用户名: 密码: 验证码:
柴油/乙醇二元燃料燃烧特性及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石燃料的日益枯竭以及越来越严峻的环境问题是内燃机界的巨大挑战。寻找合适的替代燃料已成为研究热点,乙醇作为最有希望的可再生生物质燃料来源广泛,但是,乙醇具有较高的辛烷值,不易压燃,难以直接用于压燃式的柴油机。将柴油与乙醇二元燃料进行组合燃烧的模式,具有一定的经济性和环保性。然而对于此种燃烧的本质尚不清晰。因此本文对于这种燃烧模式分别进行了发动机台架实验、定容燃烧弹实验和低压层流预混火焰实验,并对二元燃料燃烧进行了化学反应动力学机理分析,在此基础上提出了二元燃料骨架机理,并进行了验证。
     利用定容燃烧弹研究了柴油在乙醇-空气混合气热氛围的着火特性。研究表明乙醇延长了柴油的滞燃期和火焰浮起长度。随着初始温度的升高,柴油滞燃期变短。在本研究发动机台架实验中也发现乙醇有延长柴油滞燃期的现象。
     利用发动机台架实验研究乙醇与柴油掺烧对污染物排放影响。研究结果发现,乙醇对于NOx和碳烟的生成也有很大的抑制作用,但是HC和非常规排放乙醛较原机有较大幅度上升。
     利用低压层流预混火焰结合同步辐射真空紫外光电离质谱技术,对理论当量比下乙醇掺混正庚烷火焰和浓混合气条件下乙醇掺混表征柴油进行了实验研究。结果表明,乙醇的加入对正庚烷和表征柴油的氧化裂解速率并没有实质影响,对于醛类物质,尤其是乙醛的摩尔分数上升有显著的促进作用。乙醇可以显著降低表征柴油中碳烟前驱体PAH的摩尔分数。
     利用商用软件CHEMKIN进行了柴油参比燃料正庚烷和乙醇混合燃料的机理分析。由计算结果可知,正庚烷低温冷焰反应及负温度系数区的时间均被延长,从而导致总反应延迟。通过反应路径和物质转化率分析得知,两种燃料的相互作用是靠自由基池为中介完成的,OH·和HO2·是池中最重要的自由基。乙醇的加入在低温下将活跃的OH·转化为相对不活跃的H2O2,对正庚烷第一步脱氢表现出强烈的抑制,对整个燃料的氧化进程表现出抑制作用,此即乙醇抑制正庚烷低温氧化的主要原因。
     在以上分析的基础上,建立了正庚烷乙醇二元燃料骨架机理。该机理包含50步反应和41种物质。并与详细机理在自燃和HCCI发动机缸内燃烧进行了对比验证,结果表明,该机理与详细机理具有较高的一致性。
The increasing depletion of fossil fuels and increasingly severe environmentalproblems is the great challenge for the internal combustion engine industry. Lookingfor a suitable alternative fuel has become a research hotspot. Ethanol as one of themost promising renewable bio-fuel has been used as alternative fuels worldwide sinceit could been blended with gasoline. Due to ethanol’s high octane number,diesel/ethanol dual fuel, rather than pure ethanol could be used in conventional dieselengine to maintain or even reduce emission and fuel consumption. However, thenature of such dual fuel compound combustion has not been clearly understood. Tofurther investigate such combustion characteristic, experiments on engine bench,constant volume bomb and low pressure laminar premixed flame were carried out,numerical simulations are also performed with detailed chemical kinetics mechanisms.A skeletal mechanism model is proposed and validated based on experimental results.
     The constant volume bomb is used to investigate into the ignition characteristicsof diesel under atmosphere of ethanol-air mixture. Introduction of ethanol extends theignition delays and flame left length. As the initial temperature increases, the dieselignition delay becomes shorter. Such ignition delay could also be found on the realengine used in this study.
     For emissions characteristics during the engine bench test show that ethanolsubstantially suppress the production of NOx and soot. However, emissions of HC,especially aldehyde, illustrate a considerable increase under dual fuel combustionmode.
     Mole fractions of combustion intermediates of the dual fuel flames are measuredby low pressure laminar premixed flame combined with synchrotron vacuumultraviolet photoionization mass spectrometry. Experimental results show that theintroduction of ethanol has no substantive effect on the dissociation and oxidation ofdiesel (n-heptane) whereas it does greatly increase the mole fractions of aldehydes,especially acetaldehyde. In addition, ethanol significantly reduce the mole fraction ofPAH which are generally regarded as soot precursor.
     Chemical kinetics simulation of the oxidation of n-heptane as for diesel referencefuel and n-heptane/ethanol blends is carried out based on CHEMKIN softwarerespectively. Calculation results show that both cool-flame reaction at lowtemperature and negative temperature coefficient of n-heptane region are extended,resulting in a delay of overall reaction process. Further analysis of reaction path andproduction rate indicate that the interaction of between the two fuel molecule proceedvia the free radical pool in which the OH·and HO2·is the most important free radicals.Addition of ethanol at low temperature, converses OH· into relatively inactive ofH2O2, thus inhibits the first step H+abstraction of n-heptane, resulting in an inhibitionof the entire fuel oxidation process.
     A skeletal mechanism model of the oxidation of n-heptane and ethanol isproposed on the basis of the analysis above. The model includes50reactions and41species. Predictions of the model are validated with detailed mechanism on ignitionand testing data from a HCCI engine. The results show that the skeletal model yieldshigh consistency compared with detailed mechanism.
引文
[1]苏万华,赵华,王建昕等,均质压燃低温燃烧发动机理论与技术,北京:科学出版社,2010.
    [2]庄远,醇类燃料燃烧特性及其作用机理的研究,硕士学位论文,天津大学,2009.
    [3]尧命发,“均质压燃、低温燃烧”新一代内燃机燃烧技术,内燃机,2012,(2):1-4.
    [4]李晓娟,车用柴油机燃烧过程及碳烟和NOx排放的数值模拟,硕士学位论文,天津大学,2007.
    [5]毕亮亮,20世纪石油危机时期美国石油政策及影响,硕士学位论文,河南大学,2010.
    [6]翁祖亮,平银生,从日益严重的能源和环境问题碳我国中小功率柴油机的发展,中国内燃机学会中小功率柴油机分会与基础件分会论文集,2002,2~3.
    [7]叶代启,烟气中氮氧化物污染的治理,环境保护科学,1999,26(4):1-4.
    [8]魏淑芬,内燃机的排放污染分析及控制,环境保护,1996,(5):6-9.
    [9] Simone Pereira Souza,Joaquim E A Seabra,Environmental benefits of theintegrated production of ethanol and biodiesel,Applied Energy,2013,102:5-12.
    [10] Hansen AC, Zhang Q, Lyne PWL,Ethanol–diesel fuel blends—a review,Bioresource Technology,2005,96(3):277–85.
    [11] Avinash Kumar Agarwal,Biofuels (alcohols and biodiesel) applications as fuelsfor internal combustion engines,Progress in Energy and Combustion Science,2007,33(3):233–271.
    [12] Manoel Regis L.V., Luiz A Horta Nogueira, Luis A.B. Cortez, Land demand forethanol production, Applied Energy,2013,102:266-271.
    [13] Govindaswamy S, Vane LM,Kinetics of growth and ethanol production ondifferent carbon substrates using genetically engineered xylose-fermentingyeast,Bioresource Technology,2007,98(3):677–685.
    [14] Balat M,Current alternative engine fuels,Energy Sources,2005,27(6):569–577.
    [15] Dattatray Bapu Hulwan,Satishchandra V Joshi,Performance, emission andcombustion characteristic of a multicylinder DI diesel engine running ondiesel–ethanol–biodiesel blends of high ethanol content, Applied Energy,2011,88:5042-5055.
    [16] de Oliveria MED, Vaughan BE, Rykiel Jr EJ,Ethanol as fuel: energy, carbondioxide balances, and ecological footprint, Bioscience,2005,55(7):593–602.
    [17] Malc-a J, Freire F, Renewability and life-cycle energy efficiency of bioethanoland bio-ethyl tertiary butyl ether (bioETBE): assessing the implications ofallocation, Energy,2006,31(15):3362–3380.
    [18] Mustafa Balata, Havva Balata, Cahide O zb,Progress in bioethanol processing,Progress in Energy and Combustion Science,2008,34(5):551–573.
    [19] Renewable Fuels Association (RFA), Ethanol industry statistics, Washington, DC,USA,2007.[Online]. Available: www.ethanolrfa.org.
    [20] Dufey A. Biofuels production, trade and sustainable development: emergingissues. Environmental Economics Programme, Sustainable Markets DiscussionPaper No.2, International Institute for Environment and Development (IIED),London, September,2006.
    [21] Greenergy International Limited, Bioethanol—A Greenergy perspective, London.2007.[Online]. Available: www.greenergy.com.
    [22] Larsson J. A Cost benefit analysis of bioethanol production from cereals inSweden—a case study approach. MSc Thesis, Cranfield University,2006.
    [23]陈泓,颜文胜,申立中等,CLZ微乳化乙醇柴油混合燃料的发动机性能研究,内燃机工程,2011,32(2):74-79.
    [24]李蔚,黄佐华,蒋德明等,柴油机燃用柴油/乙醇混合燃料的燃烧特性,西安交通大学学报,2006,40(9):1019-1023.
    [25] de Caro P S, Mouloungui Z, Vaitilingom G, et al,Interest of combining anadditive with diesel-ethanol blends for use in diesel engines, Fuel,2002,80(4):565-574.
    [26] Mário L. Randazzo, José R. Sodré, Exhaust emissions from a diesel poweredvehicle fuelled by soybean biodiesel blends(B3–B20) with ethanol as anadditive (B20E2–B20E5), Fue l,2011,90(1):98-103.
    [27]陈虎,王建昕,帅石金,乙醇-甲酯-柴油含氧燃料对柴油机性能与燃烧特性的影响,燃烧科学与技术,2007,13(3):243-247.
    [28] Surawski N C, Miljevic B, Roberts B A, et al,Particle emissions, volatility andtoxicity from an ethanol fumigated compression ignition engine, Environmentalscience&technology,2009,44(1):229–235.
    [29]吕兴才,马骏骏,吉丽斌等,乙醇/生物柴油双燃料发动机燃烧过程与排放特性的研究,内燃机学报,2008,26(2):140-146.
    [30]姚春德,陈绪平,杨建军等,柴油/乙醇组合燃烧降低增压中冷发动机排放的研究,内燃机学报,2009,27(4):314-320.
    [31] Zhang Z H, Tsang K S, Cheung C S, et al,Effect of fumigation methanol andethanol on the gaseous and particulate emissions of a direct-injection dieselengine,Atmospheric Environment,2011,45(11):2001-2008.
    [32]姚春德,魏立江,阳向兰等,柴油引燃乙醇均质混合气的二元燃料燃烧特性,内燃机学报,2012,30(3):207-213.
    [33] Menon, S., Climate effects of black carbon aerosols in China and India, Science,2002,297(5590):2250-2253.
    [34] Abu-Qudais M, Haddad O, Qudaisat M, The effect of alcohol fumigation ondiesel engine performance and emissions, Energy Conversion and Management,2000,41(4):389–399.
    [35] Splitter D, Hanson R, Kokjohn S, et al,Reactivity controlled compressionignition (RCCI) heavy-duty engine operation at mid-and high-loads withconventional and alternative fuels,SAE Paper,2011,01–0363.
    [36] Lu X., Han D., Huang Z., Fuel design and management for the control ofadvanced compression-ignition combustion modes, Progress in Energy andCombustion Science,2011,37(6):741–783.
    [37] Derek Splitter, Reed Hanson, Sage Kokjohn,et al,Reactivity controlledcompression ignition (RCCI) heavy-duty engine operation at mid-and high-loadswith conventional and alternative fuels, SAE Paper,2011-01-0363.
    [38] Dai qian, Yao Chun D, Experimental and Computational Studies on IgnitionCharacteristics of Diesel in a Premixed Ethanol Air Mixture Atmosphere,Energy Fuels,2012,26(12):7140-7146.
    [39]马凡华,蒋德明,一种可变湍流参数德定容燃烧弹实验装置,内燃机学报,2001,19(1):69-72.
    [40] Lyle M Pickett, Dennis L Siebers, Soot in Diesel Fuel Jets: Effects of AmbientTemperature,Ambient Density,and Injection Pressure, Combustion and Flame,2004,138(1/2):114-135.
    [41]虞育松,李国岫,孙晶晶,基于PaSR湍流燃烧模型的直喷式柴油机火焰举升长度,燃烧科学与技术,2008,14(1):91-95.
    [42] Hansen Nils, Cool T.A., Westmoreland P.R., Recent contributions offlame-sampling molecular-beam mass spectrometry to a fundamentalunderstanding of combustion chemistry, Progress in Energy and CombustionScience,2009,35(2):168-191.
    [43]马礼敦,杨福家,同步辐射应用概论.上海:复旦大学出版社,2005.
    [44] Robinson J C, Sveum N E, Neumark D M, Determination of absolutephotoionization cross sections for vinyl and propargyl radicals, The Journal ofChemical Physics,2003,119(11):5311-5315.
    [45] Adam T, Zimmermann R, Determination of single photon ionization crosssections for quantitative analysis of complex organic mixtures, Analytical andBioanalytical Chemistry,2007,389(6):1941-1951.
    [46] Juan Wang, Yang B, Terrill A. Cool, et al, Near-threshold absolutephotoionization cross-sections of some reaction intermediates in combustion,Internation Joural of Mass Spectrometry,2008,269(3):210-220.
    [47] Zhou Z, Zhang L, Xie M, et al, Determination of absolute photoionizationcross-sections of alkanes and cyclo-alkanes, Rapid Communications in MassSpectrometry,2010,24(9):1335-1342.
    [48] Terrill A. Cool, Juan Wang, Koichi Nakajima, et al, Photoionization crosssections for reaction intermediates in hydrocarbon combustion, InternationalJournal of Mass Spectrometry,2005,247(1):18-27.
    [49] Kanno N, Tonakura K, Vacuun ultraviolet photoionization mass spectra andcross sections for volatile organic compounds at10.5ev, Applied Spectroscopy,2007,61(8):896-902.
    [50]徐汉君,柴油/甲醇二元燃料燃烧反应动力学研究,博士学位论文,天津大学,2012.
    [51] Terrill A. Cool, Juan Wang, Nils Hansen,et al, Photoionization mass spectrometryand modeling studies of the chemistry of fuel-rich dimethyl ether flames,Proceedings of the Combustion Institute,2007,31(1):285~293.
    [52] Terrill A. Cool, Koichi Nakajimaa, Craig A. Taatjesb, Studies of a fuel-richpropane flame with photoionization mass spectrometry, Proceedings of theCombustion Institute,2005,30(1):1681~1688.
    [53] Curranv HJ, Gaffuri P, Pitz, et al,A comprehensive modeling study of iso-octaneoxidation, Combustion and Flame,2002,129(3):253-280.
    [54] Kaiser EW,Temperature and pressure dependence of the C2H4yield from thereactions C2H5+O2,Journal of Physics Chemical,1995,99(2):707-711.
    [55] Kaiser EW,Formation of C3H6from the reaction C3H7+O2between450and550K,Journal of Physics Chemical A,1998,102(29):5903-5906.
    [56] Kaiser EW, Temperature and pressure dependence of the C2H4yield from thereaction C2H5+O2, Journal of Physics Chemical,1995,99(2):707-711.
    [57] Kaiser EW, Wallington TJ,Formation of C3H6from the reaction C3H7+O2andC2H3Cl from C2H4Cl+O2at297K, Journal of Physics Chemical,1996,100(48):18770-18774.
    [58] Plumb IC, Ryan KR,Kinetic studies of the reaction of C2H5with O2at295K,International Journal of Chemical Kinetics,1981,13:1011-1028.
    [59] Clifford EP, Farrell JT, DeSain JD,et al, Infrared frequency-modulation probingof product formation in alkyl+O2reactions: I. the reaction of C2H5with O2between295and698K. Journal of Physics Chemical A,2000,104(49):11549-11560.
    [60] DeSain JD, Clifford EP, Taatjes CA, Infrared frequency-modulation probing ofproduct formation in alkyl+O2reactions: II. The reaction of C3H7with O2between295and683K, Journal of Physics Chemical A,2001,105(13):3205-3213.
    [61] DeSain JD, Taatjes CA, Infrared frequency-modulation probing of productformation in alkyl+O2reactions: III. The reaction of cyclopentyl radical(c-C5H9)with O2between296K and723K. Journal of Physics Chemical A,2001,105(27):6646-6654.
    [62] Estupi án EG, Klippenstein SJ, Taatjes CA, Measurements and modeling of HO2formation in the reactions of n-C3H7and i-C3H7radicals with O2, Journal ofPhysics Chemical B,2005,109(17):8374-8387.
    [63] Estupi án EG, Smith JD, Tezaki A,et al, Measurements and modeling of DO2formation in the reactions of C2D5and C3D7radicals with O2, Journal of PhysicsChemical A,2007,111(19):4015-4030.
    [64] DeSain JD, Taatjes CA, Miller JA, et al, Infrared frequencymodulation probingof product formation in alkyl+O2reactions: IV. Reactions of propyl and butylradicals with O2, Faraday Discuss,2001,119:101-120.
    [65] Bamford CH, Tipper CFH, Gas phase combustion, Amsterdam, Elsevier,1977,249-440.
    [66] Battin-Leclerc F, Herbinet O, Glaude P-A, et al. Experimental confirmation ofthe low-temperature oxidation scheme of alkanes, AngewandteChemie-International Edition,2010,49(18):3169-3172.
    [67] Rowley DM, Lesclaux R, Lightfoot PD, et al, A kinetic and mechanistic study ofthe reaction of neopentylperoxy radicals with HO2. Journal of Physics Chemical,1992,96(17):7043-7048.
    [68] Rowley DM, Lesclaux R, Lightfoot PD, et al, Kinetic and mechanistic studies ofthe reactions of cyclopentylperoxy and cyclohexylperoxy radicals with HO2.Journal of Physics Chemical,1992,96(12):4889-4894.
    [69] Lindstedt R P, Maurice L Q, Detailed kinetic modeling of n-heptane combustion.Combustion Science and Technology,1995,107(4-6):317-353.
    [70] Nehse M, Warnatz J, Chevalier C, Kinetic modeling of the oxidation of largealiphatic hydrocarbons, Proceedings of the Combustion Institute,1996,26:773-780.
    [71] Curran H J, Gaffuri P, Pitz W J, et al, A comprehensive modeling study ofn-heptane oxidation, Combustion and Flame,1998,114(1-2):149~177.
    [72] Buda F, Bounaceur R, Warth V, et al, Progress toward a unified detailed kineticmodel for the autoignition of alkanes from C4to C10between600and1200K.Combustion and Flame,2005,142(1-2):170~186.
    [73] Barnard, J. A.; Hughes, HWD, The pyrolysis of ethanol, Transactions of theFaraday Society,1960,56,55–63.
    [74] Gulder OL, Laminer burning velocities of methanol, ethanol and isooctane-airmixtures, Symposium (International) on Combustion,1982,19(1):275–281.
    [75] Borisov A A, Zamanskii V M, Konnov A A, et al, High-temperature pyrolysis ofethanol, Soviet Journal of Chemical Physics,1991,8,121–141.
    [76] Egolfopoulos F. N, Du D. X, Law C. K. Study on ethanol oxidation kinetics inlaminar premixed flames, flow reactors, and shock tubes, Symposium(International) on Combustion,1992,24(1):833–841.
    [77] Kasper T. S, Osswald P, Kamphus M, et al, Ethanol flame structure investigatedby molecular beam mass spectrometry, Combustion and Flame,2007,150(3):220–231.
    [78] Natarajan K, Bhaskaran K. A, Proceedings of the13th International Shock TubeSymposium, Niagara Falls,1981,834.
    [79] Borisov A A, Zamanskii V M, Konnov A A, et al, High-temperature ignition ofmixtures of ethanol and acetaldehyde with oxygen, Soviet Journal of ChemicalPhysics,1989,4,2561–2575.
    [80] Dunphy M. P, Simmie J. M, High-temperature oxidation of ethanol. Part1.—Ignition delays in shock waves, Journal of the Chemical Society, FaradayTransactions,1991,87(11):1691–1696.
    [81] Curran H J, Dunphy M P, Simmie J M, et al, Shock tube ignition of ethanol,isobutene and MTBE: experiments and modeling, Symposium (International) onCombustion,1992,24,769–776.
    [82] Cancino L R, Fikri M, Oliveira A A M, et al, Measurement and ChemicalKinetics Modeling of Shock-Induced Ignition of Ethanol-Air Mixtures, EnergyFuels,2010,24:2830-2840.
    [83] Borisov A A, Zamanskii V M, Konnov A A, et al, A mechanism ofhigh-temperature ethanol ignition, Soviet Journal of Chemical Physics,1992,9,2527–2537.
    [84] Marinov NM, A detailed chemical kinetic model for high temperature ethanoloxidation, International Journal of Chemical Kinetics,1999,31(3):183–220.
    [85] Saxena P, Williams F A, Numerical and experimental studies of ethanol flames,Proceedings of the Combustion Inetitute,2007,31,1149–1156.
    [86] Li J, Kazakov A, Dryer F L, Experimental and numerical studies of ethanoldecomposition reactions, Journal of Physical Chemistry A,2004,108(38),7671–7680.
    [87] Lu Xingcai, Hou Yuchun, Zu Linlin, et al, Experimental study on theauto-ignition and combustion characteristics in the homogeneous chargecompression ignition (HCCI) combustion operation with ethanol/n-heptaneblend fuels by port injection, Fuel,2006,85(17/18):2622-2631.
    [88] Lu T., Law C. K., A directed relation graph method for mechanism reduction,Proceedings of the Combustion Institute,2005,30(1):1333-1341.
    [89] Lam S. H., Coussis D. A., Understanding complex chemical kinetics withcomputational singular perturbation, Symposium(International) on Combustion,1989,22(1):931–941.
    [90] Lu T., Ju Y., Law C. K., Complex CSP for chemistry reduction and analysis,Combustion and Flame,2001,126(1):1445–1455.
    [91]解茂昭,内燃机计算燃烧学,大连理工大学出版社,2005
    [92] Lam S H, Goussis D A, The CSP Method for Simplifying Kinetics, InternationalJoural of Chemical Kinetics,1994,26:461-486.
    [93] Hu H,Keck J C,Autoignition of adiabatically compressed combustible gasmixtures, SAE Paper,1987,872110.
    [94] Li H, Miller D L, Cernansky N P, Development of reduced kinetic model forprediction of preignition reactivity and autoignition of primary reference fuels,SAE Paper,1996,960498.
    [95] Griffiths J F, Hughes K J, Schreiber M, et al, A unified approach to the reducedkinetic modeling of alkane combustion, Combustion and Flame,1994,99(3-4):533~540.
    [96] Wanhua Su, Haozhong Huang, Development and calibration of a reducedchemical kinetic model of n-heptane for HCCI engine combustion, Fuel,2005,84(9):1029-1040.
    [97] Tanaka S,Ayala F,Keck J C, A reduced chemical kinetic model for HCCIcombustion of primary reference fuels in a rapid compression machine.Combustion and Flame,2003,133(4):467~481.
    [98] Patel A, Kong S C, Reitz R D, Development and validation of reduced reactionmechanism for HCCI egine simulation, SAE Paper,2004,2004-01-0558.
    [99] Hujun Xu, Chunde Yao, Guanglan Xu. Chemical kinetic mechanism and askeletal model for oxidation of n-heptane/methanol fuel blends, Fuel,2012,93(1):625-631.
    [100] Gustavsson J, Golovitchev V I, Spray combustion simulation based on detailedchemistry approach for diesel fuel surrogate model, SAE paper,2003,01–1848.
    [101] Zheng JC, Yang WY, Miller DL, et al. A skeletal chemical kinetic model for theHCCI combustion process, SAE Paper,2002,01-0423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700