用户名: 密码: 验证码:
微创入路经皮钢板治疗胫骨中段骨折的生物力学研究及三维有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分微创入路经皮钢板治疗胫骨中段骨折的生物力学研究
     目的:
     研究LC-DCP钢板长度、螺钉固定数目及位置对胫骨中段骨折的生物力学影响,为MIPO技术提供生物力学证据。
     方法:
     选取成人(20-40岁)尸体胫骨湿标本60根。随机分组,制成中段斜行无缺损骨折模型,研究以不同长度(6孔、10孔、14孔)LC-DCP6枚螺钉固定,不同数目(6枚、10枚、14枚)螺钉固定14孔LC-DCP,14孔LC-DCP用6枚螺钉不同位置固定的压缩、扣转、三点弯曲的力学特性。垂直压缩载荷为0~1 000 N,扭转角度为0~3°,三点弯曲载荷为0~400 N。测定扭转、三点弯曲、压缩等载荷-应变指标,进行统计学分析。
     结果:
     一、钢板长度对胫骨中段骨折的生物力学影响
     6孔、10孔和14孔钢板垂直压缩时垂直方向应变值分别为0.449±0.241、0.093±0.003、0.139±0.005,10孔和14孔钢板与6孔钢板比较差异有统计学意义(P<0.01)。6孔、10孔和14孔钢板侧方应变值分别为0.120±0.0004、0.1275±0.01、0.237±0.0006,6孔钢板和10孔钢板与14孔钢板比较差异有统计学意义(P<0.01),6孔钢板与10孔钢板间比较差异无统计学意义(P>0.05)。6孔、10孔和14孔钢板扭矩分别为(5.066*10~(-3)±2.715*10~(-3))N·m、(5.671*10~(-3)±2.527*10~(-3))N·m、(4.570*10~(-3)±2.228*10~(-3))N·m,三点弯曲垂直方向应变值分别为0.049±0.009、0.124±0.017、0.062±0.009,各孔钢板间两两比较差异均有统计学意义(P<0.01)。
     二、螺钉固定数目对胫骨中段骨折的生物力学影响
     6枚、10枚和14枚螺钉固定垂直压缩时垂直方向应变值分别为0.120±0.006、0.111±0.012、0.116±0.008,两两比较差异无统计学意义(P>0.05)。6枚、10枚和14枚螺钉固定侧方应变值分别为0.234±0.007、0.234±0.000、0.179±0.002,两两比较差异无统计学意义(P>0.05)。6枚、10枚和14枚螺丝钉固定扭矩分别为(7.304*10~(-3)±3.072*10~(-3))N·m、(6.069*10~(-3)±3.086*10~(-3))N·m、(7.1295*10~(-3)±3.908*10~(-3))N·m,两两比较差异无统计学意义(P>0.05)。三点弯曲垂直方向应变值分别为0.149±0.098、0.139±0.003、0.258±0.001,6枚螺钉和10枚螺钉相比,无显著性差异(P>0.05),14枚螺钉和其他两种情况对比,有显著性差异(P<0.01)。
     三、螺钉固定位置对胫骨中段骨折的生物力学影响
     第一组固定自上而下1,2,7,8,13,14孔,第二组固定自上而下1,4,7,8,11,14孔,第三组固定自上而下1,3,6,9,12,14孔,第四组固定自上而下1,2,3,12,13,14孔。
     四组垂直压缩时垂直方向应变值分别为0.120±0.006、0.0330±0.0027、0.139±0.005、0.116±0.008,第二组和其他组对比差异有统计学意义(P<0.01)。四组侧方应变值分别为0.234±0.007、0.237±0.0006、0.187±0.002、0.217±0.002,第三组和其他组比较差异有统计学意义(P<0.01)。四组扭矩分别为(7.304*10~(-3)±3.072*10~(-3))N·m、(6.965*10~(-3)±3.096*10~(-3))N·m、(4.570*10-3±2.228*10~(-3))N·m、(2.086*10~(-3)±0.998*10~(-3))N·m,第三组和其他组比较差异有统计学意义(P<0.01)。三点弯曲垂直方向应变值分别为0.149±0.098、0.184±0.002、0.004±0.001、0.282±0.000,第一、第二组和其他组两两比较差异均有统计学意义(P<0.01),第四组和其他组两两比较差异均有统计学意义(P<0.01),第一、二组两两比较差异无统计学意义(P>0.05)。
     结论:
     一、材质相同、厚度相同、宽度相同、使用相同数量螺钉、不同长度(6孔、10孔、14孔)的钢板,抗垂直压缩稳定性、抗扭转稳定性、抗弯曲稳定性14孔钢板相对较好,6孔钢板相对较差。
     二、材质相同、厚度相同、宽度相同、长度相同的钢板,使用不同数量螺钉(6枚、10枚、14枚),抗垂直压缩稳定性、抗扭转稳定性无明显差异,抗弯曲稳定性14枚螺钉反而较差。
     三、使用相同材质、相同长度、相同宽度、相同数量螺钉,靠近骨折线处上螺钉,抗压缩稳定性和抗扭转稳定性较好,而螺钉分布于钢板两端,抗扭转稳定性较差。螺钉平均分布,抗弯曲稳定性和抗扭转稳定较好,而螺钉分布于钢板两端,抗弯曲、抗压缩、抗扭转稳定性较差。
     第二部分微创入路经皮钢板治疗胫骨中段骨折的三维有限元分析
     目的:
     研究LC-DCP不同螺钉固定数目及位置对胫骨中段骨折的生物力学影响的三维有限元模型,为MIPO技术提供更翔实的证据。
     方法:
     选取5具青壮年男性尸体的胫骨湿标本,制成胫骨中段斜形无缺损骨折模型,以14孔LC-DCP固定,第一具固定在1,2,3,12,13,14孔,第二具固定在1,4,7,8,11,14孔,第三具固定第1,3,6,9,12,14孔,第四具固定第1,2,7,8,13,14孔,第五具用14枚螺钉固定。利用有限元软件Ansys 6.5构造以上五种胫骨中段骨折内固定三维有限元模型。数字模拟压缩、扭转加载,垂直压缩0—1000N,扭转速率为2°/s,扭转角度为3°。测定各个螺钉应力指标,进行统计学分析。
     结果:
     一、第1,2,3,12,13,14孔螺钉固定模型加载时各个螺钉在X、Y轴上的压缩、扭转受力以第3、12孔为大,呈向骨折处集中的趋势。各个螺钉在z轴上受力变化不人。总体来看,螺钉受力不大,应力主要集中在未行固定的钢板处。
     二、第1,4,7,8,11,14孔螺钉固定模型加载时各钉轴向压缩时X、Y、Z轴上的受力均以第1孔为最大,第4孔次之,受力有自上而下逐步减少的趋势。扭转时以X、Y、Z轴上的受力以第7孔和第8孔为最大,有自骨折中央处向两边逐步减弱的趋势,但受力集中在钢板中央位置。三、第1,3,6,9,12,14孔螺钉固定模型加载时各钉轴向压缩时X、Y、Z轴上的受力均以第1孔为最大,第3孔次之,受力有自上而下逐步减少的趋势。扭转时以X、Y、Z轴上的受力以第6孔和第9孔为最大,未采用螺钉固定的钢板中央部位分担的应力较大。
     四、第1,2,7,8,13,14孔螺钉固定模型加载时各钉轴向压缩时X、Y、Z轴上的受力均以第1孔为最大,第2孔次之,受力有自上而下逐步减少的趋势。扭转时X、Y、Z轴上的受力以第7孔和第8孔为最大,但较前固定方法应力小,整个钢板应力分布比较均衡。
     五、全部14枚螺钉固定螺钉孔模型加载时各钉轴向压缩时X、Y、Z轴上的受力均以第1孔为最大,第2孔次之,受力有自上而下逐步减少的趋势。扭转时以X、Y、Z轴上的受力以第7孔和第8孔为最大,应力较为集中在钢板中央的2枚螺钉。
     结论:
     一、本研究建立的胫骨中段骨折内固定模型能逼真地反映胫骨的真实几何结构。
     二、本模型为其进行骨折内固定三维有限元模型力学分析和仿真试验提供了新的研究手段,具有良好的应用前景。
     三、应用6枚螺钉固定14孔钢板时其螺钉所受压缩应力与14枚螺钉固定时相当,所受扭转应力反而较小。
     四、运用MIPO技术治疗胫骨中段骨折时,以6枚螺钉固定14孔长钢板为妥,又以固定第1,2,7,8,13,14孔为最佳。
Preface
     The fracture of tibia may account 10 percent in long bone fractures, so itis significance to study on it. According to traffic accident, the high energyand speed injures were increased, the incidence rate of tibia fracture wereupgraded too. In the 60s of 20 centuries, AO/ASIF system overemphasized themechanical fixation in treating fractures, so in most clinical observations,them found the problem of osteoporosis, bone atrophy, bone healing delay,fracture again, et al.
     BO (Biological Osteosynthesis) technique emphasize the blood supplyingprotection in fractures, the bone can heal in the second stage, so it calledbiological and reasonable fixation. Minimally invaslve plate osteosynthesis(MIPO) is the current progress of BO techniques, it needs no exprosure of theextrem of fractures, and can reduce and fix indirect, so it diminish the destroyof soft tissue and the blood supplying of pericosteum, noninterference theblood circulation of medullary cavity, shorten the operating time, depressedthe bone disunion and infecting, profited the functional rehabilitation, so theclinical therapeutic effection were satisfact.
     However, in the application of MIPO to treat middle tibia fractures, thelongth of plate, the number and location of fixed screw were no shaped inacademic circles, there were dispute constantly, and those were the key pointwere been solved in our studys.
     We used cadaver tibia of adults in the test, measure the contructed,retated and 3 pionts curved biomechanical character in middle tibia fractures,compared the different longth of plate (6 holes, 10 holes and 14holes) fixedwith 6 screws, 14 holes of Limited Comtact-Dynamic CompressionPlate(LC-DCP) were fixed with different number of screws ( 6 screws, 10screws and 14 screws), and 14 holes of LC-DCP fixed with 6 screws indifferent locations.
     In the calculating biomechanical researchs, we advocate using longerplate and less screw fixtion in treating middle tibia fracture, because longerplate can correct revolving and angulating deform, retaine the axle and longthof tibia well. The extend of LC-DCP force arm can increace the number ofstress centralized pionts, less the demands to skeleton, the most important ofall, it add the span between the screws, so it can neutralization the momentstress to the screws, which can pull the screws out accidently.
     In order to confirm our conclusions, we also designed three dimensionfinite element model of 14 holes LC-DCP were fixed with 14 screws and 6screws fixed in different locations in treating middle tibia fractures, test theircharacters of contructed, retated and 3 pionts curved too, so can provid moredetailed biomechanical witness in treating middle tibia fracture with MIPOtechnique.
     PART ONEBiomechanical study of MIPO to treat of tibial shaft fractures
     Objectives:
     To research the biomechnical effect of different length bone plates,number and location of stews to treat with the fracture of tibial shaft, providbiomechanical witness to MIPO.
     Methods:
     We used 60 humid cadaver tibias of adult ( 20-40 years old ) in theresearch, randomizated them to different groups, measure the contructed,retated and 3 pionts curved biomechanical character in middle tibia fractures,compared the different longth of plate (6 holes, 10 holes and 14holes) fixedwith 6 screws, 14 holes of LC-DCP were fixed with different number ofscrews ( 6 screws, 10 screws and 14 screws), and 14 holes of LC-DCP fixedwith 6 screws in different locations. The contruct power were 0~1 000 N,retate angle were 0~3(?), 3 pionts curved force were 0~400 N. Used SPSS12.0 statistics software to analyze.
     Results:
     1、The biomechanical test to the longth of plate to treat with tibial shaftfracture
     6, 10 and 14 holes plate when vertical compressions, the verticaldirection strain value respectively be 0.449±0.241, 0.093±0.003, 0.139±0.005,10 holes and 14 holes steel plates has statistics significance with 6 steel platecomparison difference (P<0.01). 10 holes and 14 holes steel plates comparison difference non-statistics significance (P>0.05). 6, 10 and 14 holes plate are(5.066*10-3±2.715*10-3 ) N·m, (5.671*10-3±2.527*10-3) N·m,(4.570*10-3±2.228*10-3) N·m, three pionts curving vertical direction strainvalue respectively be 0.049±0.009, 0.124±0.017, 0.062±0.009 respectively,between various plate 2-2 comparison differences has statistics significance (P<0.01).
     2、The biomechanical test of the number of screws to to treat with tibialshaft fracture
     6, 10 and 14 screw screws when fixed vertical compressions verticaldirection strain value respectively be 0.120±0.006, 0.111±0.012, 0.116±0.008,2-2 comparison difference non-statistics significance (P>0.05). 6, 10 and 14screw bolt fixed flank strain value respectively be 0.234±0.007, 0.234±0.000,0.179±0.002, 2-2 comparison difference non-statistics significance (P>0.05).Three pionts curving vertical direction strain value respectively be0.149±0.098, 0.139±0.003, 0.258±0.001,6 a screw and 10 screws compares,the non-significance difference (P>0.05), 14 screws and other two kind ofsituation contrasts, have the significance difference (P<0.01).
     3、The biomechanical test of the location of screws to to treat with tibialshaft fracture
     All of those four groups of vertical compressions the vertical directionstrain value respectively be 0.120±0.006, 0.0330±0.0027, 0.139±0.005,0.116±0.008, the second group has statistics significance with other group ofcontrast difference (P<0.01). Four group of flank strain value respectively be0.234±0.007, 0.237±0.0006, 0.187±0.002, 0.217±0.002, the third group hasstatistics significance with other group of comparison difference (P<0.01).Four groups of torques respectively be (7.304*10-3±3.072*10-3) Nm, (6.965*10-3±3.096*10-3)Nm,(4.570*10-3±2.228*10-3)Nm,(2.086*10-3±0.998*10-3) Nm, the third group have statistics significance with other group ofcomparison difference (P<0.01). Three pionts curving vertical direction strainvalue respectively be 0.149±0.098, 0.184±0.002, 0.004±0.001, 0.282±0.000,the first, second group has statistics significance with other group of 2-2comparison difference (P<0.01), The fourth group has statistics significancewith other group of 2-2 comparison difference (P>0.05). First, second groupof 2-2 comparison difference non-statistics significance (P>0.05).
     Conclusions:
     1、Stability of different length of plate with same quality ,samethickness,same width,using same quantity of screw, 14 hole plate is the best,6hole plate is not sogood.
     2、The material quality is the same, thickness is the same, the width is thesame, the length same steel plate, the use different quantity screws (6, 10, 14),the anti-vertical compression stability, the anti-reverse stability not obviousdifference, the anti-curving stable 14 screws are instead bad.
     3、Uses the same material quality, the same length, the same width, thesame quantity screws, approaches in the fracture line place screw, theanti-compression stability and the anti-reverse stability are well, but thescrews distributes in the plate both sides, the anti-reverse stability is bad. Boltaverage distribution, anti-curving stability and anti-reverse stable good, but thescrews distributes in the plate both sides, anti-curving, the anti-compression,the anti-reverse stability are bad.
     PART TWOThree diamensional finite element analysis of MIPO to treat with tibialshaft fractures
     Objectives:
     To determine the biomechnical effect and three diamensional finiteelement model of different number and location of srews to treat with thefracture of tibial shaft, provid more detailed proofs to MIPO.
     Methods:
     Select 5 humid cadaver tibias of male adult, made them to middle tibiafratures randomly, oblique shape and with no defece, all models were fixedwith 14 holes of LC-DCP. The first model was fixed in the 1st, 2nd, 3rd, 12th,13th, 14th hole, the second model was fixed in the 1st, 4th, 7th, 8th, 11th,14th hole, the third model was fixed in the 1st, 3rd, 6th, 9th, 12th, 14th hole,the fourth model was fixed in the 1st, 2nd, 7th, 8th, 13th, 14th hole, the fifthmodel was fixed in all holes with 14 screws. Using finite element software ofAnsys 6.5, established the three diamensional finite element model of tibialshaft fratures of those five models above. Computer digital analog loading, thecontruct power were 0~1 000 N, retate angle were 0~3(?), 3 pionts curvedforce were 0~400 N. Measured the stress of all screws and used SPSS 13.0statistics software to analyze.
     Results:
     1、In the firsr model fixed in the 1st, 2nd, 3rd, 12th, 13th, 14th hole, the stress of all screws in the X and Y axile, the contruct and retate strains arehighest in the 3rd and 12th hole, and has the tendency of centralized to themiddle of plate. Generally, the stress of all screws are not high, the strain islocated in the middle of the plate.
     2、In the second model fixed in the 1st, 4th, 7th, 8th, 11th, 14th hole,the stress of all screws in the X, Y and Z axile, the contruct strain is highest inthe 1st hole, and the contruct strain in the 4th hole is secondary, the tendencyof stress distribution reduct from up to bottom. The retate strains in the X, Yand Z axile is the highest in the 7th and 8th holes, it is centralized in themiddle of plate and decrease to both extrem.
     3、In the third model fixed in the 1st, 3rd, 6th, 9th, 12th, 14th hole, thestress of all screws in the X, Y and Z axile, the contruct strain is highest in the1st hole, and the contruct strain in the 3th hole is secondary, the tendency ofstress distribution reduct from up to bottom. The retate strains in the X, Y andZ axile is the highest in the 6th and 9th holes, it is centralized in the middle ofplate.
     4、In the fourth model fixed in the 1st, 2nd, 7th, 8th, 13th, 14th hole,the stress of all screws in the X, Y and Z axile, the contruct strain is highest inthe 1st hole, and the contruct strain in the 2th hole is secondary, the tendencyof stress distribution reduct from up to bottom. The retate strains in the X, Yand Z axile is the highest in the 7th and 8th holes, the stress is the lest thanother means of all, the strain distribution is equilibrately.
     5、In the fifth model fixed in all 14 holes, the stress of all screws in the X,Y and Z axile, the contruct strain is highest in the 1st hole, and the contructstrain in the 2th hole is secondary, the tendency of stress distribution reductfrom up to bottom. The retate strains in the X, Y and Z axile is the highest in the 7th and 8th holes, the stress is centralized in the middle two screws.
     Conclusions:
     1、We established the finite element mole of tibial shaft fracture withinternal fixation, it can reflects the ture geometry construction of tibiarealistically.
     2、This finite element model of tibia fracture with internal fixationprovids a new research means to biomechanical analysis and simulate tests, soit has a favourable applicating prospection.
     3、When internal fixed with 14 holes plate, fixed with 6 holes and 14holes, the anti-vertical compression stability and the anti-reverse stability arenot obvious difference, but the anti-curving stablility in 14 screws fixed areworse.
     4、In the treatment of tibia shaft fractures with MIPO technique, fixedwith 6 screws is better than 14 holes, the location of screws is best when fixedin the 1st, 2nd, 7th, 8th, 13th, 14th hole.
引文
1 胡新佳,林博文,肖德明等。80例微创经皮钢板治疗胫骨干骨折分析。实用预防医学 2006;13(3):734-736。
    2 孙月华,龚伟华,朱振安等。微创经皮插入接骨板内固定治疗胫骨远端骨折。临床骨科杂志,2004;7(1):9-111.
    3 G(u|¨)ven M, Unay K, Cakici H, Ozturan EK, Ozkan NK.A new screw fixation technique for minimally invasive percutaneous plate osteosynthesis.Acta Orthop Belg.2008 Dec;74(6):846-850.
    4 林博文,肖德明,黎伟凡等.微创经皮钢板固定治疗胫骨骨折。中华创伤杂志 2002:18(9): 551-553.
    5 Liu CZ, Wu LY, He XY, Wang C.Technology of minimally invasive percutancous plate osteosynthesis for the treatment of fractures of the distal tibia.Zhongguo Gu Shang.2008 Mar;21(3):213-214.Chinese.
    6 Ji F, Tong D, Tang H, Cai X, Zhang Q, Li J, Wang Q.Minimally invasive percutaneous plate osteosynthesis (MIPPO) technique applied in the treatment of humeral shaft distal fractures through a lateral approach, lnt Orthop.2008 Mar 4.
    7 Laurence M, Freeman MAR, Swanson SAV.Enginering consideration in the internal fixation of fractures of the tibial shaft.Bone Jiont Surg (Br), 1996, 51: 754-768.
    8 Rozbruch R, Mulet U, Gautier E.The evolution of femoral shaft plating technique.Clin Orthop, 1998, (354):195-208.
    9 Baumgaertel F, Buhl M, Rahn BA, Fracture healing in biological plate osteosynthesis.Injury, 1998, 29 (3): C3-C6
    10 Bahari S, Lenehan B, Khan H, McElwain JP.Minimally invasive percutaneous plate fixation of distal tibia fractures.Acta Orthop Belg.2007 Oct;73(5):635-640.
    11 Pallister I, Iorwerth A.Indirect reduction using a simple quadrilateral frame in the application of distal tibial LCP-technical tips.Injury.2005 Sep;36(9):1138-1142.
    12 何剑颖,舒勇,黄山虎等。扭转实验对不同螺钉数量钢板螺钉内固定结构载荷的影响。江西医学院学报,2006;46(2):47-49。
    13 刘晋川,易难,宋晓勇等。四肢长骨干骨折钢板螺钉断裂的原因分析。华西医学2(000;15(2):187-188。
    14 Krettek C, Gerich T, Miclau T.A minimally invasive medial approach for proximal tibial fractures.Injury.2001 May;32 Suppl 1 :SA4-13.
    15 Farouk O, Krettek C, Miclau T, et al。Minimally invasive plate osteosynthesis Percutaneous plating disrupt femoral blood Supply technique ? J Orthop Trauma, 1999, 13:401-406.
    16 Krettek C, Gerich T, Miclau T.A minimally invasive midal approach for promaximal tibial fractures.Injury, 2001, 32: 4-13.
    17 Guo S F.The measure of bony structure of Lumbar spinal canal and spinal stenosis [J].Chin J Surg, 1984, 22: 631.Chinese
    18 Oian Z L, Tang T S, Yang H L, et al.Three-dimension finite element analysis of lumbar intervertebral disc.Suzhou University Journal of Medical Science, 2002, 22(1): 4-7.Chinese
    19 Wang H.Research of a new finite element model of lumbar motion segment.China Medical Engineering, 2005, 13(2): 185-192
    20 George J.Handing no vations in locking plate technology [J] .Am Acad Orthop Surg, 2004, 12: 205-212.
    21 Borg T, Larsson S, Lindsjo U.Percutaneous plating of distal tibial fractures.Preliminary results in 21 patients.Injury.2004;35(6):608-614.
    23 Field JR, Edmonds-Wilson R, Stanley RM.An evaluation of interface contact profiles in two low contact bone plates.Injury.2004;35(6):551-556.
    24 Leung F, Chow SP.A prospective, randomized trial comparing the limited contact dynamic compression plate with the point contact fixator for forearm fiactures.J Bone Joint Surg Am.2003;85-A(12):2343-2348.
    25 John R F, Toenkvist T H, Trevorch, et al.The influence of screws omission on construction stiffness and bone surface strain in the application of bone plate to cadavcric bone [J].Injuey Int J Care Injured, 1999, 30: 591-598.
    26 Field J R, Hearn T C, Caidwell C B, et al.A pressure sensitive film study on the effection of screw omission bone plate interface mechanics in cadaveric bone [J] .Verterinary Compareive Orthopedics and Traumatolog, 1997, 10: 205-209.
    27 Kozien MS, Lorkowski J, Szczurek S, et al.Computer simulation of the isolated lesion of tibiofibular an syndesmosis using the finite element method.Przegl Lek.2008;65(1):50-53.Polish
    28 Field JR, Edmonds-Wilson R, Stanley RM.An evaluation of interface contact profiles in two low contact bone plates.Injury.2004; 35(6): 551-556.
    29 Thomase, Craigab, Richard D F, et al.Screw position affect dynamic comprssion plate strain in an invitro fracture modle [J].J Orthop Trauma, 2001, 15: 333-337.
    30 Krettek C, Schandelmajerp, Miclau T, et al.Minimally invasive percutaneous plate osteosynthesis (MIPO) using the DCS in proximal and distal femoral fractures.Injury, 1997, 28 (1): 20-30.
    31 Helfet DL, Shonnard PY, Levine D, et al.Minimally invasive plate osteosynthesis of distal fractures of the tibia.Injury,1997,28 (1): 42-48.
    32 Baumgaertel F, Buhl M, Rahn BA, Fracture healing in biological plate osteosynthesis.Injury, 1998, 29 (3) : C3-C6
    33 Farouk O, Krettek C, Miclau T, et alo Minimally invasive plate osteosynthesis Percntaneous plating disrupt femoral blood Supply technique ? J Orthop Trauma, 1999, 13: 401-406.
    34 GUO SF.Linchuang Jiepouxue [M].Jinan Shandong Scienc Technology Publishing Press, 2001: 127-224.Chinese.
    35 查国春,陈泽林,齐小波.经皮微创锁定加压钢板内固定治疗胫骨骨折[J].中国修复重建外科杂志,2008,(12):1448-1450.
    36 纪方,王秋根,汪滋民,栗景峰,张秋林,蔡晓冰,王万忠,方大标,陆晴友,唐昊,谭瑞星.AO经皮微创稳定系统LISS钢板治疗胫腓骨复杂性骨折[J].第二军医大学学报,2006,(6):33-34.
    37 刘建全,王大平,熊建义,刘黎军,李文翠,黄俊锋.锁定加压钢板在胫骨远端骨折中的应用[J].中华创伤骨科杂志,2006,(9):891-892.
    38 戴海,曾心一.胫骨远端外侧钢板治疗胫骨远端骨折疗效分析[J].中国医药导报,2008,(28):150.
    39 Dalzell N, Kaptoge S, Morris N, etal.Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT.Osteoporos Int.2009 Jan 17.
    40 Untaroiu CD, Ivarsson J, Genovese DR, et al.Biomechanical injury response of leg subjected to combined axial compressive and bending loading.Biomed Sci lnstrum.2008;44:141-146.
    41 Lovald ST, Khraishi T, Wagner J, et al.Mechanical Design Optimization of Bioabsorbable Fixation Devices for Bone Fractures.J Craniofac Surg.2009 Feb 24.
    42 胡新佳,杨述华,肖德明,林博文,王华,徐忠世,赵卫东,张美超,.胫骨中段骨折内固定钢板长度的生物力学研究[J].中国修复重建外科杂志,2008,(11):1323-1326.
    1 Hinterhofer C, Haider H, Apprich V, et al.Development of a twenty-one-component finite element distal hind limb model: stress and strain in bovine digit structures as a result of loading on different floorings.J Dairy Sci.2009 Mar;92(3):972-979.
    2 张峻,候筱魁,王以友.三维CT重建在胫骨平台骨折中的应用[J].中华骨科杂志;1998,18(7):387-390.
    3 吴宇峰,苏培基,伍中庆,等.胫骨上端三维有限元模型的建立[J].颈肩痛杂志;2004,25(3):158-160
    4 Dalzell N, Kaptoge S, Morris N, etal.Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT.Osteoporos Int.2009 Jan 17.[Epub ahead of print]
    5 胡新佳,林博文,肖德明等。80例微创经皮钢板治疗胫骨干骨折分析。实用预防医学 2006;13(3):734-736。
    6 张美超,肖进,李义凯,钟世镇.腰椎小关节接触模型的有限元分析[J].第一军医大学学报,2002,9(22):836-838.
    7 张美超,张余,黄华扬,等.股骨-胫骨复合体模型在人体体重冲击下的运动力学响应研究[J].第一军医大学学报,2003,9(23):908-990.
    8 张美超,赵卫东,原林,等.建立数字化虚拟中国人男性一号膝关节的有限元模型[J].第一军医大学学报,2003,6(23):527-529.
    9 Untaroiu CD, lvarsson J, Genovese DR, et al.Biomechanical injury response of leg subjected to combined axial compressive and bending loading.Biomed Sci Instrum.2008;44:141 - 146.
    10 Kozien MS, Lorkowski J, Szczurek S, el al.Computer simulation of the isolated lesion of tibiofibular an syndesmosis using the finite element method.Przegl Lek. 2008;65(1):50-53.Polish.
    11 赵文志,刘迎曦,张军,李宝文,杨梁.加压钢板固定术后内植物失败的生物力学分析[J].医用生物力学,2003,(1):50-54.
    12 纪方,王秋根,汪滋民,栗景峰,张秋林,蔡晓冰,王万忠,方大标,陆晴友,唐昊,谭瑞星,.AO经皮微创稳定系统LISS钢板治疗胫腓骨复杂性骨折[J].第二军医大学学报,2006,(6):687-688.
    13 Gray HA, Taddei F, Zavatsky AB, et al.Experimental validation of a finite element model of a human cadaveric tibia.J Biomech Eng.2008 Jun;130(3): 310-316.
    14 刘建全,王大平,熊建义,刘黎军,李文翠,黄俊锋,.锁定加压钢板在胫骨远端骨折中的应用[J].中华创伤骨科杂志,2006,(9):891-892.
    15 罗从风,姜锐,胡承方,皇甫小桥,曾炳芳,微创固定系统治疗膝关节周围复杂骨折[J].中华骨科杂志,2006,(7):454-458.
    16 王虎,李保良,.胫骨远端解剖型钢板内固定治疗胫骨远端骨折[J].中国矫形外科杂志,2007,(22):1860-1862.
    17 Verhulp E, Van Rietbergen B, Muller R, et al.Micro-finite element simulation of trabecular-bone post-yield behaviour-effects of material model, element size and type.Comput Methods Biomech Biomed Engin.2008 Aug; 11 (4):389-395.
    18 Vaziri A, Nayeb-Hashemi H, Singh A, et al.Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint.Ann Biomed Eng.2008 Aug;36(8):1335-1344.Epub 2008 May 22.
    19 Lovald ST, Khraishi T, Wagner J, et al.Mechanical Design Optimization of Bioabsorbable Fixation Devices for Bone Fractures.J Craniofac Surg.2009 Feb 24.[Epub ahead of print]
    20 Goel VK, Kin TH, Weinstein JN.An analytical investigation of the mechanics of spinal instrumentation [J].Spine, 1983,13:1003- 1011.
    21 Shi X, Wang X, Niebur GL.Effects of loading orientation on the morphology of the predicted yielded regions in trabecular bone.Ann Biomed Eng.2009 Feb;37(2):354-362.Epub 2008 Dec 12.
    22 Mudry RN, Wilcox MJ.A finite element approach to predicting sclerai response to mechanical stress.Biomed Sci Instrum.2008;44:329-335.
    23 Liu XS, Bevill G, Keaveny TM, et al.Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods.J Biomech.2009 Feb 9;42(3):249-256.Epub 2008 Dec 20.
    24 Erkmen E, Atac MS, Y(u|¨)cel E, et al.Comparison of biomechanical behaviour of maxilla following Le FortⅠ osteotomy with 2- versus 4-plate fixation using 3D-FEA: part 3: inferior and anterior repositioning surgery.lnt J Oral Maxillofac Surg.2009Feb;38(2):173-179.Epub 2008 Nov 28.
    25 Wang D, Yang ZQ, Hu XY.Three-dimensional finite element analysis of three conjunctive methods of free iliac bone.graft for established mandibular body defects.Hua Xi Kou Oiang Yi Xue Za Zhi.2007 Aug;25(4):345-348.Chinese.
    26 Xu CT, Sun GL, Zhou J, Wang PL.Establishment and primary analysis of the three-dimensional finite element model of mandibular bilateral sagittal split ramus osteotomy with rigid internal fixation.Zhonghua Zheng Xing Wai Ke Za Zhi.2007 May;23(3):215-217.Chinese.
    27 Korkmaz HH.Evaluation of different miniplates in fixation of fractured hnman mandible with the finite element method.Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2007 Jnn;103(6):el-13.Epub 2007 Apt 30.
    28 Cheng HY, Lin CL, Lin YH, Chen AC.Biomechanical evaluation of the modified double-plating fixation for the distal radius fracture.Clin Biomech (Bristol, Avon).2007 Jun;22(5):510-517.Epub 2007 Feb 27.
    29 徐波,史占军,金大地,等.全膝关节置换术后持续被动运动的临床应用研究[J].第一军医大学学报,2001,5(21):368-369.
    30 Dongmei W, Chengtao W, Xiujuan Z, Liqun X.Design and biomechanical evaluation of a custom lateral mandible titanium prosthesis.Conf Proc IEEE Eng Med Biol Soc.2005 ;6:61188-6 191.
    31 侯之启,戈涛,邝炯祥,陈铭,杨运发,徐中和.微创稳定系统在膝部骨折中的应用[J].中华创伤杂志,2006,(5):357-359.
    32 戴海,曾心一,.胫骨远端外侧钢板治疗胫骨远端骨折疗效分析[J].中国医药导报,2008,(28):150.
    33 赵卫东,尹峰,吴韦,谭军,吴德升,赵定麟,.经皮锁定钢板治疗胫骨远端骨折的临床研究[J].同济大学学报(医学版),2008,(4):94-97.
    34 陈履平,韩祖斌,李承球,唐迪.钢板螺丝钉在胫腓骨骨折治疗中的生物力学原理[J].南京医科大学学报(自然科学版),1987,(4):1-4.
    35 Field J R, Hearn T C, Caidwell C B, el al.A pressure sensitive film study on the effection of screw omission bone plate interface mechanics in cadaveric bone [J] .Verterinary Compareive Orthopedics and Traumatolog, 1997, 10: 205-209.
    36 John R F, Toenkvist T H, Trevorch, et al.The influence of screws omission on construction stiffness and bone surface strain in the application of bone plate to cadaveric bone [J].Injuey Int J Care Injured, 1999, 30: 591-598.
    37 许浩,刘锋,范卫民,李翔,吴乃庆,王鹤呜.May解剖型钢板内固定术治疗胫骨下端骨折及其解剖基础[J].解剖与临床,2004,(2):114-115.
    38 吴宁,梁朝革,张亚东,王奕,.解剖钢板经走内固定治疗胫骨远段粉碎性骨折[J].临床骨科杂志,2007,(4):328-329.
    39 孙文健,吴松涛.May解剖型钢板在胫骨远端骨折的临床应用[J].中华创伤杂志,2004,(5):307-308.
    40 查国春,陈泽林,齐小波,.经皮微创锁定加压钢板内固定治疗胫骨骨折[J].中国修复重建外科杂志,2008,(12):1448-1450
    41 Schleicher P, Gerlach R, Sch(a|¨)r B, et al.Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion.Eur Spine J.2008 Dec; 17(12):1757-1765.
    42 Krishna KR, Sridhar I, Ghista DN.Analysis of the helical plate for bone fracture fixation.Injury.2008 Dec;39(12): 1421-1436.Epub 2008 Sep 26.
    43 Fan Y, Xiu K, Duan H, Zhang M.Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing.Clin Biomech (Bristol, Avon).2008;23 Suppl 1:S7-S16.Epub 2008 Mar 4.
    44 胡新佳,杨述华,肖德明,林博文,王华,徐忠世,赵卫东,张美超,.胫骨中段骨折内固定钢板长度的生物力学研究[J].中国修复重建外科杂志,2008,(11):1323-1326.
    1 Ruedi TP, Murphy WM.AO Principles of fracture management [J].Thieme, 2000,2-3.
    2 Krettek C, Schandelmaier P, Miclau T, Tscherne H.Minimally invasive percutaneous plate osteosynthesis (MIPPO) using the DCS in proximal and distal femoral fractures.Injury.1997; 28 Suppl 1: A20-30.
    3 Farouk O, Krettek C, Miclau T, et al.Minimally invasive plate osteosynthesis: Does percutaneous plating disrupt femoral blood supply less than the traditional technique? [J].Journal of Orthopaedic Trauma, 1999, 13 (6): 401-406.
    4 Alberts KA, Loohagen G, Einarsdottir H.Open tibial fractures: faster union after unreamed nailing than external fixation [J] .Injury, 1999, 30 (8): 519-523.
    5 曾炳芳,蒋垚,张长青,等.钢缆接骨术在骨不连治疗中的应用[J].中华创伤骨科杂志,2005,7(5):401-404.
    6 高洪,施慧鹏,罗从风,等.带关节外固定架在高能量Pilon骨折治疗中的应用[J].中华骨科杂志,2003,23(4):216-219.
    7 鲍琨,姜佩珠,于晓雯,等.创伤后肘关节僵硬的手术治疗[J].中华创伤骨科杂志,2003,5(4):308-311.
    8 王军强,胡磊,孙磊,等.计算机辅助带锁髓内钉远端锁定瞄准系统的设计与实验研究[J].中华外科杂志,2004,42(19):1165-1169.
    9 赵金忠,蒋垚.关节镜下缝线固定治疗后交叉韧带胫骨止点撕脱骨折[J].中华创伤杂志,2003,19(9):569-570.
    10 Haas N, Hauke C, Schutz M, et al.Treatment of diaphyseal fractures of the forearm using the Point Contact Fixator (PC-Fix): results of 387 fractures of a prospective muiticentricstudy (PC-Fix Ⅱ) [J] .Injury, 2001, 32 (2Suppl): B51-62.
    11 盛加根,岁从风,曾炳芳.掌侧锁定接骨板(LCP)治疗桡骨远端不稳定骨折[J].中华创伤骨科杂志,2005,7(7):657-659.
    12 罗从风,姜锐,曾炳芳.应用微创内固定系统治疗胫骨近端骨折[J].中华创伤骨科杂志,2005,7(12):1124-1127.
    13 黄广林,王海,刘流,等.体外冲击波治疗骨不愈的临床观察[J].中华手外科杂志,2005,21(3):149-150.
    14 Zamora-Navas P, Borras Verdera A, Antelo Lorenzo R, et al.Electrical stimulation of bone nonunion with the presence of a gap [J].Acta Orthop Belg, 1995, 61 ( 3 ): 169-176.
    15 Siwach RC, Sangwan SS, Singh R, et al.Role of percutaneous bone marrow grafting indelayed unions, non-unions and poor regenerates [J] .Indian J Med Sci, 2001, 55 (6): 326-336.
    16 Megas P, Panagiotopoulos E, Skriviliotakis S, et al.Intramedullary nailing in the treatment of aseptic tibial nonunion [J] .Injury, 2001, 32 (3): 233-239.
    17 Schmidmaier G, Wildemann B, Cromme F, et al.Bone morphogenetic protein-2 coating of titanium implants increases biomechanical strength and accelerates bone remodeling in fracture treatment: a biomechanical and histological study in rats [J ].Bone, 2002, 30 (6): 816-822.
    18 Atesalp AS, Komurcu M, Basbozkurt M, et al.The treatment of infected tibial nonunion with aggressive debridement and internal bone transport [J] .Mil Med, 2002, 167 (12): 978-981.
    19 范存义,汤林祥,吴文革,等.负载妥布霉素的硫酸钙治疗慢性骨髓炎及合并骨缺损的疗效评价[J].中华创伤骨科杂志,2005,7(10):954-956.
    20 张余,尹庆水,李兆麟,等.复合人工骨与自体骨移植近期融合效果比较研究[J].第一军医大学学报,2003,23(9):937-939.
    21 G(u|¨)ven M, Unay K, Cakici H, Ozturan EK, Ozkan NK.A new screw fixation technique for minimally invasive percutaneous plate osteosynthesis.Acta Orthop Belg.2008 Dec;74(6):846-850.
    22 Liu CZ, Wu LY, He XY, Wang C.Technology of minimally invasive perctancous plate osteosynthesis for the treatment of fractures of the distal tibia.Zhongguo Gu Shang. 2008 Mar;21(3):213-214. Chinese.
    23 Ji F, Tong D, Tang H, Ca(?) X, Zhang Q, Li J, Wang Q. Minimally invasive percutaneous plate osteosynthesis (MIPPO) technique applied in the treatment of humeral shaft distal fractures through a lateral approach. Int Orthop. 2008 Mar 4.
    24 Bahari S, Lenehan B, Khan H, McElwain JP. Minimally invasive percutaneous plate fixation of distal tibia fractures. Acta Orthop Belg.2007 Oct;73(5):635-640.
    25 Pallister I, Iorwerth A. Indirect reduction using a simple quadrilateral frame in the application of distal tibial LCP-technical tips. Injury. 2005 Sep;36(9):1138-1142.
    26 Krettek C, Gerich T, Miclau T. A minimally invasive medial approach for proximal tibial fractures. Injury. 2001 May;32 Suppl 1:SA4-13.
    27 Krettek C, Schandelmaier P, Richter M, Tscherne H. Distal femoral fractures.Swiss Surg. 1998;(6):263-278. Review. German.
    28 Farouk O, Krettek C, Miclau T, Schandelmaier P, Tscherne H. Effects of percutaneous and conventional plating techniques on the blood supply to the femur. Arch Orthop Trauma Surg. 1998;117(8):438-441.
    29 Hacihaliloglu I, Abugharbieh R, Hodgson A, Rohling R. Bone segmentation and fracture detection in ultrasound using 3D local phase features. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv. 2008;11(Pt l):287-295.
    30 Zwaag HM, Valstar ER, van der Molen AJ, Nelissen RG. Transepicondylar axis accuracy in computer assisted knee surgery: a comparison of the CT-based measured axis versus the CAS-determined axis. Comput Aided Surg. 2008 Jul;13(4):200-206.
    31 Zwaag HM, Wolterbeek R, Nelissen RG. Computer assisted orthopedic surgery; its influence on prosthesis size in total knee replacement. Knee. 2008 Aug;15(4):281-285.Epub 2008 May 2.
    32 Friederich N, Verdonk R. The use of computer-assisted orthopedic surgery for total knee replacement in daily practice: a survey among ESSKA/SGO-SSO members. Knee Surg Sports Traumatol Arthrosc. 2008 Jun;16(6):536-543. Epub 2008 Mar 26.
    33 Li W, Zhao J.Application of computer assisted orthopedic surgery in orthopedic trauma surgery.Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.2008 Jan;22(l):44-47.Chinese.
    34 Czwojdzinski A, Czubak J, Drapikowski P, Tyrakowski M.An attempt to use Computer Assisted Orthopedic Surgery in the diagnosis and treatment of hip deformations.Ortop Traumatol Rehabil.2006 Feb 28;8(1):1-11.
    35 Lee JA, Papadakis SA, Moon C, Zalavras CG.Tibial plateau fractures treated with the less invasive stabilisation system.Int Orthop.2007 Jun;31(3):415-8.Epub 2006 Jul 18.
    36 Boldin C, Fankhauser F, Hofer HP, Szyszkowitz R.Three-year results of proximal tibia fractures treated with the LISS.Clin Orthop Relat Res.2006 Apr;445:222-229.
    37 Jiang R, Luo CF, Wang MC, Yang TY, Zeng BE A comparative study of Less Invasive Stabilization System (LISS) fixation and two-incision double plating for the treatment of bicondylar tibial plateau fractures.Knee.2008 Mar;15(2):139-143.Epub 2008 Jan 24.
    38 Cao LF, Shang CD, Yang CG, Liao WL.Therapeutic effects on 19 cases of floating knee injury of type Ⅲ treated with LISS plates combined with intramedullary rods.Zhongguo Gu Shang.2008 Dec;21(12):940-941.
    39 Reynders P.Open acute segmental tibial fracture fixation using the Less Invasive Stabilisation System (LISS): Study of 23 consecutive cases.Injury.2009 Mar 12.[Epub ahead of print]
    40 Krettek C, Schandelmaier P, Richter M, Tscherne H.Distal femoral fractures.Swiss Surg.1998;(6):263-278.Review.German.
    41 Beck M, Gradl G, Gierer P, Rotter R, Witt M, Mittlmeier T.Treatment of complicated proximal segmental tibia fractures with the less invasive stabilization locking plate system.Unfallchirurg.2008 Jul;111(7):493-498.German.
    42 裴国献,任高宏.长管状骨骨折治疗进展[J].中华创伤骨科杂志,2002,4:10-14.
    43 邱贵兴.四肢长骨干骨折的治疗进展[J].中华创伤骨科杂志,2004,6:8-11.
    [1] Ruedi TP,Musphy WM,主编.王满宜,杨庆铭,等,主译.骨折治疗的原则[M].第1版.北京:华夏出版社,2003:49-499.
    [2] 罗从风,高洪.微创钢板固定法治疗胫骨平台骨折[J].中华创伤骨科杂志,2004,6:246-248.
    [3] Blaek R, Watson JT, Morandi M.Treatment of complex tibial plateau fraetures with the Ilizarov external fixation[J].J orthop Trauma, 1993, 7:167 - 168.
    [4] 王亦德,主编.骨与关节损伤[M].第3版.北京:人民卫生出版社,2005:1035-1036.
    [5] 曾炳芳,罗从风.重视胫骨近端关节骨折的治疗[J].中华创伤骨科杂志,2004,3:242.
    [6] Egol KA, Tejwani NC, Capla EL, etal.J orthopTrauma, 2005, 19 (7): 448-455.
    [7] 王力平.牵引下早期活动治疗胫骨平台骨折[J].中医正骨,2003,15 (10):28.
    [8] Waston JT, Confal C.Treatment of complex lateral platea fractures using Ilizarov techniques.Clin orthop, 1998, 353: 97-106.
    [9] 肖筱武,田心义.手法整复塑形央板固定配合跟骨牵引治疗胫骨平台骨折[J].中国骨伤,2004,6:357-358.
    [10] 薛荣涛.动态复合牵引配合手法撬拨复位治疗胫骨平台骨折[J].中国中医骨伤科杂志,2003,2:39-40.
    [11] 李彦武,赵正据,郑勇.V型胫骨平台骨折内固定治疗的非优分析[J].中国骨伤,2005,9:546-548.
    [12] 肖连平,屈振海.胫骨平台非手术和手术治疗的疗效比较[J].天津医药,1998,26:692-693.
    [13] Honkonen SE.Indications for surgical treatmen to tibial condylar fraetures.Clin Orthop, 1994, 302: 199-205.
    [14] Honkonen SE.Degenerative arthritis after tibial plateau fraetuers.J orthop Trauma, 1995, 9: 273-277.
    [15] 马安军,吴恙,朱铭兴,等.胫骨近端骨折152例手术治疗分析.临床医学,2006,7:37-38.
    [16] 杨卫兵,高雁卿.95°髁钢板治疗胫骨近端骨折.临床医学,1999,19,5:39-40.
    [17] 史源欣.应用DCP钢板及多根骨栓治疗复杂性胫骨近端骨折[J].苏州大学学报(医学版),2002,22:755.
    [18] 张宏亮.复杂胫骨平台骨折的手术治疗[J].中国骨与关节损伤杂志,2005,9:634-635.
    [19] 刘明,李佩佳,赵汉平,等.解剖钢板治疗胫骨关节周围骨折[J].中国矫形外科杂志,2003,16:1098-1099.
    [20] 张贵林,荣国威,吴新宝,等.胫骨平台骨折手术复位效果不佳的原因分析[J].中华骨科杂志,2000,20:219-221.
    [21] 方跃,池雷霆,王光林,等.复杂胫骨平台骨折手术入路的探讨[J].中国修复重建外科杂志,2006,7:695-698.
    [22] 沙漠,郭志民.微创双钢板治疗严重胫骨平台粉碎性骨折[J].东南国防医药,2005,2:119-120.
    [23] 罗从风,陈云丰,高洪,等.改良双钢板内固定治疗复杂性胫骨平台骨折[J].中华骨科杂志,2004,6:326-328.
    [24] 张伟.手术治疗复杂胫骨平台骨折[J].中国误诊学杂志,2004,4(3):339-340.
    [25] 刘岗,张进禄,周东升.胫骨平台骨折的治疗和术后并发症的预防[J].中国矫形外科杂志,2003,11(19):1309-1311.
    [26] 俞瑞传,阎作勤,刘栋.胫骨平台骨折疗效不佳原因与对策[J].同济大学学报:医学版,2003,24(3):229-231.
    [27] Ruedi TP, Sommer C.From the classical AO compression plate to the new internal fixator prineiple [J].Zhonghua Chuangshang GukE Zazhi (Chin J orthop Trauma), 2003, 5: 212-217.
    [28] 罗从风,高洪,杨发民,等.经皮微创钢板固定法治疗胫骨干骺端骨折[J].中华创伤骨科杂志,2004,6:66-68.
    [29] 王金武,高洪,王赤宇.双钢板结合经皮微创置入技术治疗 Schatzker Ⅴ、Ⅵ型胫骨平台骨折[J].中华创伤骨科杂志,2006,4:322-325.
    [30] 李群,张知博,王岚,等.微创钢板固定技术在胫骨近端粉碎性骨折中的应用[J].黑龙江医学,2005,1,8-10.
    [31] Goesling T, Frenk A, Appenzeller A, etal.LISS PLT: design, Mechanical and biomeehanical characteristies [J].Injury, 2003, 34 (Suppll): A36 - A15.
    [32] 周琦石,黄枫,何才勇,等.LISS固定系统治疗胫骨近端干骼端粉碎骨折初步临床报告.中华创伤骨科杂志,2005,6:592-593.
    [33] Cole PA, Zlowodzki M, Kregor P J.Treatment of Proximal tibia fractures using the invasive stabilization system: Surgical experience and early clinieal results in 77 fractures [J].J Orthop Trauma.2004, 18(18): 528-535.
    [34] Mueller, Kelly L MD, Karunakar, Madhav A MD.Biomeehnical Evaluation of a Unilateral Locked Screw Plate and Double Plating [J].J Orthop Trauma, 2004, 18(8): 546-551.
    [35] 罗从风,姜锐,曾炳芳.应用微创内固定系统治疗胫骨近端骨折[J].中华创伤骨科杂志,2005,12:1124-1126.
    [36] 费军,杨欣建,余洪俊,等.交锁髓内钉在股骨、胫骨干髓端骨折中的应用[J].中华创伤杂志,2003,1:37-39.
    [37] 孙晓亮,孙有声,刘志伟,等.交锁髓内钉治疗胫骨近端骨折(附46例报告)[J],骨与关节损伤杂志,2000,15,6,451-452.
    [38] 庞桂根,王宏川,忻大明,等.闭合复位有限固定治疗胫骨平台骨折[J].z中华骨科杂志,2003,12,723-726.
    [39] Pugh KJ, Wolinsky PR, Pierlkowski D.Comparative biomeehanica of hybrid external fixation [J].J Orthop Trauma.1999, 13: 418-425.
    [40]丁晨,吴春清,王悼.T型外固定架结合有限内固定治疗胫骨近干骺端开放粉 碎性骨折[J].中国骨与关节损伤杂志,2005,9:631-632.
    [41] 马勇,徐文华,徐屹,等.Hoffmannn外固定支架治疗胫骨近远端骨折的初步探讨[J].中华创伤骨科杂志,2004,12:1427-1428.
    [42] 张伯锋,李衡,张立兴,等.组合式外固定架治疗重度胫骨近端骨折初步报告[J].中华骨科杂志,2005,1:21-23.
    [43] 郑永发,马信龙,张强,等.混合式外固定与内固定治疗胫骨近端复骨折的比较[J].中华骨科杂志,2006,8:529-534.
    [44] Kumar A, White AP.Treatment of complex (Sehatzker type Ⅵ) fraetur of the tibial plateau with circular wire external fixation: retrospective case review [J].J orthop Trauma, 2000, 14: 339-340.
    [45] 卢卫平.“C”型臂下经皮撬拨复位内固定治疗胫骨平台骨折[J].实用西医结合临床,2006,4:15.
    [46] 赵永旭,杨冰,高辉,等.电透下闭合复位加压空心钉固定治疗胫骨平台骨折[J].中国医师进修杂志,2006,5:71.
    [47] 张世宏,吕宝民,李艳鹏,等.关节镜下经皮撬拔复位固定治疗胫骨平台骨折[J].局解手术学杂志,2006,4:270.
    [48] Scheerlinck T, Ng C S, Handelberg F, etal.Medium term results of percutaneous, arthroscopically-Assited osteosynthesis of frature of the tibial plateaul [J].J bone Joint Surg (Br), 1998, 80: 959-964.
    [49] 陈文钧,张鹏翼,奚文华,等.关节镜下撬拨复位经皮固定治疗胫骨平台骨折[J].中国微创外科杂志,2005,1:73-74.
    [50] Lobenhoffer P, Schulze M, Lattermann C.Close reduetion pereutaneou fixation of tibial plateau fracture: arthroscopic versus fluorosopic control of reduction[J].J Orthop Trauma, 1999, 13: 426-431.
    [51] Hernanz Gonz(?)lez Y, D(?)az Mart(?)n A, Jara S(?)nchez F, Resines Erasun C.Early results with the new internal fixator systems LCP and LISS: a prospective study.Acta Orthop Belg.2007 Feb;73(1):60-69.
    [52] Hansen M, Mehler D, Hessmann MH,Blum J, Rommens PM. Intramedullary stabilization of extraarticular proximal tibial fractures: a biomechanical comparison of intramedullary and extramedullaiy implants including a new proximal tibia nail (PTN). J Orthop Trauma. 2007 Nov-Dec;21(10):701-709.
    [53] Partenheimer A, Gosling T, Miiller M, Schirmer C, Kaab M, Matschke S, Ryf C,Renner N, Wiebking U, Krettek C. Management of bicondylar fractures of the tibial plateau with unilateral fixed-angle plate fixation. Unfallchirurg. 2007 Aug;11.
    [54] Phisitkul P, McKinley TO, Nepola JV, Marsh JL. Complications of locking plate fixation in complex proximal tibia injuries. J Orthop Trauma. 2007 Feb;21(2):83-91.
    [55] Xiong J, Wang D, Xiao J. Treatment of comminuted fractures at distal femur and proximal tibia with less invasive stabilization systems. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006 Jul;20(7):702-705.
    [56] Griitzner PA, Langlotz F, Zheng G,von Recum J, Keil C, Nolte LP, Wentzensen A,Wendl K. Computer-assisted LISS plate osteosynthesis of proximal tibia fractures:feasibility study and first clinical results. Comput Aided Surg. 2005 May;10(3):141-149.
    [57] Mueller CA, Eingartner C, Schreitmueller E, Rupp S, Goldhahn J, Schuler F,Weise K, Pfister U, Suedkamp NP. Primary stability of various forms of osteosynthesis in the treatment of fractures of the proximal tibia. J Bone Joint Surg fir. 2005 Mar;87(3):426-432.
    [58] Lee JA, Papadakis SA, Moon C, Zalavras CG.Tibial plateau fractures treated with the less invasive stabilisation system.Int Orthop. 2007 Jun;31(3):415-418. Epub 2006 Jul 18.
    [59] Boldin C, Fankhauser F, Hofer HP, Szyszkowitz R. Three-year results of proximal tibia fractures treated with the LISS. Clin Orthop Relat Res. 2006 Apr;445:222-229.
    [60] Jiang R,Luo CF, Wang MC, Yang TY, Zeng BF. A comparative study of Less Invasive Stabilization System (LISS) fixation and two-incision double plating for the treatment of bicondylar tibial plateau fractures. Knee. 2008 Mar; 15(2): 139-143. Epub 2008 Jan 24.
    [61] Beck M, Gradl G,Gierer P, Rotter R, Witt M, Mittlmeier T. Treatment of complicated proximal segmental tibia fractures with the less invasive stabilization locking plate system. Unfallchirurg. 2008 Jul;111(7):493-498. German.
    [62] Cao LF, Shang CD, Yang CG,Liao WL.Therapeutic effects on 19 cases of floating knee injury of type Ⅲ treated with LISS plates combined with intramedullary rods.Zhongguo Gu Shang. 2008 Dec;21(12):940-941.
    [63] Reynders P. Open acute segmental tibial fracture fixation using the Less Invasive Stabilisation System (LISS): Study of 23 consecutive cases. Injury. 2009 Mar 12. [Epub ahead of print]
    [64] Krettek C, Schandelmaier P, Richter M, Tscherne H. Distal femoral fractures. Swiss Surg. 1998;(6):263-278. Review. German.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700