]. J Physiol.1990, 429:29-45.
    [122]Plotkin L I, Weinstein R S, Parfitt A M, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin[J]. J Clin Invest.1999,104(10):1363-1374.
    [123]Zhang Z, Baron R, Home W C. Integrin engagement, the actin cytoskeleton, and c-Src are required for the calcitonin-induced tyrosine phosphorylation of paxillin and HEF1, but not for calcitonin-induced Erkl/2 phosphorylation[J]. J Biol Chem.2000,275(47):37219-37223.
    [124]Mancini L, Moradi-Bidhendi N, Brandi M L, et al. Modulation of the effects of osteoprotegerin (OPG) ligand in a human leukemic cell line by OPG and calcitonin[J]. Biochem Biophys Res Commun.2000,279(2):391-397.
    [125]Arnala I O. Salmon calcitonin (miacalcic ns 200 iu) in prevention of bone loss after hip replacement[J]. Scand J Surg.2012,101(4):249-254.
    [126]Huebner A K, Keller J, Catala-Lehnen P, et al. The role of calcitonin and alpha-calcitonin gene-related peptide in bone formation[J]. Arch Biochem Biophys.2008, 473(2):210-217.
    [127]Huebner A K, Schinke T, Priemel M, et al. Calcitonin deficiency in mice progressively results in high bone turnover[J]. J Bone Miner Res.2006,21(12):1924-1934.
    [128]Hamdy R C, Daley D N. Oral calcitonin[J]. Int J Womens Health.2012,4:471-479.
    [129]Yan L, Yinghui T, Bo Y, et al. Effect of calcitonin gene-related peptide on nitric oxide production in osteoblasts:an experimental study[J]. Cell Biol Int.2011,35(8):757-765.
    [130]韩娜,姜保国,王天兵,等.降钙素基因相关肽对大鼠成骨细胞表达转录因子RUNX2的影响[J].北京大学学报(医学版).2011,43(5):652-656.
    [131]Han N, Zhang D Y, Wang T B, et al. Calcitonin gene-related peptide induces proliferation and monocyte chemoattractant protein-1 expression via extracellular signal-regulated kinase activation in rat osteoblasts [J]. Chin Med J (Engl).2010,123(13): 1748-1753.
    [132]Villa I, Melzi R, Pagani F, et al. Effects of calcitonin gene-related peptide and amylin on human osteoblast-like cells proliferation[J]. Eur J Pharmacol.2000,409(3):273-278.
    [133]Drissi H, Hott M, Marie P J, et al. Expression of the CT/CGRP gene and its regulation by dibutyryl cyclic adenosine monophosphate in human osteoblastic cells[J]. J Bone Miner Res.1997,12(11):1805-1814.
    [134]Woeckel V J, Bruedigam C, Koedam M, et al. lalpha,25-dihydroxyvitamin D3 and rosiglitazone synergistically enhance osteoblast-mediated mineralization[J]. Gene.2013, 512(2):438-443.
    [135]van Driel M, Koedam M, Buurman C J, et al. Evidence that both lalpha,25-dihydroxyvitamin D3 and 24-hydroxylated D3 enhance human osteoblast differentiation and mineralization[J]. J Cell Biochem.2006,99(3):922-935.
    [136]Barthel T K, Mathern D R, Whitfield G K, et al.1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism[J]. J Steroid Biochem Mol Biol.2007,103(3-5):381-388.
    [137]Shen Q, Christakos S. The vitamin D receptor, Runx2, and the Notch signaling pathway cooperate in the transcriptional regulation of osteopontin[J]. J Biol Chem.2005,280(49): 40589-40598.
    [138]Woeckel V J, Alves R D, Swagemakers S M, et al. lAlpha,25-(OH)2D3 acts in the early phase of osteoblast differentiation to enhance mineralization via accelerated production of mature matrix vesicles[J]. J Cell Physiol.2010,225(2):593-600.
    [139]Atkins G J, Anderson P H, Findlay D M, et al. Metabolism of vitamin D3 in human osteoblasts:evidence for autocrine and paracrine activities of 1 alpha,25-dihydroxyvitamin D3[J]. Bone.2007,40(6):1517-1528.
    [140]Goltzman D. Discoveries, drugs and skeletal disorders[J]. Nat Rev Drug Discov.2002, 1(10):784-796.
    [141]Woeckel V J, van der Eerden B C, Schreuders-Koedam M, et al. lalpha,25-dihydroxyvitamin D3 stimulates activin A production to fine-tune osteoblast-induced mineralization[J]. J Cell Physiol.2013,228(11):2167-2174.
    [142]Grinspoon S K, Baum H B, Peterson S, et al. Effects of rhIGF-I administration on bone turnover during short-term fasting[J]. J Clin Invest.1995,96(2):900-906.
    [143]Leroith D, Roberts C J. Insulin-like growth factors[J]. Ann N Y Acad Sci.1993,692: 1-9.
    [144]Amin S, Riggs B L, Melton L R, et al. High serum IGFBP-2 is predictive of increased bone turnover in aging men and women[J]. J Bone Miner Res.2007,22(6):799-807.
    [145]Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton[J]. Endocr Rev.2008,29(5):535-559.
    [146]Xian L, Wu X, Pang L, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells[J]. Nat Med.2012,18(7):1095-1101.
    [147]Nicolas V, Prewett A, Bettica P, et al. Age-related decreases in insulin-like growth factor-I and transforming growth factor-beta in femoral cortical bone from both men and women: implications for bone loss with aging[J]. J Clin Endocrinol Metab.1994,78(5): 1011-1016.
    [148]Ueland T. GH/IGF-I and bone resorption in vivo and in vitro[J]. Eur J Endocrinol.2005, 152(3):327-332.
    [149]Rosen C J, Donahue L R, Hunter S J. Insulin-like growth factors and bone:the osteoporosis connection[J]. Proc Soc Exp Biol Med.1994,206(2):83-102.
    [150]Li Y, Yu X, Lin S, et al. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells[J]. Biochem Biophys Res Commun.2007,356(3):780-784.
    [151]Ridley A J, Schwartz M A, Burridge K, et al. Cell migration: integrating signals from front to back[J]. Science.2003,302(5651):1704-1709.
    [152]Xian L, Wu X, Pang L, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells[J]. Nat Med.2012,18(7):1095-1101.
    [153]Zhao G, Monier-Faugere M C, Langub M C, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation[J]. Endocrinology.2000,141(7): 2674-2682.
    [154]Rubin J, Ackert-Bicknell C L, Zhu L, et al. IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand in vitro and OPG in vivo[J]. J Clin Endocrinol Metab.2002,87(9):4273-4279.
    [155]Mochizuki H, Hakeda Y, Wakatsuki N, et al. Insulin-like growth factor-I supports formation and activation of osteoclasts[J]. Endocrinology.1992,131(3):1075-1080.
    [156]Kameda T, Mano H, Yuasa T, et al. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts[J]. J Exp Med.1997,186(4):489-495.
    [157]Kousteni S, Bellido T, Plotkin L I, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors:dissociation from transcriptional activity[J], Cell. 2001,104(5):719-730.
    [158]Kanno S, Hirano S, Kayama F. Effects of phytoestrogens and environmental estrogens on osteoblastic differentiation in MC3T3-E1 cells[J]. Toxicology.2004,196(1-2):137-145.
    [159]Kim H, Tabata A, Tomoyasu T, et al. Estrogen stimuli promote osteoblastic differentiation via the subtilisin-like proprotein convertase PACE4 in MC3T3-E1 cells[J]. J Bone Miner Metab.2014.
    [160]Gao Y, Huang E, Zhang H, et al. Crosstalk between Wnt/beta-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells[J]. PLoS One.2013,8(12):e82436.
    [161]Kondoh S, Inoue K, Igarashi K, et al. Estrogen receptor alpha in osteocytes regulates trabecular bone formation in female mice[J]. Bone.2014,60:68-77.
    [162]Manolagas S C, O'Brien C A, Almeida M. The role of estrogen and androgen receptors in bone health and disease[J]. Nat Rev Endocrinol.2013,9(12):699-712.
    [163]Vanderschueren D, Vandenput L, Boonen S, et al. Androgens and bone[J]. Endocr Rev. 2004,25(3):389-425.
    [164]Ho-Pham L T, Nguyen N D, Nguyen T V. Quantification of the relative contribution of estrogen to bone mineral density in men and women[J]. BMC Musculoskelet Disord.2013,14: 366.
    [165]Seibel M J, Cooper M S, Zhou H. Glucocorticoid-induced osteoporosis:mechanisms, management, and future perspectives[J]. Lancet Diabetes Endocrinol.2013,1(1):59-70.
    [166]van Staa T P. The pathogenesis, epidemiology and management of glucocorticoid-induced osteoporosis[J]. Calcif Tissue Int.2006,79(3):129-137.
    [167]Conradie M M, de Wet H, Kotze D D, et al. Vanadate prevents glucocorticoid-induced apoptosis of osteoblasts in vitro and osteocytes in vivo[J]. J Endocrinol.2007,195(2): 229-240.
    [168]Horsch K, de Wet H, Schuurmans M M, et al. Mitogen-activated protein kinase phosphatase 1/dual specificity phosphatase 1 mediates glucocorticoid inhibition of osteoblast proliferation[J]. Mol Endocrinol.2007,21(12):2929-2940.
    [169]Buehring B, Viswanathan R, Binkley N, et al. Glucocorticoid-induced osteoporosis:an update on effects and management[J]. J Allergy Clin Immunol.2013,132(5):1019-1030.
    [170]Bonewald L F. The amazing osteocyte[J]. J Bone Miner Res.2011,26(2):229-238.
    [171]den Uyl D, Bultink I E, Lems W F. Advances in glucocorticoid-induced osteoporosis[J]. Curr Rheumatol Rep.2011,13(3):233-240.
    [172]Bouassida A, Latiri I, Bouassida S, et al. Parathyroid Hormone and Physical Exercise:a Brief Review[J]. J Sports Sci Med.2006,5(3):367-374.
    [173]Zerath E, Holy X, Douce P, et al. Effect of endurance training on postexercise parathyroid hormone levels in elderly men[J]. Med Sci Sports Exerc.1997,29(9):1139-1145.
    [174]Barry D W, Kohrt W M. Acute effects of 2 hours of moderate-intensity cycling on serum parathyroid hormone and calcium[J]. Calcif Tissue Int.2007,80(6):359-365.
    [175]Menuki K, Mori T, Sakai A, et al. Climbing exercise enhances osteoblast differentiation and inhibits adipogenic differentiation with high expression of PTH/PTHrP receptor in bone marrow cells[J]. Bone.2008,43(3):613-620.
    [176]Lee M S, Kang C W, Shin Y S, et al. Acute effects of chundosunbup qi-training on blood concentrations of TSH, calcitonin, PTH and thyroid hormones in elderly subjects[J]. Am J Chin Med.1998,26(3-4):275-281.
    [177]Klausen T, Breum L, Sorensen H A, et al. Plasma levels of parathyroid hormone, vitamin D, calcitonin, and calcium in association with endurance exercise[J]. Calcif Tissue Int. 1993,52(3):205-208.
    [178]O'Neill M E, Wilkinson M, Robinson B G, et al. The effect of exercise on circulating immunoreactive calcitonin in men[J]. Horm Metab Res.1990,22(10):546-550.
    [179]Carpenter K C, Strohacker K, Breslin W L, et al. Effects of exercise on weight loss and monocytes in obese mice[J]. Comp Med.2012,62(1):21-26.
    [180]Chung C, You Y, Yoon H G, et al. Alleviation of weight-gain in mice by an ethanolic extract from Rubus coreanus under conditions of a high-fat diet and exercise[J]. Biosci Biotechnol Biochem.2013,77(10):2148-2150.
    [181]Furnari M A, Jobes M L, Nekrasova T, et al. Differential sensitivity of Pak5, Pak6, and Pak5/Pak6 double-knockout mice to the stimulant effects of amphetamine and exercise-induced alterations in body weight[J]. Nutr Neurosci.2013.
    [182]Guertin P A, Ung R V, Rouleau P, et al. Effects on locomotion, muscle, bone, and blood induced by a combination therapy eliciting weight-bearing stepping in nonassisted spinal cord-transected mice[J]. Neurorehabil Neural Repair.2011,25(3):234-242.
    [183]Haramizu S, Kawabata F, Ohnuki K, et al. Capsiate, a non-pungent capsaicin analog, reduces body fat without weight rebound like swimming exercise in mice[J]. Biomed Res. 2011,32(4):279-284.
    [184]Kelly S A, Nehrenberg D L, Hua K, et al. Exercise, weight loss, and changes in body composition in mice:phenotypic relationships and genetic architecture[J]. Physiol Genomics. 2011,43(4):199-212.
    [185]Leamy L J, Kelly S A, Hua K, et al. Exercise and diet affect quantitative trait loci for body weight and composition traits in an advanced intercross population of mice[J]. Physiol Genomics.2012,44(23):1141-1153.
    [186]Leamy L J, Pomp D, Lightfoot J T. Genetic variation for body weight change in mice in response to physical exercise [J]. BMC Genet.2009,10:58.
    [187]Liu J, Wang X, Zhao Z. Effect of whey protein hydrolysates with different molecular weight on fatigue induced by swimming exercise in mice[J]. J Sci Food Agric.2014,94(1): 126-130.
    [188]Lu J, Xie L, Sylvester J, et al. Different gene expression of skin tissues between mice with weight controlled by either calorie restriction or physical exercise[J]. Exp Biol Med (Maywood).2007,232(4):473-480.
    [189]Marinho R, Ropelle E R, Cintra D E, et al. Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss[J]. J Cell Physiol.2012,227(7):2917-2926.
    [190]Schneider B S, Vigil S A, Moonie S. Body weight and leukocyte infiltration after an acute exercise-related muscle injury in ovariectomized mice treated with estrogen and progesterone[J]. Gen Comp Endocrinol.2012,176(2):144-150.
    [191]Wainwright P E, Simpson J R, Cameron R, et al. Effects of treadmill exercise on weight cycling in female mice[J]. Physiol Behav.1991,49(3):639-642.
    [192]Zhou D, Shearman L P. Voluntary exercise augments acute effects of CB1-receptor inverse agonist on body weight loss in obese and lean mice[J]. Pharmacol Biochem Behav. 2004,77(1):117-125.
    [193]Matsushita M, Tsuboyama T, Kasai R, et al. Age-related changes in bone mass in the senescence-accelerated mouse (SAM). SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis[J]. Am J Pathol.1986,125(2):276-283.
    [194]Rubin C T, Bain S D, Mcleod K J. Suppression of the osteogenic response in the aging skeleton[J]. Calcif Tissue Int.1992,50(4):306-313.
    [195]Hoshi A, Watanabe H, Chiba M, et al. Effects of swimming and weight loading on bone density and mechanical properties of the mouse femoral bone[J]. Environ Health Prev Med. 1996,1(3):128-132.
    [196]Hoshi A, Watanabe H, Chiba M, et al. Effects of exercise at different ages on bone density and mechanical properties of femoral bone of aged mice[J]. Tohoku J Exp Med.1998, 185(1):15-24.
    [197]Plochocki J H, Riscigno C J, Garcia M. Functional adaptation of the femoral head to voluntary exercise[J]. Anat Rec A Discov Mol Cell Evol Biol.2006,288(7):776-781.
    [198]Plochocki J H, Rivera J P, Zhang C, et al. Bone modeling response to voluntary exercise in the hindlimb of mice[J]. J Morphol.2008,269(3):313-318.
    [199]Mori T, Okimoto N, Sakai A, et al. Climbing exercise increases bone mass and trabecular bone turnover through transient regulation of marrow osteogenic and osteoclastogenic potentials in mice[J]. J Bone Miner Res.2003,18(11):2002-2009.
    [200]Wallace J M, Rajachar R M, Allen M R, et al. Exercise-induced changes in the cortical bone of growing mice are bone-and gender-specific[J]. Bone.2007,40(4):1120-1127.
    [201]Warner S E, Shea J E, Miller S C, et al. Adaptations in cortical and trabecular bone in response to mechanical loading with and without weight bearing[J]. Calcif Tissue Int.2006, 79(6):395-403.
    [202]Hart K J, Shaw J M, Vajda E, et al. Swim-trained rats have greater bone mass, density, strength, and dynamics[J]. J Appl Physiol (1985).2001,91(4):1663-1668.
    [203]Huang T H, Lin S C, Chang F L, et al. Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone[J]. J Appl Physiol (1985).2003,95(1):300-307.
    [204]Datta N S, Kolailat R, Fite A, et al. Distinct roles for mitogen-activated protein kinase phosphatase-1 (MKP-1) and ERK-MAPK in PTH1R signaling during osteoblast proliferation and differentiation[J]. Cell Signal.2010,22(3):457-466.
    [205]Hoff A O, Catala-Lehnen P, Thomas P M, et al. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene[J]. J Clin Invest.2002,110(12): 1849-1857.
    [206]Davey R A, Turner A G, Mcmanus J F, et al. Calcitonin receptor plays a physiological role to protect against hypercalcemia in mice[J]. J Bone Miner Res.2008,23(8):1182-1193.
    [207]Granholm S, Lundberg P, Lerner U H. Expression of the calcitonin receptor, calcitonin receptor-like receptor, and receptor activity modifying proteins during osteoclast differentiation[J]. J Cell Biochem.2008,104(3):920-933.
    [208]Lerner U H. Deletions of genes encoding calcitonin/alpha-CGRP, amylin and calcitonin receptor have given new and unexpected insights into the function of calcitonin receptors and calcitonin receptor-like receptors in bone[J]. J Musculoskelet Neuronal Interact.2006, 6(1):87-95.
    [209]Forrest S M, Ng K W, Findlay D M, et al. Characterization of an osteoblast-like clonal cell line which responds to both parathyroid hormone and calcitonin[J]. Calcif Tissue Int. 1985,37(1):51-56.
    [210]Bandres E, Pombo I, Gonzalez-Huarriz M, et al. Association between bone mineral density and polymorphisms of the VDR, ERalpha, COL1A1 and CTR genes in Spanish postmenopausal women[J]. J Endocrinol Invest.2005,28(4):312-321.
    [211]Ikeda K, Michelangeli V P, Martin T J, et al. Type I collagen substrate increases calcitonin and parathyroid hormone receptor-mediated signal transduction in UMR 106-06 osteoblast-like cells[J]. J Cell Physiol.1993,156(1):130-137.
    [212]Gao C, Chen Y G. Dishevelled:The hub of Wnt signaling[J]. Cell Signal.2010,22(5): 717-727.
    [213]Holdsworth G, Slocombe P, Doyle C, et al. Characterization of the interaction of sclerostin with the low density lipoprotein receptor-related protein (LRP) family of Wnt co-receptors[J]. J Biol Chem.2012,287(32):26464-26477.
    [214]Yi J, Cai Y, Yao Z, et al. Genetic Analysis of the Relationship between Bone Mineral Density and Low-Density Lipoprotein Receptor-Related Protein 5 Gene Polymorphisms[J]. PLoS One.2013,8(12):e85052.
    [215]Lodewyckx L, Luyten F P, Lories R J. Genetic deletion of low-density lipoprotein receptor-related protein 5 increases cartilage degradation in instability-induced osteoarthritis[J]. Rheumatology (Oxford).2012,51(11):1973-1978.
    [216]van Meurs J B, Rivadeneira F, Jhamai M, et al. Common genetic variation of the low-density lipoprotein receptor-related protein 5 and 6 genes determines fracture risk in elderly white men[J]. J Bone Miner Res.2006,21(1):141-150.
    [217]Li Y, Dudley A T. Noncanonical frizzled signaling regulates cell polarity of growth plate chondrocytes[J]. Development.2009,136(7):1083-1092.
    [218]Nasevicius A, Hyatt T, Kim H, et al. Evidence for a frizzled-mediated wnt pathway required for zebrafish dorsal mesoderm formation[J]. Development.1998,125(21): 4283-4292.
    [219]Slusarski D C, Corces V G, Moon R T. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling[J]. Nature.1997,390(6658): 410-413.
    [220]Slusarski D C, Yang-Snyder J, Busa W B, et al. Modulation of embryonic intracellular Ca2+signaling by Wnt-5A[J]. Dev Biol.1997,182(1):114-120.
    [221]Matsui H, Fukuno N, Kanda Y, et al. The expression of Fn14 via mechanical stress-activated JNK contributes to apoptosis induction in osteoblasts[J]. J Biol Chem.2014.
    [222]Yang F, Chen H, Liu Y, et al. Doxorubicin caused apoptosis of mesenchymal stem cells via p38, JNK and p53 pathway[J]. Cell Physiol Biochem.2013,32(4):1072-1082.
    [223]Yang F, Nam S, Zhao R, et al. A novel synthetic derivative of the natural product berbamine inhibits cell viability and induces apoptosis of human osteosarcoma cells, associated with activation of JNK/AP-1 signaling[J]. Cancer Biol Ther.2013,14(11): 1024-1031.
    [224]Qiu W, Chen L, Kassem M. Activation of non-canonical Wnt/JNK pathway by Wnt3a is associated with differentiation fate determination of human bone marrow stromal (mesenchymal) stem cells[J]. Biochem Biophys Res Commun.2011,413(1):98-104.
    [225]Song L, Zhao J, Zhang X, et al. Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation[J]. Eur J Pharmacol.2013,714(1-3):15-22.
    [226]Prowse P D, Elliott C G, Hutter J, et al. Inhibition of Rac and ROCK signalling influence osteoblast adhesion, differentiation and mineralization on titanium topographies[J]. PLoS One.2013,8(3):e58898.
    [227]Meneghini M D, Ishitani T, Carter J C, et al. MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans[J]. Nature.1999, 399(6738):793-797.
    [228]Rocheleau C E, Yasuda J, Shin T H, et al. WRM-1 activates the LIT-1 protein kinase to transduce anterior/posterior polarity signals in C. elegans[J]. Cell.1999,97(6):717-726.
    [229]Kortenjann M, Nehls M, Smith A J, et al. Abnormal bone marrow stroma in mice deficient for nemo-like kinase, Nlk[J]. Eur J Immunol.2001,31(12):3580-3587.
    [230]Kanei-Ishii C, Ninomiya-Tsuji J, Tanikawa J, et al. Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK[J]. Genes Dev.2004,18(7):816-829.
    [231]Ishitani T, Ninomiya-Tsuji J, Matsumoto K. Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling[J]. Mol Cell Biol.2003,23(4):1379-1389.
    [232]Nifuji A, Ideno H, Ohyama Y, et al. Nemo-like kinase (NLK) expression in osteoblastic cells and suppression of osteoblastic differentiation[J]. Exp Cell Res.2010,316(7): 1127-1136.
    [233]Sesler C L, Zayzafoon M. NFAT signaling in osteoblasts regulates the hematopoietic niche in the bone microenvironment[J]. Clin Dev Immunol.2013,2013:107321.
    [234]Yamanaka Y, Clohisy J C, Ito H, et al. Blockade of JNK and NFAT pathways attenuates orthopedic particle-stimulated osteoclastogenesis of human osteoclast precursors and murine calvarial osteolysis[J]. J Orthop Res.2013,31(1):67-72.
    [235]Liu F X, Wu C L, Zhu Z A, et al. Calcineurin/NFAT pathway mediates wear particle-induced TNF-alpha release and osteoclastogenesis from mice bone marrow macrophages in vitro[J]. Acta Pharmacol Sin.2013,34(11):1457-1466.
    [236]Matsuguchi T, Chiba N, Bandow K, et al. JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation[J]. J Bone Miner Res.2009,24(3):398-410.
    [237]Kanno T, Takahashi T, Tsujisawa T, et al. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERKl/2 MAPK signaling in osteoblasts [J]. J Cell Biochem.2007,101(5): 1266-1277.
    [238]Shui C, Spelsberg T C, Riggs B L, et al. Changes in Runx2/Cbfal expression and activity during osteoblastic differentiation of human bone marrow stromal cells[J]. J Bone Miner Res.2003,18(2):213-221.
    [239]Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts[J]. Cell.1997,89(5): 755-764.
    [240]Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfal:a transcriptional activator of osteoblast differentiation[J]. Cell.1997,89(5):747-754.
    [241]Franceschi R T, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2:responsiveness to multiple signal transduction pathways [J]. J Cell Biochem.2003, 88(3):446-454.
    [242]Komori T. Regulation of bone development and maintenance by Runx2[J]. Front Biosci. 2008,13:898-903.
    [243]Takuwa Y, Ohse C, Wang E A, et al. Bone morphogenetic protein-2 stimulates alkaline phosphatase activity and collagen synthesis in cultured osteoblastic cells, MC3T3-E1[J]. Biochem Biophys Res Commun.1991,174(1):96-101.
    [244]Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease[J]. J Nippon Med Sch.2010,77(1):4-12.
    [245]Hatch N E, Li Y, Franceschi R T. FGF2 stimulation of the pyrophosphate-generating enzyme, PC-1, in pre-osteoblast cells is mediated by RUNX2[J]. J Bone Miner Res.2009, 24(4):652-662.
    [246]Weng J J, Su Y. Nuclear matrix-targeting of the osteogenic factor Runx2 is essential for its recognition and activation of the alkaline phosphatase gene[J]. Biochim Biophys Acta. 2013,1830(3):2839-2852.
    [247]Wolf G. Function of the bone protein osteocalcin: definitive evidence[J]. Nutr Rev. 1996,54(10):332-333.
    [248]Lian J B, Stein G S, Stein J L, et al. Osteocalcin gene promoter: unlocking the secrets for regulation of osteoblast growth and differentiation[J]. J Cell Biochem Suppl.1998,30-31: 62-72.
    [249]Yasuda H. RANKL, a necessary chance for clinical application to osteoporosis and cancer-related bone diseases[J]. World J Orthop.2013,4(4):207-217.
    [250]Kubo K, Yuki K, Ikebukuro T. Changes in bone alkaline phosphatase and procollagen type-1 C-peptide after static and dynamic exercises[J]. Res Q Exerc Sport.2012,83(1):49-54.
    [251]Gershkovich P M, Gershkovich I, Buravkova L B. [Expression of cytoskeleton genes in culture of human mesenchymal stromal cells in different periods of simulating the effects of microgravity][J]. Aviakosm Ekolog Med.2011,45(4):39-41.
    [252]Mcgough A, Pope B, Chiu W, et al. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function[J]. J Cell Biol.1997,138(4):771-781.
    [253]Shuang F, Sun Y, Yang H H, et al. Destrin deletion enhances the bone loss in hindlimb suspended mice[J]. Eur J Appl Physiol.2013,113(2):403-410.
    [254]Noble B S, Stevens H, Loveridge N, et al. Identification of apoptotic changes in osteocytes in normal and pathological human bone[J]. Bone.1997,20(3):273-282.
    [255]Verborgt O, Tatton N A, Majeska R J, et al. Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue:complementary roles in bone remodeling regulation?[J]. J Bone Miner Res.2002,17(5):907-914.
    [256]Bouillet P, Strasser A. Bax and Bak:back-bone of T cell death[J]. Nat Immunol.2002, 3(10):893-894.
    [257]Tsujimoto Y, Shimizu S. VDAC regulation by the Bcl-2 family of proteins[J]. Cell Death Differ.2000,7(12):1174-1181.
    [258]Stevens H Y, Reeve J, Noble B S. Bcl-2, tissue transglutaminase and p53 protein expression in the apoptotic cascade in ribs of premature infants[J]. J Anat.2000,196 (Pt 2): 181-191.
    [259]Katavic V, Lukic I K, Kovacic N, et al. Increased bone mass is a part of the generalized lymphoproliferative disorder phenotype in the mouse[J]. J Immunol.2003,170(3): 1540-1547.
    [260]Wiren K M, Toombs A R, Semirale A A, et al. Osteoblast and osteocyte apoptosis associated with androgen action in bone:requirement of increased Bax/Bcl-2 ratio[J]. Bone. 2006,38(5):637-651.
    [261]Jadhav K B, Ahmed M B, Gupta N. Crystal violet stain as a selective stain for the assessment of mitotic figures in oral epithelial dysplasia and oral squamous cell carcinoma[J]. Indian J Pathol Microbiol.2012,55(3):283-287.
    [262]Prockop D J. Marrow stromal cells as stem cells for nonhematopoietic tissues[J]. Science.1997,276(5309):71-74.
    [263]Pittenger M F, Mackay A M, Beck S C, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science.1999,284(5411):143-147.
    [264]Bianco P, Gehron R P. Marrow stromal stem cells[J]. J Clin Invest.2000,105(12): 1663-1668.
    [265]Galderisi U, Giordano A, Paggi M G. The bad and the good of mesenchymal stem cells in cancer:Boosters of tumor growth and vehicles for targeted delivery of anticancer agents [J]. World J Stem Cells.2010,2(1):5-12.
    [266]Boland G M, Perkins G, Hall D J, et al. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells [J]. J Cell Biochem.2004, 93(6):1210-1230.
    [267]Wu Y, Zhang P, Dai Q, et al. Effect of mechanical stretch on the proliferation and differentiation of BMSCs from ovariectomized rats[J]. Mol Cell Biochem.2013,382(1-2): 273-282.
    [268]Gadi J, Jung S H, Lee M J, et al. The transcription factor protein Soxl 1 enhances early osteoblast differentiation by facilitating proliferation and the survival of mesenchymal and osteoblast progenitors[J]. J Biol Chem.2013,288(35):25400-25413.
    [269]Wang Y, Zhao Y, Ge L. Effects of the enamel matrix derivative on the proliferation and odontogenic differentiation of human dental pulp cells[J]. J Dent.2014,42(1):53-59.
    [270]Wang Z Q, Keita M, Bachvarova M, et al. Inhibition of RUNX2 transcriptional activity blocks the proliferation, migration and invasion of epithelial ovarian carcinoma cells [J]. PLoS One.2013,8(10):e74384.
    [271]Ehrlich P J, Lanyon L E. Mechanical strain and bone cell function: a review[J]. Osteoporos Int.2002,13(9):688-700.
    [272]Howe T E, Shea B, Dawson L J, et al. Exercise for preventing and treating osteoporosis in postmenopausal women[J]. Cochrane Database Syst Rev.2011(7):D333.
    [273]Kreke M R, Huckle W R, Goldstein A S. Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner[J]. Bone.2005,36(6):1047-1055.
    [274]Kaspar D, Seidl W, Neidlinger-Wilke C, et al. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity[J]. J Biomech.2000,33(1):45-51.
    [275]Eijken M, Meijer I M, Westbroek I, et al. Wnt signaling acts and is regulated in a human osteoblast differentiation dependent manner[J]. J Cell Biochem.2008,104(2): 568-579.
    [276]李海芳.β-肾上腺素受体在小鼠MSCs成骨、成脂分化中的作用[D].清华大学,2010.
    [277]Herberg S, Fulzele S, Yang N, et al. Stromal cell-derived factor-lbeta potentiates bone morphogenetic protein-2-stimulated osteoinduction of genetically engineered bone marrow-derived mesenchymal stem cells in vitro[J]. Tissue Eng Part A.2013,19(1-2):1-13.
    [278]Liu C, Yu J, Yang Y, et al. Effect of 1 mT sinusoidal electromagnetic fields on proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells[J]. Bioelectromagnetics.2013,34(6):453-464.
    [279]Cals F L, Hellingman C A, Koevoet W, et al. Effects of transforming growth factor-beta subtypes on in vitro cartilage production and mineralization of human bone marrow stromal-derived mesenchymal stem cells[J]. J Tissue Eng Regen Med.2012,6(1):68-76.
    [280]Guo J, Liu B Y, Bringhurst F R. Mechanisms of homologous and heterologous desensitization of PTH/PTHrP receptor signaling in LLC-PK1 cells[J]. Am J Physiol.1997, 273(2 Pt1):E383-E393.
    [281]Ikeda K, Sugimoto T, Fukase M, et al. Protein kinase C is involved in PTH-induced homologous desensitization by directly affecting PTH receptor in the osteoblastic osteosarcoma cells[J]. Endocrinology.1991,128(6):2901-2906.
    [282]Salvesen H, Johansson A G, Foxdal P, et al. Intact serum parathyroid hormone levels increase during running exercise in well-trained men[J]. Calcif Tissue hit.1994,54(4): 256-261.
    [283]Thorsen K, Kristoffersson A, Hultdin J, et al. Effects of moderate endurance exercise on calcium, parathyroid hormone, and markers of bone metabolism in young women[J]. Calcif Tissue Int.1997,60(1):16-20.
    [284]Rong H, Berg U, Torring O, et al. Effect of acute endurance and strength exercise on circulating calcium-regulating hormones and bone markers in young healthy males[J]. Scand J Med Sci Sports.1997,7(3):152-159.
    [285]Brahm H, Piehl-Aulin K, Ljunghall S. Bone metabolism during exercise and recovery: the influence of plasma volume and physical fitness[J]. Calcif Tissue Int.1997,61(3): 192-198.
    [286]Heath H R. Biogenic amines and the secretion of parathyroid hormone and calcitonin[J]. Endocr Rev.1980,1(4):319-338.
    [287]Maimoun L, Simar D, Malatesta D, et al. Response of bone metabolism related hormones to a single session of strenuous exercise in active elderly subjects[J]. Br J Sports Med.2005,39(8):497-502.
    [288]Bouassida A, Zalleg D, Zaouali A M, et al. Parathyroid hormone concentrations during and after two periods of high intensity exercise with and without an intervening recovery period[J]. Eur J Appl Physiol.2003,88(4-5):339-344.
    [289]Barry D W, Kohrt W M. Acute effects of 2 hours of moderate-intensity cycling on serum parathyroid hormone and calcium[J]. Calcif Tissue Int.2007,80(6):359-365.
    [290]Cordova A, Soteras F, Elosegui L M, et al. [Effects of lithium on serum calcium, magnesium and inorganic phosphorus after exercise in rats][J]. Actas Luso Esp Neurol Psiquiatr Cienc Afines.1990,18(2):103-109.
    [291]Ljunghall S, Joborn H, Lundin L, et al. Regional and systemic effects of short-term intense muscular work on plasma concentration and content of total and ionized calcium[J]. Eur J Clin Invest.1985,15(5):248-252.
    [292]Kristoffersson A, Hultdin J, Holmlund I, et al. Effects of short-term maximal work on plasma calcium, parathyroid hormone, osteocalcin and biochemical markers of collagen metabolism[J]. Int J Sports Med.1995,16(3):145-149.
    [293]Brahm H, Piehl-Aulin K, Saltin B, et al. Net fluxes over working thigh of hormones, growth factors and biomarkers of bone metabolism during short lasting dynamic exercise [J]. Calcif Tissue Int.1997,60(2):175-180.
    [294]Takada H, Washino K, Nagashima M, et al. Response of parathyroid hormone to anaerobic exercise in adolescent female athletes[J]. Acta Paediatr Jpn.1998,40(1):73-77.
    [295]Rosenfeld M G, Mermod J J, Amara S G, et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing[J]. Nature.1983, 304(5922):129-135.
    [296]Schifter S, Breum L, Niclasen B, et al. Calcitonin gene-related peptide during exercise and training[J]. Horm Metab Res.1995,27(10):473-475.
    [297]Hasbak P, Lundby C, Olsen N V, et al. Calcitonin gene-related peptide and adrenomedullin release in humans:effects of exercise and hypoxia[J]. Regul Pept.2002, 108(2-3):89-95.
    [298]Jonhagen S, Ackermann P, Saartok T, et al. Calcitonin gene related peptide and neuropeptide Y in skeletal muscle after eccentric exercise:a microdialysis study [J]. Br J Sports Med.2006,40(3):264-267,264-267.
    [299]Spetz A C, Ellefsen K, Theodorsson E, et al. Calcitonin gene-related peptide during sweating in young healthy women[J]. Gynecol Obstet Invest.2005,60(3):149-153.
    [300]Braith R W, Magyari P M, Fulton M N, et al. Comparison of calcitonin versus calcitonin+resistance exercise as prophylaxis for osteoporosis in heart transplant recipients[J]. Transplantation.2006,81(8):1191-1195.
    [301]Huang J C, Sakata T, Pfleger L L, et al. PTH differentially regulates expression of RANKL and OPG[J]. J Bone Miner Res.2004,19(2):235-244.
    [302]Yang C, Frei H, Burt H M, et al. Effects of continuous and pulsatile PTH treatments on rat bone marrow stromal cells[J]. Biochem Biophys Res Commun.2009,380(4):791-796.
    [303]Bisello A, Manen D, Pierroz D D, et al. Agonist-specific regulation of parathyroid hormone (PTH) receptor type 2 activity:structural and functional analysis of PTH- and tuberoinfundibular peptide (TIP) 39-stimulated desensitization and internalization[J]. Mol Endocrinol.2004,18(6):1486-1498.
    [304]Guo J, Liu B Y, Bringhurst F R. Mechanisms of homologous and heterologous desensitization of PTH/PTHrP receptor signaling in LLC-PK1 cells[J]. Am J Physiol.1997, 273(2 Pt 1):E383-E393.
    [305]Sugimoto T, Ikeda K, Kano J, et al. Cross-talk of parathyroid hormone-responsive dual signal transduction systems in osteoblastic osteosarcoma cells:its role in PTH-induced homologous desensitization of intracellular calcium response [J]. J Cell Physiol.1994,158(2): 374-380.
    [306]Sugimoto T, Kano J, Fukase M, et al. The activation of cAMP-dependent protein kinase is directly linked to homologous desensitization by parathyroid hormone (PTH) and PTH-related peptide in osteoblastic osteosarcoma cells[J]. Horm Metab Res.1992,24(7): 347-348.
    [307]Dong J, He Y, Zhang X, et al. Calcitonin gene-related peptide regulates the growth of epidermal stem cells in vitro[J]. Peptides.2010,31(10):1860-1865.
    [308]Mrak E, Guidobono F, Moro G, et al. Calcitonin gene-related peptide (CGRP) inhibits apoptosis in human osteoblasts by beta-catenin stabilization[J]. J Cell Physiol.2010,225(3): 701-708.
    [309]Shah G V, Muralidharan A, Gokulgandhi M, et al. Cadherin switching and activation of beta-catenin signaling underlie proinvasive actions of calcitonin-calcitonin receptor axis in prostate cancer[J]. J Biol Chem.2009,284(2):1018-1030.
    [310]Yang Q, Du X, Fang Z, et al. Effect of calcitonin gene-related Peptide on the neurogenesis of rat adipose-derived stem cells in vitro[J]. PLoS One.2014,9(1):e86334.
    [311]Pacifici R. Role of T cells in the modulation of PTH action: physiological and clinical significance[J]. Endocrine.2013,44(3):576-582.
    [312]Karefylakis C, Naslund I, Edholm D, et al. Vitamin D Status 10 Years After Primary Gastric Bypass: Gravely High Prevalence of Hypovitaminosis D and Raised PTH Levels[J]. Obes Surg.2014,24(3):343-348.
    [313]Guimaraes G N, Stipp R N, Rodrigues T L, et al. Evaluation of the effects of transient or continuous PTH administration to odontoblast-like cells[J]. Arch Oral Biol.2013,58(6): 638-645.
    [314]Hejdova M, Palicka V, Kucera Z, et al. Effects of alendronate and calcitonin on bone mineral density in postmenopausal osteoporotic women. An observational study[J]. Pharm World Sci.2005,27(3):149-153.
    [315]Chen-An P, Andreassen K V, Henriksen K, et al. The inhibitory effect of salmon calcitonin on tri-iodothyronine induction of early hypertrophy in articular cartilage[J]. PLoS One.2012,7(6):e40081.
    [316]Tian G, Zhang G, Tan Y H. Calcitonin gene-related peptide stimulates BMP-2 expression and the differentiation of human osteoblast-like cells in vitro[J]. Acta Pharmacol Sin.2013,34(11):1467-1474.
    [317]Han N, Jiang B G, Wang T B, et al. [Effect of calcitonin gene-related peptide on RUNX2 expression in primary rat osteoblasts][J]. Beijing Da Xue Xue Bao.2011,43(5): 652-656.
    [318]Tawfeek H, Bedi B, Li J Y, et al. Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss[J]. PLoS One.2010,5(8):e12290.
    [319]Wade-Gueye N M, Boudiffa M, Laroche N, et al. Mice lacking bone sialoprotein (BSP) lose bone after ovariectomy and display skeletal site-specific response to intermittent PTH treatment[J]. Endocrinology.2010,151(11):5103-5113.
    [320]Smith B J, Bu S Y, Wang Y, et al. A comparative study of the bone metabolic response to dried plum supplementation and PTH treatment in adult, osteopenic ovariectomized rat[J]. Bone.2014,58:151-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700