用户名: 密码: 验证码:
可控性微动的时间效应影响骨折愈合的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究利用自行研制的微型外固定架,制备标准兔股骨骨折端微动模型,通过动态观察各时间点的X线表现,了解骨痂的大小以及生长情况,检测骨痂骨密度(BMD)和骨痂力学刚度、分析组织学和免疫组化结果,探讨不同时间开始可控性微动对骨折愈合的影响及机制。
     方法:本课题制备标准兔股骨骨折模型48只,随机平均分成四组(每组12只),第一组:持续固定组:兔股骨骨折模型建立后,用单边双杆外固定架固定,骨折断端间持续固定不诱导微动;第二组:即刻微动组:兔股骨骨折模型建立后,用单边双杆外固定架固定,骨折断端间即刻通过两连接杆之间的滑动而诱导0.5mm的微动。第三组:1周微动组:兔股骨骨折模型建立后,用单边双杆外固定架固定,骨折断端间于固定1周后通过两连接杆之间的滑动而诱导0.5mm的微动。第四组:2周微动组:兔股骨骨折模型建立后,用单边双杆外固定架固定,骨折断端间于固定2周后通过两连接杆之间的滑动而诱导0.5mm的微动。术后1、2、3、5周摄取股骨正侧位片,观察骨痂生长情况,并用外骨痂及骨折线模糊程度进行评分;术后5周分批处死动物,每组各3只,取出完整股骨干后,清除其周围软组织,纱布包裹,生理盐水浸透后,用双层塑料袋封存于-20。C冰箱内。检测时标本解冻后,通过8874型Instron生物力学试验机测量骨折断端处骨痂的最大载荷、挠度和刚度;在进行生物力学之前,测量骨痂的大小,并用GE Prodigy双能X线骨密度测定仪测定骨折处的骨密度。术后1、2、3周处死动物,在每时间点每组处死3只动物,以骨折断端为中心,切取1cm长标本,单面刀片将骨标本分割成0.5cm×0.2cm×0.2cm小块,生理盐水冲洗干净后,立即置入4%多聚甲醛中固定72小时,然后脱钙、包埋、制成石蜡切片,HE染色及其它染色观察骨痂的相关组织学形态并用免疫组织化学方法在蛋白质水平上检测骨痂中骨钙素和Ⅱ型胶原(osteocalcin (oc) and collagen type II(col2))的表达和分布。
     结果:
     一、X线观察:2周后即刻微动组骨折断端间的外骨痂较持续固定组明显增多,但骨折线模糊程度和桥接骨外骨痂形成却晚于持续固定组,而1周和2周微动组骨折断端间的外骨痂较持续固定组明显增多,骨折线模糊程度和桥接骨痂形成加快。
     按外骨痂和骨折线模糊程度半定量标准进行评分后统计学分析证实:2周时即刻微动组、1周微动组骨折处外骨痂及骨折线模糊程度评分较持续固定组和2周微动组明显增高(P<0.05),3周和5周时即刻微动组外骨痂及骨折线模糊程度评分明显低于持续固定组(P<0.05),1周和2周微动组外骨痂及骨折线模糊程度评分明显高于持续固定组(P<0.05)
     微动的时间效应对实验组动物骨折愈合有不同的影响,即刻微动组虽骨折处外骨痂多于其它各组,但骨折线模糊程度却明显慢于其它组;1周和2周骨折处外骨痂多于持续固定组而少于即刻微动组,但骨折线模糊程度却快于持续固定组和即刻微动组。
     二、骨痂大小的测量:5周时即刻微动组外骨痂前后径和内外径较持续固定组明显增加(P<0.05),而1周和2周微动组外骨痂前后径和内外径虽小于持续固定组却无统计学意义(P>0.05)。
     三、骨密度测量结果:5周时即刻微动组骨折处骨密度值及比率与持续固定组相比无显著差异(P>0.05),而1周和2周微动组骨折处骨密度值及比率高于正常水平,较持续固定组显著增高(P<0.05)。
     四、生物力学测量结果:术后5周骨痂的最大载荷1周微动组和2周微动组均显著高于持续固定组、即刻微动组(P<0.05);而即刻微动组其最大载荷则明显低于持续固定组(P<0.05)。术后5周骨痂的挠度各组间均无明显差异(P>0.05)。术后5周骨痂的刚度1周微动组显著高于其它各组(P<0.05),2周微动组其刚度则显著高于即刻微动组和持续固定组(P<0.05),而即刻微动组和持续固定组之间其刚度无明显差异(P>0.05)。
     五、组织学观察:
     术后一周:四组均见骨折断端间血肿机化,大量细胞聚集在骨折断端间及周围而形成纤维骨痂,可见间充质细胞、成纤维细胞、成骨细胞以及粒细胞、单核—巨噬细胞等炎性细胞和新生的毛细血管,骨折断端的骨膜外间充质细胞增殖、分化为软骨细胞与成骨细胞而形成新生骨小梁,在骨膜下成骨区域的边缘,成骨细胞增殖活跃,出现1-2层的成骨细胞,开始出现软骨细胞,分泌软骨基质,并且可见即刻微动组新生的软骨细胞明显多于其它组。各组均可见出现少量膜内骨性骨痂。
     术后两周:骨折断端间已有部分软骨骨痂连接。可见四组均在骨膜下形成的骨小梁与软骨细胞交界处出现钙化前缘,软骨内成骨开始,一周微动组可见较多的破骨细胞,成骨细胞更加活跃,出现3-4层的成骨细胞;而即刻微动组新生的骨小梁较少,软骨细胞成熟较慢,软骨基质较少,仅见少量的软骨内成骨。一周微动组已可见少许编织骨存在。
     术后三周:持续固定组和2周微动组相似,可见破骨细胞出现,纤维性骨痂内的软骨岛不断扩展,血管周围多为体积较小的圆形幼稚软骨细胞,软骨痂周边部的软骨细胞肥大,可见变性坏死的软骨细胞被原始骨小梁所取代。一周微动组仍有较多的破骨细胞,成骨细胞活跃,软骨内成骨活跃,可见较多的编织骨膜性骨痂延伸到骨折端,其内血管增生明显,部分骨痂已越过骨折间隙。而即刻微动组软骨细胞成熟较慢,软骨内骨化延迟,新生的骨小梁较稀疏,尚无骨痂越过骨折断端。
     六、免疫组织化学观察各组外骨痂中的骨钙素和Ⅱ型胶原染色强度随时间延长而均有不同程度的增加;术后一周时,即刻微动组骨钙素染色强度明显弱于1周微动组(P<0.05),而Ⅱ型胶原染色强度强于其余各组(P<0.05);术后二周时,即刻微动组骨钙素染色强度明显弱于持续固定组、1周微动组和2周微动组(P<0.05),但持续固定组Ⅱ型胶原染色强度明显弱于即刻微动组和1周微动组(P<0.05):术后三周时,即刻微动组骨钙素染色强度明显弱于持续固定组、1周微动组和2周微动组(P<0.05),而1周微动组骨钙素染色强度明显强于持续固定组(P<0.05),持续固定组Ⅱ型胶原染色强度明显弱于即刻微动组和1、2周微动组(P<0.05)。
     结论:
     1.微动的时机是影响骨折愈合的一项重要因素,不同时间点开始可控性微动有不同的时间效应,过早和过晚的微动均不利于骨折的愈合。
     2.即刻微动虽然有最多、最大的外骨痂,但其愈合时间、骨折处的骨密度和愈合组织的刚度却逊于持续固定组。
     3.1周和2周开始微动能明显增加骨折处的外骨痂量、骨折线模糊程度,加快桥接骨痂的形成。
     4.1周和2周开始微动能明显增加骨折处外骨痂的骨密度和愈合组织的刚度。
     5.1周和2周微动组可见成骨细胞活跃,甚至出现3-4层的成骨细胞,软骨细胞成熟、肥大以及矿化加快,使软骨内成骨过程加快。即刻微动组虽然早期刺激软骨细胞的形成,但软骨细胞的成熟、肥大和矿化则反而减慢。
     6.各组外骨痂中的骨钙素和Ⅱ型胶原染色强度随时间延长而有不同程度的增加;即刻微动组骨钙素染色强度明显减弱;术后三周时,1周微动组骨钙素染色强度明显强于持续固定组;持续固定组Ⅱ型胶原染色强度明显弱于微动各组。
     7.1周和2周开始微动除了使成骨细胞活跃外,还能增加破骨细胞数量和密度,明显加快软骨细胞的成熟和矿化;成骨细胞和破骨细胞耦合作用的加强促进了软骨痂向硬骨痂转化以及硬骨痂的重塑。
Objective:In this study, we prepared the experimental micromovement model of rabbit femur fracture using self-designed mini-external-fixator. and realize the size and formation of callus through dynamic observation of X-ray's performance on different time point, and detected the BMD and callus mechanical characteristics, and analyzed the histology and immunohistochemistry results in order to tried to explore the influence and mechanism of time effect of the controlled micromovement on fracture healing.
     Methods:we prepared48experimental micromovement model of rabbit femur fracture, which were divided randomly into four groups(with12rabbits for each group), all were fixed with unilateral external fixator connected with two bars. Group one:continuing immobilization group, There exists no micromovement between the fragment after the fracture model was made and fixed with unilateral two bars external fixator. Group two:instant micromovement group, the0.5mm micromovement was induced immediately by the sliding between the two connection bars. Group three:micromovement began after1week, the0.5mm micromovement was induced after1week's immobilization. Group four:micromovement began after2week, the0.5mm micromovement was induced after2week's immobilization. The AP and lateral view of the femur were obtained at1、2、3and5weeks postoperatively, and observe the callus formation according to the score of the external callus formation and the vagueness level of fracture line. After5weeks postoperatively, all animals were executed in batch, with3animals out of each group, the integrated femurs were obtained and draped with sterile bandage after all soft tissues removed, saturated with saline, sealed with double layer plastic envelope, contained in refrigerator under-20℃circumstances. The specimens were thawed and contained in saline for2hours, then the maximum load and rigidity of the callus were measured using8874-Instron biomechanical testing machine. The size of the callus was measured and the bone mineral density surrounding the fracture site were measured using GE Prodigy double-energy X-ray bone densitometry machine before the biomechanical test. Three animals were executed on every observation time point in each group after1,2and3weeks postoperatively,1cm long specimen was abtained, centering on the fracture site, then divided into pieces about0.5cm×0.2cm×O.2cm using single plane razor blade, washed up with saline and put in4%paraformaldehyde fixed for72hours. Paraffin sections were made after decalcification and embedding. Histology of callus was observed after HE and others staining and expression and distribution of osteocalcin(oc) and collagen type Ⅱ(col2) were analyzed with immunohistochemical methods.
     Results:
     1. X-ray observations:After2weeks, the external callus increased obviously in Group two comparing with Group one, while the vagueness level of fracture line and bridging callus formation occurred later than the latter. The external callus increased obviously in Group three and Group four than that in the Group one, while the vagueness level of fracture line and bridging callus formation accelerated in the former groups.
     Statistically analysis was carried out after semiquantitative score was done according to the external callus formation and the vagueness level of fracture line. Two weeks after experiment was done, the score of the external callus formation and the vagueness level of fracture line were increased obviously in Group two and Group three than that in Group one and Group four(P<0.05). While three and five weeks after experiment, the score of the external callus formation and the vagueness level of fracture line were obviously lower in Group two than that in Group one(P<0.05), on the other hand, the scores were much higher in Group three and Group four than that in Group one (P<0.05)
     The time effect of controlled micromovement had various influence on the fracture healing of experimental animals. Although the external callus in Group two was more than that in the other Groups, but the vagueness of fracture line was obviously lower than other Groups. While in Group three and Group four, the external callus was larger than that in Group one but less than that in Group two. but the vagueness of fracture line was faster in Group three and Group four than that in Group one and Group two.
     2. Measurement of callus size
     Five weeks after experiment was done, the anteroposterior diameter and the exterior and interior diameter of the callus were obviously larger in Group two than that in Group one(P<0.05),but the diameters in Group three and Group four were smaller than that in Group one, although there was not statistically significant.
     3. Measurement result of bone mineral density.
     There was no significant difference of bone mineral density value and proportion rate in tne fracture site between Group two and Group one(P>0.05).But the value and proportion rate in tne fracture site were notably higher in Group there and Group four comparing with that in Group one (P<0.05)
     4. Biomechanical measurement results.
     The maximum load of the callus five weeks postoperatively was significantly higher in Group three and Group four than that in Group one and Group two(P<0.05), while the maximum load of the callus was notably lower in Group two than that in Group one (P<0.05). The deflection five weeks postoperatively was no difference between groups (P>0.05).The callus rigidity five weeks postoperatively was significantly higher in Group three than that in the other groups (P<0.05), while the callus rigidity was higher in Group four than that in Group one and Group two(P<0.05), but there was no difference between group one and two (P>0.05)
     5. Histology observation.
     One week postoperatively:organization hematoma between the fracture sides could be seen in all four experimental groups. Mass of cell aggregated together around the fracture ends to form fibrous callus, lots of inflammatory cells like mesenchyme cell、fibroblast、osteoblast、granulocyte、mononuclear macrophage and neonatal capillaries could be seen. Mesenchyme cells beyond the periosteum proliferated, differentiated to chondrocytes and osteoblasts, then to form neonatal bone trabecula. Osteoblasts proliferated actively in the margin of ossification zone under the periosteum, appearing1-2layers of osteoblasts. Chondrocytes began to appear, secreting cartilage matrix. And the neonatal chondrocytes in Group two were more than that in the other groups obviously. A small quantity of intramembrane osseous callus could be seen in all four experimental groups.
     Two weeks postoperatively:Partial cartilaginous callus connected between the fracture ends. Calcification front appeared in the juncture of chondrocytes and bone trabeculas formed under periosteum in all four groups. Endochondral ossification began to start, lots of osteoclasts occurred in Group three, osteoblasts activated all the more, appearing3-4layers of osteoblasts. Less neonatal bone trabeculas appeared in Group two, chondrocytes matured slower with fewer endochondral ossification. A few of woven bone presented.
     Three weeks postoperatively:similar to Group Four, osteoclasts presented in Group One, cartilage islands in the fibrous callus expanded gradually, majority of the chondrocytes surrounding blood vessel were spherical naive one with small volume. Chondrocytes arounding cartilaginous callus got to hypertrophy, and degenerated necrotic chondrocytes were substituted with primitive bone trabeculas. Lots of osteoclasts were still to remain in Group three, osteoblasts and endochondral ossification still activated, much woven periosteous callus extended to the fracture ends, with apparent blood vessel hyperplasia, partial callus crossed the fracture gap. While in Group two, chondrocytes matured slowly, endochondral ossification delayed, with sparse neonatal bone trabeculas and no callus crossing the fracture gap.
     6. Immunohistochemistry observation.
     Different degree increase of Osteocalcin and Collagen II were observed along with time prolonged in each group. One week postoperatively, The stain degree of Osteocalcin in group two was distinctly weaker than group three (P<0.05),while the Stain degree of Collagen II was distinctly stronger than other three groups (P<0.05); Two week postoperatively, The stain degree of Osteocalcin in group two was distinctly weaker than other three groups (P<0.05),while the stain degree of Collagen II in group one was distinctly weaker than group two and three (P<0.05):Three week postoperatively. The stain degree of Osteocalcin in group two was distinctly weaker than other three groups (P<0.05), and the stain degree of Osteocalcin in group three was distinctly stronger than group one (P<0.05),while the stain degree of Collagen Ⅱ in group one was distinctly weaker than other three groups (P<0.05)
     Conclusion:
     1. Occasion of micromovement is an important factor to influence the fracture healing, different time effect related to different onset of controlled micromovement. Micromovement early or late is unfavourable to fracture healing.
     2. Instant micromovement group gets inferior results to persistent fixation group, including healing time, bone mineral density in the fracture site and callus rigidity,although it has maximal and largest external callus.
     3. Micromovement begins on one and two weeks can significantly raise external callus formation and vagueness level of fracture line, accelerating bridging callus formation.
     4. Micromovement begins on one and two weeks can significantly raise bone mineral density and rigidity of callus.
     5. Micromovement begins on one and two weeks activated the osteoblasts even makes3-4layers of osteoblasts appeared,It also accelerates the maturity> hypertrophy and mineralization of chondrocyte,resulting in the stimulation of the fracture healing through endochondral ossification. Though the instant micromovement stimulate the formation of chondrocyte in the early stage,but slower the process of the maturity and hypertrophy and mineralization of chondrocyte
     6. Different degree increase of Osteocalcin and Collagen Ⅱ were observed along with time prolonged in each group.In instant micromovement group, The stain degree of Osteocalcin was distinctly weaker; Three week postoperatively, The stain degree of Osteocalcin in one week postoperative micromovement group was distinctly stronger than continuing immobilization group, while the stain degree of Collagen Ⅱ in continuing immobilization group was distinctly weaker than other three groups.
     7. Except that the micromovement begins on one and two weeks activated the osteoblasts, it seemingly can improve the amount and density of osteoclasts in callus to stimulate the maturity and mineralization of chondrocyte; The strengthening coupling of osteoblasts and osteoclasts can promote the transformation from soft callus to hard callus and the remolding of hard callus.
引文
1、Thomas P Ruedi, Richard E Buckley, Christopher G Moran著,王满宜,曾炳芳主译,骨折治疗的A0原则;2007,9页
    2、Praemer, A., Furner, S., Rice, D. P.,1992. Musculoskeletal Conditions in the United States (The American Academy of Orthopaedic Surgeons (Eds.)), pp.85-124. American Academy of Orthopaedic Surgeons, Park Ridge, IL.
    3、Coles, C. P. and Gross, M. (2000). "Closed tibial shaft fractures:Management and treatment complications. A review of the prospective literature." Can J Surg 43(4):256-262.
    4、Lynch, J. R., Taitsman, L. A., Barei, D. P. and Nork, S. E. (2008). "Femoral nonunion:Risk factors and treatment options." J Am Acad Orthop Sur 16(2):88-97.
    5、Gruber, R., Koch, H., Doll, B. A., Tegtmeier, F., Einhorn, T. A. and Hollinger, J.0. (2006). "Fracture healing in the elderly patient. " Exp Gerontol 41(11):1080-1093.
    6、Jakob, F., Seefried, L., Ebert, R., Eulert, J., Wolf, E., Schieker, M., Bocker, W., Mutschler, W., Amling, M., Pogoda, P., Schinke, T., Liedert, A., Blakytny, R., Ignatius, A. and Claes, L. (2007). "Fracture healing in osteoporosis." Osteologie 16(2):71-84.
    7、Willenegger, H., Perren, S. M. and Schenk, R. (1971). "Primary and Secondary Healing of Bone Fractures." Chirurg 42(6):241-8.
    8、Ruedi,T.P., Buckley,R.E., and Moran,C. G.2007. AO Principles of Fracture Management. AO Publishing-Thieme Verlag.
    9、Rahn, B. A., Gallinaro, P., Baltensperger, A., Perren, S. M.,1971. Primary bone healing. An experimental study in the rabbit. J Bone Joint Surg Am 53,783-786.
    10、Perren, S.M.,1979. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop 175-196.
    11、Perren, S. M.,2002. Evolution of the internal fixation of long bone fractures. Journal of bone and bone joint surgery (Br) 84,1093-1110.
    12、Lindholm RV, Lindholm TS. Mast cells in endosteal and periosteal bone repair. A quantitative study on callus tissue of healing fractures in rabbits.Acta Orthop Scand.1970; 41 (2):129-33.
    13、Wolf, J.1892. Das Gesetz der Transformation der Knochen. Berlin:Verlag von August, Translated as "The law of bone remodelling". Springer-Verlag, Berlin.
    14、Cornell CN, Lane JM, Newest factors in fracture healing, Clin Orthop Relat Res. 1992 Apr;(277):297-311
    15、Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures[J]. J Bone Joint Surg.1985,67(4):650-655.
    16、Kenwright J, Goodship AE. Controlled mechanical stimulation in the treatment of tibial fractures[J]. Clin Orthop Relat Res.1989,241:36-47.
    17、Reichert, J. C., Saifzadeha, S., Wullschleger, M. E., Epari, D. R., Schutz, M. A., Duda, G. N., Schell, H., van Griensven, M., Redl, H. and Hutmacher, D. W. (2009). "The challenge of establishing preclinical models for segmental bone defect research." Biomaterials 30(12):2149-2163.
    18、McKibbin B. Biological considerations in osteosynthesis. Chirurgie. 1989;115(9):683-6.
    19、Chao EY, Inoue N, Elias JJ, Aro H. Enhancement of fracture healing by mechanical and surgical intervention. Clin Orthop Relat Res.1998 Oct;(355 Suppl):S163-78.
    20、Kenwright, J., Richardson, J. B., Cunningham, J. L., White, S. H., Goodship, A. E.. Adams, M. A., Magnussen, P. A., Newman, J. H.,1991. Axial movement and tibial fractures. A controlled randomized trial of treatment. J Bone Joint Surg Br 73,654-659.
    21、Goodship AE, Cunningham JL, Kenwright J. Strain rate and timing of stimulation in mechanical modulation of fracture healing[J]. Cl in Orthop Relat Res.1998, Oct(355 Suppl):S 105-115.
    22、Augat P, Merk J, Ignatius A, et al. Early full weight bearing with flexible fixation delays fracture healing[J]. Clin Orthop,1996,328:194-202.
    23、Augat P, Schorlemmer S. The role of cortical bone and its microstructure in bone strength[J]. Age Ageing.2006,35(Suppl 2):ii27-ii31.
    24、Einhorn TA. Current concepts review:Enhancement of fracture-healing[J]. Bone Joint Surg,1995,75A:940-956
    25、Rahn, B. A.,1987. Direct and indirect bone healing after operative fracture treatment. Otolaryngol Clin North Am 20,425-440.
    26、Perren, S. M. and Claes, L.2000. Biology and biomechanics in fracture management. In AO principles of Fracture Fanagement (Edited by Ruedi, T. P. and Murphy, W. M.) Pp. 7-32. Thieme, Stuttgart.
    27、Green E, Lubahn JD, Evans J. Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv 2005; 14 (2):64-72.
    28、Rand, J. A., An, K. N., Chao, E. Y., Kelly, P. J.,1981. A comparison of the effect of open intramedullary nailing and compression-plate fixation on fracture-site blood flow and fracture union. J Bone Joint Surg Am 63,427-442.
    29、Brighton, C. T.,1984. The biology of fracture repair. Instr Course Lect 33,60-82.
    30、Wu, J. J., Shyr, H. S., Chao, E. Y., Kelly, P. J.,1984. Comparison of osteotomy healing under external fixation devices with different stiffness characteristics. J Bone Joint Surg Am 66,1258-1264.
    31、Aro, H.T., Wahner, H. T., Chao, E. Y.,1991. Healing patterns of transverse and oblique osteotomies in the canine tibia under external fixation. J Orthop Trauma 5,351-364.
    32、Claes,L., Augat, P., Suger, G., Wilke, H. J.,1997. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15,577-584.
    33、Claes, L.E., Heigele, C. A., Neidlinger-Wilke, C., Kaspar, D., Seidl.W., Margevicius, K. J., Augat, P.,1998. Effects of mechanical factors on the fracture healing process. Clin Orthop S132-S147.
    34、Park, S. H.,O'Connor, K., McKellop,H., Sarmiento, A.,1998. The influence of active shear or compressive motion on fracture-healing. J Bone Joint Surg Am 80,868-878.
    35、Augat, P., Burger, J., Schorlemmer, S., Henke, T., Peraus, M., Claes, L.,2003. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res 21,1011-1017.
    36、Bishop, N. E., van Rhijn, M., Tami, I., Corvelei jn, R., Schneider, E., Ito, K.,2006. Shear does not necessarily inhibit bone healing. Clin Orthop Relat Res 443,307-314.
    37、Augat,P., Simon,U., Liedert,A., Claes, L.,2005. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int 16, S36-S43.
    38、Schell, H., Epari, D. R., Kassi, J. P., Bragulla, H., Bail, H. J., and Duda, G. N. The course of bone healing is influenced by the initial shear fixation stability. J. Orthop. Res.,2005,23(5),1022-1028.
    39、Perren, S.M., Cordey, J.,1980. The concept of inter fragmentary strain. Current Concepts of Internal Fixation of Fractures 63-77.
    40、De Bastiani G, Aldegheri R, Renzi Brivio L. The treatment of fractures with a dynamic axial fixator. J Bone Joint Surg Br.1984 Aug;66(4):538-45
    41、Jone W. Wolf, Augustus A. White, Manohar M. Panjabi. et al. Comparison of cyclic loading versus constant compression in the treatment of long bone fracture in rabbits. J Bone Joint Surg Am 1981:63(5):805-810
    42、Heller, M.O., Duda, G. N., Ehrig, R. M., Schell, H., Seebeck, P., and Taylor, W. R. Musculoskeletal loading in the sheep hind limb:Mechanical boundary conditions for healing. Material-wissenshaft und Werkstofftech,2005,36(12),775-780.
    43、乔林,侯树勋等,微动对骨折端骨密度的影响。中国骨伤(China J Orthop & Trauma), 2007,20(9):603-604
    44、Yamagishi, M., Yoshimura, Y.,1955. The biomechanics of fracture healing. J Bone Joint Surg Am 37-A,1035-1068.
    45、张先龙,曾炳芳,微动对骨折愈合影响的研究进展。中华外科杂志1998年5月第36卷第5期,281-283
    46、Noordeen M HH, Shergill N S, Tuite JD, et al. Cyclical micromovement and fracture healing. J Bone Joint Surg (Br),1995,77:645-649.
    47、Kershaw CJ, Cunningham JL, Kenwright J. Tibial external fixation, weight bearing and fracture movement. Clin Orthop,1993,293:28-36.
    48、何康,冯有辉,罗红梅.不同厂家的戊巴比妥钠对大鼠和家兔麻醉效果的比较.实验动物科学,2008,25(2):12-14.
    49、王钜,陈振文.现代医学实验动物学概论.北京:中国协和医科大学出版社.2004:219.
    1、McKibbin, B. (1978). "Biology of Fracture Healing in Long Bones." J Bone Joint Surg Br 60(2):150-162.
    2、Shapiro, F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater 2008;15:53-76.
    3、E Y.S. Chao and N Inoue, Biophysical stimulation of bone fracture repair, Regeneration and Remodeling. Eur Cell Mater 2003;06:72-85
    4、Rand, J. A., An, K. N., Chao, E. Y., Kelly, P. J.,1981. A comparison of the effect of open intramedullary nailing and compression-plate fixation on fracture-site blood flow and fracture union. J Bone Joint Surg Am 63,427-442.
    5、Brighton, C. T.,1984. The biology of fracture repair. Instr Course Lect 33,60-82.
    6、Wu, J. J., Shyr, H. S., Chao, E. Y., Kelly, P. J.,1984. Comparison of osteotomy healing under external fixation devices with different stiffness characteristics. J Bone Joint Surg Am 66,1258-1264.
    7、Aro,H. T., Wahner, H. T., Chao, E.Y.,1991. Healing patterns of transverse and oblique osteotomies in the canine tibia under external fixation. J Orthop Trauma 5,351-364.
    8、Claes, L., Augat, P., Suger, G., Wilke,H. J.,1997. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15,577-584.
    9、Claes, L.E., Heigele, C. A., Neidlinger-Wilke,C., Kaspar,D., Seidl,W. Margevicius, K. J., Augat, P.,1998. Effects of mechanical factors on the fracture healing process. Clin Orthop S132-S147.
    10、Vladimir Andrianov, Aleks Lenzner, Peeter Roosaar, Andres Arend& Marina Aunapuu, 2007. Rod-Through-Plate Fixator for Long Bone Fractures:A Morphological Study on Rabbits. Scand. J. Lab. Anim. Sci.2007 Vol.34 No.3,1-7.
    11、王钜,陈振文.现代医学实验动物学概论.北京:中国协和医科大学出版社.2004:219。
    12、M. Mullender, A. J. El Haj, Y. Yang, M. A. van Duin, E. H. Burger, J. Klein-Nulend. 2004. Mechanotransduction of bone cells in vitro:mechanobiology of bone tissue。 Med. Biol. Eng. Comput.,2004,42,14-21
    13、Goodship, AE and Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br 1985;674:650-655.
    14、Cullinane, DM, Salisbury KT, Alkhiary Y, Eisenberg S, Gerstenfeld L, and Einhorn TA. Effects of the local mechanical environment on vertebrate tissue differentiation during repair:does repair recapitulate development? J Exp Biol 2003;206Pt 14:2459-2471.
    15、Klein, P, Schell H, Streitparth F, Heller M, Kassi JP, Kandziora F, etal. The initial phase of fracture healing is pecifically sensitive to mechanical conditions.J Orthop Res 2003:214:662-669
    16、Epari, DR, Taylor WR, Heller MO, and Duda GN. Mechanical conditions in the initial phase of bone healing. Clin Biomech (Bristol, Avon) 2006:216:646-655.
    17、Epari, DR, Schell H, Bail HJ, and Duda GN. Instability prolongs the chondral phase during bone healing in sheep. Bone 2006;386:864-870.
    18、Epari, DR, Kassi JP, Schell H, and Duda GN. Timely fracture-healing requires optimization of axial fixation stability. J Bone Joint Surg Am 2007;897:1575-1585
    19、Schell, H, Thompson MS, Bail HJ, Hoffmann JE, Schill A, Duda GN, et al. Mechanical induction of critically delayed bone healing in sheep:radiological and biomechanical results. J Biomech 2008:4114:3066-3072.
    20、Claes, L, Veeser A, Gockelmann M, Simon U, and Ignatius A. A novel model to study metaphyseal bone healing under defined biomechanical conditions. ArchOrthopTrauma Surg 2009:1297:923-928.
    21、Claes, L, Augat P, Schorlemmer S, Konrads C, Ignatius A, and Ehrnthaller C. Temporary distraction and compression of a diaphyseal osteotomy accelerates bone healing. J Orthop Res 2008:266:772-777.
    22、Schell H, Lienau J, Epari DR, Seebeck P, Exner C, Muchow S, et al. Osteoclastic activity begins early and increases over the course of bone healing. Bone 2006 38: 547-554
    23、Cruess RL, Dumont J. Fracture healing. Can J Surg 1975:18:403-13.
    24、Horowitz MC, Xi Y, Wilson K, Kacena MA. Control of osteoclastogenesis and bone resorption by members of the TNF family of receptors and ligands. Cytokine Growth Factor Rev 2001:12:9-18
    25、Martin TJ, Ng KW. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem 1994:56:357-66.
    26、Wiktor-Jedrzejczak W, Bartocci A, Ferrante Jr AW, Ahmed-Ansari A, Sell KW, Pollard JW, et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 1990:87:4828-32.
    27、Viereck V, Grundker C, Blaschke S, Frosch KH, Schoppet M, Emons G, et al. Atorvastatin stimulates the production of osteoprotegerin by human osteoblasts. J Cell Biochem 2005:96:1244-53.
    28、Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Yano K, et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 1998; 253:395-400
    29、Pederson L, Ruan M, Westendorf J J, Khosla S, Oursler M J. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA.2008 Dec 30;105(52):20764-9.
    30、Einhorn, T. A. (1998). "The cell and molecular biology of fracture healing. Clin Orthop Relat R 355:S7-S21.
    31、Thompson,Z., Miclau, T., Hu, D., Helms, J.A.,2002. A model for intr amembranous ossification during fracture healing. J Orthop Res 20,1091-1098.
    32、Rahn BA. Bone healing:histologic and physiologic concepts. In:FackelmanGE, editor. Bone in clinical orthopedics. Stuttgart, NY:Thieme; 2002. p.287-326.
    33、Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury 2005;36 (12):1392-404
    34、Mark, H., Nilsson, A., Nannmark, U., Rydevik, B.,2004a. Effects of fracture fixation stability on ossification in healing fractur es. Clinical Orthopaedics and Related Research.419,245-50.
    35、Epari, D. R. (2006). The Mechanobiology of Diaphyseal Secondary Bone Healing-Chapter 5, TU Berlin.
    36、Basset, C. A., Hermann, I.,1961. Influence of oxygen concentration and mechanical factors on differentiation of connective tissue in vivo. Nature.190, 460-461.
    37、Dallas SL, Zaman G, PeadMJ, et al. Early strain-related changes in culatured embryonic chick tibio tarsi parallel those associated with adaptive modeling in vivo. J Bone Min Res,1993,8:251-259.
    38、Lean JM, Jagger CJ, Chambers TJ, et al. Increased insulin-like growth factor-1 mRNA expression in osteocytes precedes the increase in bone formation in response to mechanical stimulation. J Bone Min Res,1994,9:142-148.
    39、Mikuni-Takagaki Y, Suzuki Y, Kawase Y, et al. Distinct response of different populations of bone cells to mechanical stress. Endocrinology,1996,137:2028-2037.
    40、Fitzsimmons RJ,Baylink DJ. Growth factors and electromagnetic fields in bone.Clinics in Plastic Surgery,1994,21:401-406.
    41、Goodship A E, Norrodin N, Francis M. The stimulation of prostaglandin synthesis by micromovement in fracture healing. Micromovement in Orthopaedics. London:Oxford, 1992.31-34
    42、Dekel S, Lenthall G, Francis MJ. Release of prostaglandins from bone and muscle after fracture. J Bone Joint Surg(Br),1981,63:185-189
    43、Ai-Aql ZS, Alagl AS, Graves DT. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 2008;87(2):107-18.
    44、Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: which are the important molecules? Injury 2007;38(1):S11-25.
    45、Kanczler JM, Oreffo R0. Osteogenesis and angiogenesis:the potential for engineering bone. Eur Cell Mater 2008:15:100-14.
    46、Wallace AL, Draper ERC, Strachen RK, et al. The vascular response to micromovement in experimental fracture. Micromovement in orthopaedics. London: Oxford,1992.40-44.
    47、Diaz-F, lorers L, Gutierrez R, Lopez-A lonso A, et al. Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop,1992, 275:280-287
    48、何康,冯有辉,罗红梅.不同厂家的戊巴比妥钠对大鼠和家兔麻醉效果的比较.实验动物科学,2008,25(2):12-14.
    1、Marks, S. C. and Hermey, D. C.1996. The structure and development of bone. In Principles of Bone Biology (Edited by Bilezikan, J. P., Raisz, L. G., and Rodan, G. A.) Pp.3-14. Academic Press, San Diego
    2、Peterlik, H., Roschger, P., Klaushofer, K. and Fratzl, P. (2006)."From brittle to ductile fracture of bone." Nat Mater 5(1):52-55.
    3、Buckwalter, J. A., Glimcher, M. J., Cooper, R. R., Recker, R.,1996a. Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. Instr Course Lect 45, 371-386.
    4、Rossert,J. and Crombrugghe,B.1996. Type I Collagen; Structure, Synthesis and Regulation. In Principles of Bone Biology (Edited by Bilezikan, J. P., Raisz, L. G. and Rodan, G. A.) Pp.127-142. Academic Press, San Diego.
    5、Van der, R. M., Garrone, R.,1991. Collagen family of proteins. FASEB J 5,2814-2823.
    6、Buckwalter, J. A., Glimcher, M. J., Cooper, R. R., Recker, R.,1996b. Bone biology. II: Formation, form, modeling, remodeling, and regulation of cell function. Instr Course Lect 45,387-399.
    7、Owen,M.,1970. The origin of bone cells. Int Rev Cytol 28,213-238.
    8、Wolf, J.1892. Das Gesetz der Transformation der Knochen. Berlin:Verlag von August, Translated as "The law of bone remodelling". Springer-Verlag, Berlin.
    9、Simmons, D. J.,1985. Fracture heal ing-perspectives. Cl in Orthop Relat Res 100-113.
    10、Praemer, A., Furner, S., and Rice D. P.1992. Medical implants and major joint procedures, in Musculoskeletal Conditions in the United States. American Academy of Orthopaedic Surgeons, Rosemont, IL.
    11、Praemer, A., Furner,S., and Rice,D. P.1999. Musculoskeletal Conditions in the United States. American Academy of Orthopaedic Surgeons, Rosemont, IL.
    12、Coles, C. P. and Gross, M. (2000). "Closed tibial shaft fractures:Management and treatment complications. A review of the prospective literature." Can J Surg 43(4):256-262.
    13、Lynch, J. R., Taitsman, L. A., Barei, D. P. and Nork, S. E. (2008). "Femoral nonunion:Risk factors and treatment options. J Am Acad Orthop Sur 16(2):88-97.
    14、Gruber, R., Koch, H., Doll, B. A., Tegtmeier, F., Einhorn, T. A. and Hollinger, J.0. (2006). "Fracture healing in the elderly patient." Exp Gerontol 41(11): 1080-1093.
    15、Jakob, F., Seefried, L., Ebert, R., Eulert, J., Wolf, E., Schieker, M., Bocker, W., Mutschler, W., Amling, M., Pogoda, P., Schinke, T., Liedert, A., Blakytny, R. Ignatius, A. and Claes, L. (2007). "Fracture healing in osteoporosis. " Osteologie 16(2):71-84.
    16、Ruedi, T. P., Buckley,R. E., and Moran, C.G.2007. AO Principles of Fracture Management. AO Publishing-Thieme Verlag.
    17、Willenegger,H., Perren, S. M., Schenk,R.,1971. [Primary and secondary healing of bone fractures]. Chirurg 42,241-252.
    18、Rahn, B. A., Gallinaro, P., Baltensperger, A., Perren,S.M.,1971. Primary bone healing. An experimental study in the rabbit. J Bone Joint Surg Am 53,783-786.
    19、Perren, S.M.,1979. Physical and biological aspects of fracture healing with special reference to internal fixation. Clinical orthopaedics 138,175-196.
    20、Perren, S. M.,2002. Evolution of the internal fixation of long bone fractures. Journal of bone and bone joint surgery (Br) 84,1093-1110.
    21、Green E, Lubahn JD, Evans J. Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv 2005;14(2):64-72.
    22、Fratzl, P. and Weinkamer, R. (2007). "Nature's hierarchical materials." Prog Mater Sci 52(8):1263-1334.
    23、Vincent, J. F. V. (1990). Structural biomaterials. Princeton, Princeton University Press.
    24、Cruess, R. L., Dumont, J.,1975. Fracture healing. Canadian Journal of Surgery. 18,403-13.
    25、Sfeir, C., Ho, C., Doll, B. A., Azari, K. and Hollinger, J.O. (2005). Fracture Repair. Bone Regeneration and Repair. J. R. Lieberman and G. E. Friedlaender. Totowa, Humana Press Inc.:21-43.
    26、Cruess,R. L. and Dumont,J.1985. Healing of bone. In Textbook of Small Animal Orthopaedics (Edited by Newton, C. D. and Nunamaker, D. M.) International Veterinary Information Service, Ithaca, NY.
    27、Frost, H.M.,1989. The biology of fracture healing. An overview for clinicians. Part I. Clin Orthop 283-293.
    28、Madison, M. and Martin, R. B. (1993). Fracture healing. Operative Orthopaedics. M. W. Chapman. Philadelphia, Lippincott:pp.221-228.
    29、Bolander, M. E. (1992). "Regulation of Fracture Repair by Growth-Factors." P Soc Exp Biol Med 200(2):165-170.
    30、Schmidt-Bleek, K., Schell, H., Kolar, P., Pfaff, M., Perka, C., Buttgereit, F., Duda, G. and Lienau, J. (2009). "Cellular Composition of the Initial Fracture Hematoma Compared to a Muscle Hematoma:A Study in Sheep." J Orthop Res 27(9): 1147-1151.
    31、Hollinger, J. and Wong, M. E. K. (1996). "The integrated processes of hard tissue regeneration with special emphasis on fracture healing. " Oral Surg Oral Med 0 82(6): 594-606.
    32、Rhinelander, F. W. (1968). "Normal Microcirculation of Diaphyseal Cortex and Its Response to Fracture. " J Bone Joint Surg Am A 50(4):784-&.
    33、Glowacki, J. (1998). "Angiogenesis in fracture repair. " Clin Orthop Relat R(355): S82-S89.
    34、Bostrom, M. P. G. (1998). "Expression of bone morphogenetic proteins in fracture healing." Clin Orthop Relat R(355):S116-S123.
    35、Yoo, J. U., Barthel, T. S., Nishimura, K., Solchaga, L., Caplan, A. I., Goldberg, V. M. and Johnstone, B. (1998). "The chondrogenic potential of human bonemarrow-derived mesenchymal progenitor cells." J Bone Joint Surg Am 80A(12):1745-1757.
    36、Gerstenfeld, L. C., Cullinane, D. M., Barnes, G. L., Graves, D. T. and Einhorn, T. A. (2003). "Fracture healing as a post-natal developmental process:Molecular, spatial, and temporal aspects of its regulation." J Cell Biochem 88(5):873-884.
    37、Malizos, K. N. and Papatheodorou, L. K. (2005). "The heating potential of the periosteum Molecular aspects." Injury 36:13-19.
    38、Colnot, C. (2009). "Skeletal Cell Fate Decisions Within Periosteum and Bone Marrow During Bone Regeneration." J Bone Miner Res 24(2):274-282.
    39、McKibbin, B. (1978). "Biology of Fracture Healing in Long Bones. " J Bone Joint Surg Br 60(2):150-162.
    40、Einhorn, T. A. (1998). "The cell and molecular biology of fracture healing." Clin Orthop Relat R 355:S7-S21.
    41、Liu, Y., Manjubala, I., Roschger, P., Epari, D. R., Schell, H., Duda, G. N. and Fratzl, P. (2009b). "Size and habit of mineral particles in bone and mineralized callus during sheep bone healing." J Bone Miner Res under review.
    42、Manjubala, I., Liu, Y., Epari, D. R., Roschger, P., Schell, H., Fratzl, P. and Duda, G. N. (2009). "Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing." Bone 45(2):185-192.
    43、Vetter, A., Epari, D. R., Seidel, R., Schell, H., Fratzl, P., Duda, G. N. and Weinkamer, R. (2010a). "Temporal tissue patterns in bone healing of sheep. " J Orthop Res DOI 10.1002/jor.21175.
    44、Brighton, C. T. and Hunt, R. M. (1986). "Histochemical-Localization of Calcium in the Fracture Callus with Potassium Pyroantimonate-Possible Role of Chondrocyte Mitochondrial Calcium in Callus Calcification." J Bone Joint Surg Am 68A(5): 703-715.
    45、Webb, J. C. J. and Tricker, J. (2000). "A review of fracture healing." Curr Orthopaed 14(6):457-463.
    46、Ferguson, C., Alpern, E., Miclau, T., Helms, J. A.,1999. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87,57-66.
    47、Mark, H., Penington, A., Nannmark, U., Morrison, W., Messina, A.,2004. Microvascular invasion during endochondral ossification in experimental fractures in rats. Bone 35,535-542.
    48、Schell, H., Lienau, J., Epari, D. R., Seebeck, P., Exner, C., Muchow, S., Bragulla, H., Haas, N. P. and Duda, G. N. (2006). "Osteoclastic activity begins early and increases over the course of bone healing." Bone 38(4):547-554.
    49、Marsh, D. R., Li, G.,1999. The biology of fracture healing:optimising outcome. Br Med Bull.55,856-869.
    50、Rhinelander, F. W.,1968. The normal microcirculation of diaphyseal cortex and its response to fracture. J Bone Joint Surg Am.50,784-800.
    51、Bakker, A., Klein-Nulend, J., Burger, E.,2004. Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem Biophys Res Commun.320,1163-8.
    52、Wendeberg, B. (1961). "Mineral metabolism of fractures of the tibia in man studied with external counting of strontium." Acta Orthopaedics Scandinavica Suppl. 52(1-79).
    53、Gerstenfeld LC, Alkhiary YM, Krall EA. Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 2006;54(11):1215-28.
    54、Pape HC, Giannoudis PV, Grimme K, et al. Effects of intramedullary femoral fracture fixation:what is the impact of experimental studies in regards to the clinical knowledge? Shock 2002;18(4):291-300.
    55、Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation:choosing a new balance between stability and biology. J Bone Joint Surg Br 2002;84(8):1093-110.
    56、Gerstenfeld LC, Cullinane DM, Barnes GL. Fracture healing as a post-natal developmental process:molecular, spatial, and temporal aspects of its regulation, J Cell Biochem 2003;88 (5):873-84.
    57、Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 2002;17(3):513-20.
    58、Kon T, Cho TJ, Aizawa T, et al. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related pro inflammatory cytokines during fracture healing,. J Bone Miner Res 2001;16(6):1004-14.
    59、Cho HH, Kyoung KM, Seo MJ, et al. Overexpression of CXCR4 increases migration and proliferation of human adipose tissue stromal cells. Stem Cell Dev 2006,15 (6):853-64.
    60、Balga R, Wetterwald A, Portenier J, et al. Tumor necrosis factor-alpha: alternative role as an inhibitor of osteoclast formation in vitro. Bone 2006:39(2):325-35.
    61、Lee SK, Lorenzo J. Cytokines regulating osteoclast formation and function. Curr Opin Rheumatol 2006;18(4):411-8.
    62、Yang X, Ricciardi BF, Hernandez-Soria A, et al. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 2007;41(6):928-36.
    63、Granero-Molto F, Weis JA, Miga MI. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cell 2009;27(8):1887-98.
    64、Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 2009;60(3):813-23.
    65、Bais MV, Wigner N, Young M, et al. BMP2 is essential for post natal osteogenesis but not for recruitment of osteogenic stem cells. Bone 2009;45(2):254-66.
    66、Tsuji K, Bandyopadhyay A, Harfe BD, et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 2006:38(12):1424-9.
    67、Rahn BA. Bone healing:histologic and physiologic concepts. In:FackelmanGE, editor. Bone in clinical orthopedics. Stuttgart, NY:Thieme; 2002. p.287-326.
    68、Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury 2005;36(12):1392-404
    69、Marsell R, Einhorn TA. The role of endogenous bone morphogenetic proteins in normal skeletal repair. Injury 2009;40 (3):S4-7.
    70、Ai-Aql ZS, Alagl AS, Graves DT. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 2008;87(2):107-18.
    71、Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: which are the important molecules? Injury 2007;38 (1):S11-25.
    72、Lehmann W, Edgar CM, Wang K. Tumor necrosis factor alpha (TNF-alpha) coordinately regulates the expression of specific matrix metalloproteinases (MMPS) and angiogenic factors during fracture healing. Bone 2005; 36 (2):300-10.
    73、Keramaris NC, Calori GM, Nikolaou VS. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 2008;39(2):S45-57.
    74、Kanczler JM, Oreffo R0. Osteogenesis and angiogenesis:the potential for engineering bone. Eur Cell Mater 2008;15:100-14
    75、Breur GJ, VanEnkevort BA, Farnum CE, et al. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates. J Orthop Res 1991;9(3):348-59.
    76、Barnes GL, Kostenuik PJ, Gerstenfeld LC. Growth factor regulation of fracture repair. J Bone Miner Res 1999;14(11):1805-15.
    77、Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng B Rev 2008;14(2):179-86.
    78、Bonnarens F, Einhorn TA. Production of a standard closed fracture in laboratory animal bone. J Orthop Res 1984;2(1):97-101.
    79、Carano RA, Filvaroff EH. Angiogenesis and bone repair. Drug Discovery Today 2003;8(21):980-9.
    80、Rand, J. A., An, K. N., Chao, E. Y., Kelly, P. J.,1981. A comparison of the effect of open intramedullary nailing and compression-plate fixation on fracture-site blood flow and fracture union. J Bone Joint Surg Am 63,427-442.
    81、Brighton, C. T.,1984. The biology of fracture repair. Instr Course Lect 33,60-82.
    82、Wu,J. J., Shyr,H. S., Chao,E. Y., Kelly, P.J.,1984. Comparison of osteotomy healing under external fixation devices with different stiffness characteristics. J Bone Joint Surg Am 66,1258-1264.
    83、Aro,H.T., Wahner, H. T., Chao, E.Y.,1991. Healing patterns of transverse and oblique osteotomies in the canine tibia under external fixation. J Orthop Trauma 5,351-364.
    84、Claes, L., Augat, P., Suger,G., Wilke, H. J.,1997. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15,577-584.
    85、Claes, L. E., Heigele, C. A., Neidlinger-Wilke, C., Kaspar, D., Seidl,W. Margevicius, K. J., Augat,P.,1998. Effects of mechanical factors on the fracture healing process. Clin Orthop S132-S147.
    86、Reichert, J. C., Saifzadeha, S., Wullschleger, M. E., Epari, D. R., Schutz, M. A., Duda, G. N., Schell, H., van Griensven, M., Redl, H. and Hutmacher, D. W. (2009). "The challenge of establishing preclinical models for segmental bone defect research." Biomaterials 30(12):2149-2163.
    87、Augat, P., Simon, U., Liedert, A., Claes, L.,2005. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int 16, S36-S43.
    88、Schell, H., Epari, D. R., Kassi, J. P., Bragulla, H., Bail, H. J., and Duda, G. N. The course of bone healing is influenced by the initial shear fixation stability. J. Orthop. Res.,2005,23(5),1022-1028.
    89、Claes, L., Eckert-Hubner, K., Augat, P.,2003. The fracture gap size influences the local vascularization and tissue differentiation in callus healing. Langenbeck's archives of surgery 388,316-322.
    90、Mehta, M., Schell, H., Kaspar, K. and Duda, G. N. (2008). "Differences in the healing pathways:Rat model vs. sheep model." Calcified Tissue Int 82:S71-S72.
    91、Gardner, T. N., Evans, M., Kenwright, J.,1997. A biomechanical study on five unilateral external fracture fixation devices. Clinical Biomechanics (Bristol, Avon).12,87-96.
    92、Schell, H., Thompson, M. S., Bail, H. J., Hoffmann, J. E., Schill, A., Duda, G. N. and Lienau, J. (2008). "Mechanical induction of critically delayed bone healing in sheep:Radiological and biomechanical results." J Biomech 41(14):3066-3072.
    93、Harrison, L. J., Cunningham, J. L., Stromberg, L. and Goodship, A. E. (2003). "Controlled induction of a pseudarthrosis:A study using a rodent model. " J Orthop Trauma 17(1):11-21.
    94、Kenwright, J. and Goodship, A. E. (1989). "Controlled Mechanical Stimulation in the Treatment of Tibial Fractures." Clin Orthop Relat R(241):36-47.
    95、Goodship, A. E., Watkins, P. E., Rigby, H. S. and Kenwright, J. (1993). "The Role of Fixator Frame Stiffness in the Control of Fracture-Healing-an Experimental-Study." J Biomech 26(9):1027-1035.
    96、Duda, G. N., Eckert-Hubner, K., Sokiranski, R., Kreutner, A., Miller, R. and Claes, L. (1998). "Analysis of inter-fragmentary movement as a function of musculoskeletal loading conditions in sheep." J Biomech 31(3):201-210.
    97、Ilizarov, G. A. (1989). "The Tension Stress Effect on the Genesis and Growth of Tissues.1. The Influence of Stability of Fixation and Soft-Tissue Preservation. Clin Orthop Relat R(238):249-281.
    98、Morgan, E. F., Longaker, M. T. and Carter, D. R. (2006). "Relationships between tissue dilatation and differentiation in distraction osteogenesis. " Matrix Biology 25(2):94-103.
    99、Richards, M., Goulet, J. A., Weiss, J. A., Waanders, N. A., Schaffler, M. B. And Goldstein, S. A. (1998). "Bone regeneration and fracture healing-Experience with distraction osteogenesis model." Clin Orthop Relat R(355):S191-S204.
    100、Claes, L. E., Wilke, H. J., Augat, P., Rubenacker, S. and Margevicius, K. J. (1995). "Effect of Dynamization on Gap Healing of Diaphyseal Fractures under External Fixation." Clin Biomech 10(5):227-234.
    101、Epari, D. R., Schell, H., Bail, H. J. and Duda, G. N. (2006a). "Instability prolongs the chondral phase during bone healing in sheep." Bone 38(6):864-870.
    102、Hente, R., Fuchtmeier, B., Schlegel, U., Ernstberger, A. and Perren, S. M. (2004). "The influence of cyclic compression and distraction on the healing of experimental tibial fractures." J Orthop Res 22(4):709-715.
    103、Cullinane, D. M., Salisbury, K. T., Alkhiary, Y., Eisenberg, S., Gerstenfeld, L. and Einhorn, T. A. (2003). "Effects of the local mechanical environment on vertebrate tissue differentiation during repair:does repair recapitulate development?" J Exp Biol 206(14):2459-2471.
    104、Yamagishi, M. and Yoshimura, Y. (1955). "The biomechanics of fracture healing. J Bone Joint Surg 37A:1035-1068.
    105、Augat, P., Burger, J., Schorlemmer, S., Henke, T., Peraus, M. and Claes, L. (2003). "Shear movement at the fracture site delays healing in a diaphyseal fracture model." J Orthop Res 21(6):1011-1017.
    106、Park, S. H., O'Connor, K., McKellop, H. and Sarmiento, A. (1998). "The influence of active shear or compressive motion on fracture-healing." J Bone Joint Surg Am 80A(6):868-878.
    107、Bishop, N. E., van Rhijn, M., Tami, I., Corveleijn, R., Schneider, E. and Ito, K. (2006). "Shear does not necessarifly inhibit bone healing." Clin Orthop Relat R(443):307-314.
    108、Gardner, T. N., Evans, M. and Simpson, H. (1998). "Temporal variation of applied inter fragmentary displacement at a bone fracture in harmony with maturation of the fracture callus." Med Eng Phys 20(6):480-484.
    109、Goodship, A. E., Cunningham, J. L. and Kenwright, J. (1998). "Strain rate and timing of stimulation in mechanical modulation of fracture healing. " Clin Orthop Relat R(355):S105-S115.
    110、Jagodzinski, M. and Krettek, C. (2007). "Effect of mechanical stability on fracture healing-an update. " Injury 38:S3-S10.
    1、Goodship, AE and Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br 1985;674:650-655.
    2、Cullinane, DM, Salisbury KT, Alkhiary Y, Eisenberg S, Gerstenfeld L, and Einhorn TA. Effects of the local mechanical environment on vertebrate tissue differentiation during repair:does repair recapitulate development? J Exp Biol 2003;206Pt 14:2459-2471.
    3、Klein, P, Schell H, Streitparth F, Heller M, Kassi JP, Kandziora F, etal. The initial phase of fracture healing is pecifically sensitive to mechanical conditions.J Orthop Res 2003:214:662-669
    4、Epari, DR, Taylor WR, Heller MO, and Duda GN. Mechanical conditions in the initial phase of bone healing. Clin Biomech (Bristol, Avon) 2006:216:646-655.
    5、Epari, DR, Schell H, Bail HJ, and Duda GN. Instability prolongs the chondral phase during bone healing in sheep. Bone 2006;386:864-870.
    6、Epari, DR, Kassi JP, Schell H, and Duda GN. Timely fracture-healing requires optimization of axial fixation stability. J Bone Joint Surg Am 2007:897:1575-1585
    7、Schell, H, Thompson MS, Bail HJ, Hoffmann JE, Schill A, Duda GN, et al. Mechanical induction of critically delayed bone healing in sheep:radiological and biomechanical results. J Biomech 2008:4114:3066-3072.
    8、Claes, L, Veeser A, Gockelmann M, Simon U, and Ignatius A. A novel model to study metaphyseal bone healing under defined biomechanical conditions. ArchOrthopTrauma Surg 2009:1297:923-928.
    9、Claes, L, Augat P, Schorlemmer S, Konrads C, Ignatius A, and Ehrnthaller C. Temporary distraction and compression of a diaphyseal osteotomy accelerates bone healing. J Orthop Res 2008:266:772-777.
    10、Goodship, A. E., Watkins, P. E., Rigby, H. S. and Kenwright, J. (1993). "The Role of Fixator Frame Stiffness in the Control of Fracture-Healing-an Experimental-Study." J Biomech 26(9):1027-1035.
    11、Claes, L. E., Wilke, H. J., Augat, P., Rubenacker, S. and Margevicius, K. J. (1995). "Effect of Dynamization on Gap Healing of Diaphyseal Fractures under External Fixation." Clin Biomech 10(5):227-234.
    12、Yamagishi, M. and Yoshimura, Y. (1955). "The biomechanics of fracture healing." J Bone Joint Surg 37A:1035-1068.
    13、Augat, P., Burger, J., Schorlemmer, S., Henke, T., Peraus, M. and Claes, L. (2003). "Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res 21(6):1011-1017.
    14、Christel, P., Cerf, G., Pilla, A.,1981. Time evolution of the mechanical properties of the callus of fresh fractures. Annals of biomedical engineering 9, 383-391.
    15、Lacroix, D.2001. Simulation of tissue differentiation during fracture healing. Ph. D. Thesis. University of Dublin.
    16、Akkus,0., Korkusuz, F., Akin, S., Akkas, N.,1998. Relation between mechanical stiffness and vibration transmission of fracture callus:an experimental study on rabbit tibia. Proceedings of the I MECH E Part H Journa 1 of Engineering in Medicine 212,327-336.
    17、Gardner, T. N., Evans, M., Simpson, H.,1998. Temporal variation of applied interfragmentary displacement at a bone fracture in harmony with maturation of the fracture callus. Medical engineering & physics 20,480-484.
    18、Roux, W., Der zuchtende kampf der theile, oder die'theilauslese'im organismus (The struggle of the components within organisms). W. Englemann, Leipzig,1881.
    19、Pauwels, F.,1960. Eine neue theorie Uber den einflub mechanischer reize auf die differenzierung der stutzgewebe. Z Anat Entwickl. Gesch.121,478-515. Translated as A new theory concerning the influence of mechanical stimuli on the differentiation of the supporting tissues. In:Maquet, P., Furlong, R. (Eds.), Biomechanics of the locomotor apparatus, Springer, Berlin,1980,375-407.
    20、Perren, S. M. and Cordey, J. (1980). The co ncept of interfragmentary strain. Current Concepts of Internal Fixation of Fractures. H. K. Uhthoff. Berlin, Springer-Verlag:67-77.
    21、Carter, D. R., Blenman, P. R. and Beau pre, G. S. (1988). "Correlations between Mechanical-Stress History and Tissue Differentiation in Initial Fracture-Healing. " J Orthop Res 6(5):736-748.
    22、Claes, L. E. and Heigele, C. A. (1999). "Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. " J Biomech 32(3):255-266.
    23、Claes, L. E., Heigele, C. A., Neidlinger-Wilke, C., Kaspar, D., Seidl, W., Margevicius, K. J. and Augat, P. (1998). "Effects of mechanical factors on the fracture healing process." Clin Orthop Relat R(355):S132-S147.
    24、Prendergast, P. J., Huiskes, R. and Soballe, K. (1997). "Biophysical stimuli on cells during tissue differentiation at implant interfaces." J Biomech 30(6): 539-548.
    25、Lacroix, D. and Prendergast, P. J. (2002). "A mechano-regulation model for tissue differentiation during frac ture healing:analysis of gap size and loading." J Biomech 35(9):1163-1171.
    26、Bailon-Plaza, A., van der Meulen, M. C.,2001. A mathemat ical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212, 191-209.
    27、Bailon-Plaza, A., van der Meulen, M. C.,2003. Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. J Biomech 36,1069-1077.
    28、Bianco, P., Riminucci, M., Gronthos, S., Robey, P. G.,2001. Bone marrow stromal stem cells:nature, biology, and potential appl ications. Stem Cells 19,180-192.
    29、Triffitt, J. T.,2002. Osteogenic stem cells and orthopedic engineering:summary and update. J Biomed Mater Res 63,384-389.
    30、Postacchini, F., Gumina, S., Perugia, D., De Martino, C.1995. Early fracture callus in the diaphysis of human long bones. Histologic and ultrastructural study. Clin Orthop Relat Res 218-228.
    31、Iwaki,A., Jingushi,S., Oda, Y., Izumi,T., Shida, J. I., Tsuneyoshi,M., Sugioka, Y., 1997. Localization and quantification of proliferating cells during rat fracture repair:detec tion of proliferating cell nuclear antigen by immunohistochemi stry. J Bone Miner Res 12,96-102.
    32、Gerstenfeld, L. C., Cullinane, D.M., Barnes, G. L., Graves, D. T., Einhorn, T. A. 2003b. Fracture healing as a post-natal developmental process:molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88,873-884.
    33、MacArthur, B. D., Please, C. P., Taylor, M., Oreffo, R.0. C.,2004. Mathematical modelling of skeletal repair. Biochem Biophys Res Commun 313,825-833.
    34、Ashhurst, D. E.,1986. The influence of mechanical cond itions on the healing of experimental fractures in the rabbit:a microscopical study. Ph ilos Trans R Soc Lond B Biol Sci 313,271-302.
    35、Sandberg, M. M., Aro, H. T., Vuorio, E. I.,1993. Gene expression during bone repair. Clin Orthop 292-312.
    36、Baron, J. F.,1999. Blood substitutes. Haemoglobin therapeutics in clinical practice. Crit Care 3, R99-102.
    37、Yang, X. B., Roach, H. I., Clarke, N. M., Howdle, S. M., Quirk, R., Shakesheff, K. M. Oreffo,R.0.,2001. Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone 29,523-531.
    38、Rose,F.R., Oreffo, R.0.,2002. Bone tissue engineering:hope vs hype. Biochem Biophys Res Commun 292,1-7.
    39、Cancedda,R., Bianchi,G., Derubeis,A., Quarto,R.,2003. Cell therapy for bone disease:a review of current status. Stem Cells 21,610-619.
    40、Hankemeier, S., Grassel, S., Plenz, G., Spiegel, H. U., Bruckner, P., Probst, A.,2001. Alteration of fracture stability influences chondrogenesis, osteogenesis and immigration of macrophages. Journal of Orthopaedic Research.19,531-8.
    41、McKibbin, B.,1978. The biology of fracture healing in long bones. Journal of Bone and Joint Surgery. British Volume.60-B,150-62.
    42、The mechanobiology of diaphyseal secondary bone healing Ph. D. Thesis. University of Berlin.
    43、Augat P, Merk J, Ignatius A, et al. Early full weight bearing with flexible fixation delays fracture healing[J]. Clin Orthop,1996,328:194-202.
    44、Noordeen M HH, Shergill N S, Tuite JD, et al. Cyclical micromovement and fracture healing. J Bone Joint Surg (Br),1995,77:645-649.
    45、Einhorn, T. A. (1998). "The cell and molecu lar biology of fracture healing. Clin Orthop Relat R 355:S7-S21.
    46、Thompson, Z., Miclau, T., Hu, D., Helms, J. A.,2002. A model for intr amembranous ossification during fracture healing. J Orthop Res 20,1091-1098.
    47、Carter, D. R., Beaupre, G. S., Giori, N. J. and Helms, J. A. (1998). "Mechanobiology of skeletal regeneration." Clin Orthop Relat R (355):S41-S55.
    48、Lanyon, L. E., Hampson, W. G. J., Goodship, A. E., Shah, J. S.,1975. Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthopaedica Scandinavica.46,256-268.
    49、Mark, H., Nilsson, A., Nannmark, U., Rydevik, B.,2004a. Effects of fracture fixation stability on ossification in healing fractur es. Clinical Orthopaedics and Related Research.419,245-50.
    50、Miller, S. C., Jee, W. S. S.,1987. The bone lining cell:a distinct phenotype? Calcified Tissue International.41,1-5.
    51、Jee, W. S. S.,2001. Integrated Bone Tissue Physiology:Anatomy and Physiology in:Cowin, S. C., (Eds), Bone Mechanics Handbook, CRC, New York,
    52、Burger, E. H., Klein-Nulend, J., van der Plas, A., Nijweide, P. J.,1995. Function of osteocytes in bone--their role in m echanotransduction. Journal of Nutrition. 125,2020S-2023S.
    53、Bakker, A., Klein-Nulend, J., Burger, E.,2004. Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem Biophys Res Commun.320,1163-8.
    54、Bostrom, M. P.,1998. Expression of bone mor phogenetic proteins in fracture healing. Clin Orthop. S116-23.
    55、Nickel, R., Schummer, A., Seiferle, E.,1992. The locomotor system of the domestic mammals, Verlag Paul Parey, Berlin.
    56, Klein, P., Opitz, M., Schell, H., Taylor, W. R., Heller, M.0., Kassi, J. P., Kandziora, F., Duda, G. N.,2004. Comparison of unr earned nailing and external fixation of tibial diastases--mechanical conditions during healing and biological outcome. Journal of Orthopaedic Research.22,1072-8.
    57、Klein, P., Schell, H., Streitparth, F., Heller, M., Kassi, J. P., Kandziora, F., Bragulla, H., Haas, N. P., Duda, G. N.,2003. The initial phase of fracture healing is specifically sensitive to mechanical conditions. Journal of Orthopaedic Research.21,662-9.
    58、Schell, H., Epari, D. R., Kassi, J. P., Brag ulla, H., Bail, H. J., Duda, G. N.,2005. The course of bone healing is influenced by the initial shear fixation stability. Journal of Orthopaedic Research.23,1022-28.
    59、Basset, C. A., Hermann, I.,1961. Influence of oxygen concentration and mechanical factors on differentiation of connective tissue in vivo. Nature.190, 460-461.
    60、Mark, H., Nilsson, A., Nannmark,U., Rydevik, B.,2004a. Effects of fracture fixation stability on ossification in healing fractur es. Clinical Orthopaedics and Related Research.419,245-50.
    61、Mark, H., Penington, A., Nannmark, U., Morrison, W., Messina, A., 2004b. Microvascular invasion during endochondral ossification in experimental fractures in rats. Bone.35,535-42.
    62、Van Rietbergen, B., Huiskes, R., Weinans, H., Sumner, D. R., Turner, T. M., Galante, J.0.,1993. ESB Research Award 1992. The mechanism of bone remodeling and resorption around press-fitted THA stems. J Biomech.26,369-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700