用户名: 密码: 验证码:
牙种植体表面生物化修饰及构建组织工程支架的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及钛合金具有优良的机械性能和生物相容性,成为口腔医学及矫形外科领域广泛应用的种植体材料。但不足之处是,它们属于生物惰性材料,在临床应用中所需愈合时间较长,且植入体内后组织反应表现为非特异性和随机性。对钛种植材料的表面进行改性可以有效地改善其各种性能,获得生物相容性更好、愈合更快、具有生物活性的新型种植体。传统的牙种植体表面改性的方法如化学、物理学及形态学等方法仅在一定程度上改善了其生物相容性和骨结合能力。组织工程渗透到牙种植相关领域,给牙种植体的表面改性及界面愈合方式的研究开辟了一条新路。本研究旨在探讨一种牙种植体表面生物化修饰及组织工程支架构建的研究方法。在对钛种植体表面进行生物化改性的基础上,运用层层自组装技术构建了一种聚电解质多层膜组织工程支架结构,并将大鼠骨髓基质细胞分层包裹在细胞支架内进行培养,以期为促进临床上牙种植体-骨组织界面的组织愈合以及种植体周牙周组织再生研究提供实验依据。研究由以下三个系列实验所组成。
     1.钛种植体表面磷酸化及仿生矿化。应用磷酸对钛种植体表面进行磷酸化处理,模拟体液仿生矿化以及大鼠骨髓基质细胞的增殖分化实验鉴定体外矿化诱导性能和磷酸化及矿化材料表面的细胞亲和性。结果发现,磷酸化的钛基材表面沉积了高结晶度的磷酸钛聚合物层,不同晶相的聚合物皆能成功诱导磷灰石晶体的生成,仿生矿化的表层可以诱导骨髓基质细胞的成骨向分化。本实验为钛种植体表面改性提供了一种新的实验方法,并为进一步的生物化改性确立实验基础。
     2.研究生物化钛种植体表面对骨形态发生蛋白生长因子的缓释效应。通过层层自组装技术在磷酸化钛种植体表面构建以壳聚糖/海藻酸钠为组分的聚电解质多层膜结构,同时复合骨形态发生蛋白生长因子BMP-2,应用ELISA方法测定BMP-2的体外缓释效果。结果发现,在磷酸化的钛种植体表面构建的PEC多层膜结构能够复合骨生长因子BMP-2并在体外对其进行缓释。细胞学研究证实,体外缓释的BMP-2保持其活性并能发挥骨诱导的生物学效应。本研究建立了一种牙种植体表面构建PEC多层膜结构并实现骨生长因子缓释的技术方法,为牙种植体表面组织工程支架的构建提供了实验依据。
     3.在上述实验结果的基础上,在生物化钛种植体表面构建以壳聚糖/海藻酸钠为组分的聚电解质多层膜组织工程支架结构,细胞增殖分化实验鉴定其细胞相容性,并应用层层自组装技术将大鼠骨髓基质细胞分层包裹在细胞支架内进行培养。结果发现,多层膜组织工程支架能够明显促进骨髓基质细胞的增殖和分化,该支架结构能够在种植体表面对细胞进行分层包裹培养。本实验在种植体表面成功构建了组织工程支架,并为牙种植体周牙周组织再生重建研究提供了新的思路和实验依据。
     本研究通过系列实验,成功实现对牙种植体表面的生物化改性,在此基础上应用层层自组装技术构建以壳聚糖和海藻酸钠为组分的聚电解质多层膜组织工程支架结构,首次成功实现在牙种植体表面对目的细胞的分层包裹培养,为牙种植体表面组织工程化牙周组织再生研究提供了实验基础。
Titanium and its alloys have been extensively used in dental and orthopedic fields for implants due to their excellent mechanical properties and biocompatibility. However, these implant materials display non-specificity and randomness after implantation into the living body and will spend a long time for clinical healing result from their bioinert properties. The strategy of titanium surface modification can effectively improve the performance of these materials involve preferably biocompatibility and bioactive. Several surface modifications, including physico-chemical and morphologic ones, have been investigated to improve the biocompatibility and bone-bonding ability of Ti implants in a certain extent. One approach, biomimetic surface engineering, develop a new strategy of the study on the surface modification and the bone-interface healing. The purpose of this study is to investigate the research strategy of the biolization modification and the scaffold constructed on the surface of titanium implants. Based on the biolization modification of the titanium surface, the polyelectrolyte complex (PEC) hydrogel composited of polycationic chitosan (CS) and polyanionic alginate(ALG) was self-organized by the Layer-by-Layer self-assemble technique on the surface of titanium, and the PEC hydrogel was used as the scaffold to encapsulate the rat bone marrow stroma cells(BMSCs) delamination for co-culture. The result of the study is the foundation of the experimental research to improve the bone-implant interface healing and the regeneration of the periodontal ligament. The research consist of three serial experiments.
     1. Biomineralization and phosphorylation performed on the Ti implant surfaces. The titanium surfaces was treated in the phosphoric acid, and then the phosphorylation specimens were soaked in the simulated body fluid (SBF) to investigate the function of biomineralization. To investigate the biocompatibility of the altered biomimetic surface, the rat bone marrow stroma cells (BMSCs) were cultured on these treated sample surfaces. The results of the study showed that a layer of titanium dihydrogen orthophosphate (Ti(H2PO4)3) have been formed on the native oxide surfaces on the phosphorylation titanium, which have the ability to induce formation of bone-like apatite during immersing in SBF and thus considered bioactive. The biomineralization surfaces can induce the osteogenesis differentiation of the BMSCs. The study provide a new experimental strategy of the dental implants surface modification. The result of this study is the foundation of the experiment of the Ti surface biolization modification.
     2. To investigate the effects of delayed release of BMP-2 adsorbed in the biolization Ti surface, the PEC hydrogel composited of CS and ALG was self-organized on the surfaces of titanium. Subsequently, the effects of delayed release of BMP-2 encapsulated in the PEC multilayer films was evaluated by enzyme linked immunosorbent assay (ELISA). The results showed that BMP-2 can be loaded in the PEC multilayer films and controlled release in vitro. The BMP-2 encapsulated in the PEC can be kept activity and develop its osteoinduction biological effect. The study provided a new experimental strategy of constructing the PEC multilayer films on titanium surfaces. Moreover, the results also offered a foundation of the experiment of the scaffold constructed on titanium surfaces.
     3. Based on the above-mentioned study results, the PEC of CS and ALG was self-organized on the surface of titanium, which was used as the scaffold to encapsulate the BMSCs delamination for co-culture. The results showed that the PEC multilayer scaffolds can obviously enhance the proliferation and differentiation of rat BMSCs and can encapsulate experimental cells delamination for co-culture. The engineering scaffolds were constructed on titanium surfaces successfully in this study, which offered a new research approach and experimental foundation of the regeneration of the periodontal ligament.
     In this paper, based on a serial of experiments, the biolization modification on the surface of titanium implant was performed successfully and the PEC of CS and ALG was self-organized on the surface of titanium, which was used as the scaffold to encapsulate the BMSCs delamination for co-culture. The results of the study offered a new research approach and experimental foundation of the regeneration of the periodontal ligament.
引文
[1] Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials, 1999; 20(23-24): 2311-2321.
    [2] Kasemo B. Biological surface science. Surface Science, 2002; 500(1-3):656 -677.
    [3] Puleo DA, Thomas MV. Implant surfaces. Dent Clin North Am. 2006;50(3):323-338.
    [4] Xuanyong Liu, Paul K. Chu, Chuanxian Ding. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering R, 2004;47(3-4):49–121.
    [5] L. Le Guéhennec, A. Soueidan, P. Layrolle, Y. Amouriq. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials,2007;23 (7):844-854.
    [6] Zuwei Ma, Zhengwei Mao, Changyou Gao Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2007;60(2):137-157.
    [7] J.M. Goddard, J.H. Hotchkiss. Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science,2007;32 (7):698-725.
    [8] Il. Song Park, Tae Gyu Woo, Woo Yong Jeon, Hyeong Ho Park, Min Ho Lee,Tae Sung Bae, Kyeong Won Seol Surface characteristics of titanium anodized in the four different types of electrolyte.Electrochimica Acta, 2007;53(2): 863-870
    [9] L. Liu, Z. Liu, K.C. Chan, H.H. Luo, Q.Z. Cai, S.M. Zhang. Surface modification and biocompatibility of Ni-free Zr-based bulk metallic glass. Scripta Materialia, 2008;58(3): 231-234.
    [10] Frank A. Müller, Marco C. Bottino, Lenka Müller, Vinicius A.R. Henriques, Ulrich Lohbauer, Ana Helena A. Bressiani, JoséC. Bressiani. In vitro apatite formation on chemically treated (P/M) Ti–13Nb–13Zr. Dental Materials, 2008;24(1):50-56
    [11] Jin-Woo Park, Je-Hee Jang, Chong Soo Lee, Takao Hanawa. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry. Acta Biomaterialia,2009;5(6):2311-2321
    [12] Yu-Feng Chen, Yi-Hsin Hu, Yen-I Chou, Shih-Ming Lai, Chi-Chuan Wang Surface modification of nano-porous anodic alumina membranes and its use in electroosmotic flow.Sensors and Actuators B: Chemical,2010;145(1): 575-582.
    [13] Akira Nagaoka, Ken’ichi Yokoyama, Jun’ichi Sakai. Evaluation of hydrogen absorption behaviour during acid etching for surface modification of commercial pure Ti, Ti–6Al–4V and Ni–Ti superelastic alloys. Corrosion Science, 2010;52(4):1130-1138.
    [14] Heungsoo Shin, Seongbong Jo, Antonios G. Mikos Biomimetic materials for tissue engineering. Biomaterials, 2003;24(24):4353-4364.
    [15] Natali AN, Pavan PG, Ruggero AL. Analysis of bone-implant interaction phenomena by using a numerical approach. Clin Oral Implants Res.2006 ;17(1):67-74.
    [16] Pit Voss, Sebastian Sauerbier, Margit Wiedmann-Al-Ahmad, Christoph Zizelmann, Andres Stricker, Rainer Schmelzeisen, Ralf Gutwald. Bone regeneration in sinus lifts: comparing tissue-engineered bone and iliac bone. British Journal of Oral and Maxillofacial Surgery, 2010;48(2):121-126.
    [17] Francesco Pieri, Enrico Lucarelli, Giuseppe Corinaldesi, NicolòNicoli Aldini, Milena Fini, Annapaola Parrilli, Barbara Dozza, Davide Donati, Claudio Marchetti. Dose-dependent effect of adipose-derived adult stem cells on vertical bone regeneration in rabbit calvarium. Biomaterials, 2010;31(13): 3527-3535.
    [18] Albrektsson T. Hard tissue implant interface. Aust Dent J. 2008;53 Suppl 1:S34-8.
    [19] Curtis DA, Sharma AB, Finzen FC.The use of dental implants to improve quality of life for edentulous patients. J Calif Dent Assoc. 2008;36(4):275-80.
    [20]徐君伍,主编.口腔修复理论与临床[M].北京:人民卫生出版社, l999:476-480.
    [21] L. Le Guéhennec, A. Soueidan, P. Layrolle, Y. Amouriq. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 2007;23(7):844-854
    [22] Morra M, Cassinelli C, Carpi A, Giardino R, Fini M. Effects of molecular weight and surface functionalization on surface composition and cell adhesion to Hyaluronan coated titanium. Biomed Pharmacother. 2006;60(8):365-369.
    [23] Finke B, Luethen F, Schroeder K, Mueller PD, Bergemann C, Frant M, Ohl A, Nebe BJ. The effect of positively charged plasma polymerization on initialosteoblastic focal adhesion on titanium surfaces. Biomaterials. 2007;28 (30):4521-34.
    [24] Poh-Hui Chua, Koon-Gee Neoh, En-Tang Kang, Wilson Wang. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials, 2008;29(10): 1412-1421
    [25] Kenji Kashiwagi, Toru Tsuji, Kiyotaka Shiba Directional BMP-2 for functionalization of titanium surfaces.Biomaterials,2009;30(6):1166-1175
    [26] Stefan Rammelt, Till Illert, Susanne Bierbaum, Dieter Scharnweber, Hans Zwipp, Wolfgang Schneiders. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials,2006;27(32): 5561-5571
    [27] Ander Abarrategi, Jesús García-Cantalejo, Carolina Moreno-Vicente, Ana Civantos, Viviana Ramos, JoséVicente Sanz Casado, Sandra Pérez-Rial, Ramón Martńez-Corriá, JoséLuis López-Lacomba Gene expression profile on chitosan/rhBMP-2 films: A novel osteoinductive coating for implantable materials. Acta Biomaterialia, 2009;5(7):2633-2646
    [28] G. Decher, J. D. Hong, J. Schmitt. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 1992;210-211(2): 831-835
    [29] Hao Liu, Shiyu Fu, Hui Li, Huaiyu Zhan. Layer-by-layer assembly of lignosulfonates for hydrophilic surface modification. Industrial Crops and Products,2009;30(2):287-291.
    [30] Yan Hu, Kaiyong Cai, Zhong Luo, Rui Zhang, Li Yang, Linhong Deng, Klaus D. Jandt. Surface mediated in situ differentiation of mesenchymal stem cellson gene-functionalized titanium films fabricated by layer-by-layer technique. Biomaterials,2009;30(21):3626-3635.
    [31] Cai K, Hu Y, Jandt KD. Surface engineering of titanium thin films with silk fibroin via layer-by-layer technique and its effects on osteoblast growth behavior. J Biomed Mater Res A. 2007;82(4):927-35.
    [32] Nyman S,Gottlow J,Karring T,Lindhe J.The regenerative potential of the periodontal ligament.An experimental study in the monkey. J Clin Periodontol. 1982;9(3)::257-265.
    [33] Bratthall G,Soderholm G,Neiderud AM,Kullendorff B,Edwardsson S, Attstrom R. Guided tissue regeneration in the treatment of human infrabony defects.Clinical,radiographical and microbiological results:a pilot study.J Clin Periodontol.1998;25(11 Pt 1):908-914.
    [34] Berry JE,Zhao M,Jin Q,Foster BL,Viswanathan H,Somerman MJ. Exploring the origins of cementoblasts and their trigger factors.Connect Tissue Res.2003;44 Suppl 1:97-102.
    [35] Bhatnagar RS,Qian JJ,Wedrychowska A,Sadeghi M,Wu YM,Smith N. Design of biomimetic habitats for tissue engineering with P-15,a synthetic peptide analogue of collagen.Tissue Eng.1999;5(1):53-65.
    [36] Sonoyama W,Seo BM,Yamaza T,Shi S. Human Hertwig's epithelial root sheath cells play crucial roles in cementum formation.J Dent Res. 2007;86(7):594-599.
    [37] Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament.Lancet.2004;364(9429):149-155.
    [38] Gronthos S,Mrozik K,Shi S,Bartold PM. Ovine periodontal ligament stem cells:isolation,characterization,and differentiation potential.Calcif Tissue Int. 2006;79(5):310-317.
    [39] Flores MG, Hasegawa M, Yamato M, Takagi R, Okano T, Ishikawa I. Cementum-periodontal ligament complex regeneration using the cell sheet technique. J Periodontal Res. 2008;43(3):364-71.
    [40] Cheng Lin , Qing-Shan Dong, Lei Wang. Dental implants with the periodontium: A new approach for the restoration of missing teeth. Medical Hypotheses2009;72(1):58-61.
    [41] Bosshardt DD, Sculean A,Windisch P, Pjetursson BE, Lang NP. Effects of enamel matrix proteins on tissue formation along the roots of human teeth. J Periodontal Res 2005;40(2):158-67.
    [42] Qing Liua, Jiang Dingb, Francis K. Mantec, Stephanie L. Wunderb, George R. Barana, The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials, 2002:23 (15):3103–3111.
    [43] Jin-Woo Park, Je-Hee Jang, Chong Soo Lee, Takao Hanawa Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry.Acta Biomaterialia, 2009;5(6):2311-2321.
    [44] Kokubo T, Ito S, Shigematsu M, Sakka S, Yamamuro T. Fatigue and life-time of bioactive glass-ceramic A-W containing apatite and wollastonite. J Mater Sci 1987;22:4067–70.
    [45]周贵恩,主编.聚合物X射线衍射[M].合肥:中国科学技术大学出版社,1989:220-222.
    [46] JCPDS . International center for diffraction data, Power diffraction file, Swarthmore, PA , 1980.
    [47] Sang Ho Ye, Carl A. Johnson Jr, Joshua R. Woolley, Heung-Il Oh, Lara J. Gamble, Kazuhiko Ishihara, William R. Wagner Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance. Colloids and Surfaces B: Biointerfaces, 2009;74(1):96-102.
    [48] G. He, J. Hu, S.C. Wei, J.H. Li, X.H. Liang, E. Luo Surface modification of titanium by nano-TiO2/HA bioceramic coating. Applied Surface Science, 2008;255(2):442-445.
    [49] Rongjun Pan, Shenghui Pan, Juying Zhou, Yucheng Wu. Surface-modification of indium tin oxide nanoparticles with titanium dioxide by a nonaqueous process and its photocatalytic properties. Applied Surface Science, 2009;255(6):3642-3647.
    [50] Sébastien F. Lamolle, Marta Monjo, Marina Rubert, H?vard J. Haugen, St?le P. Lyngstadaas, Jan E. Ellingsen The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials, 2009;30(5):736-742.
    [51] Hanjiang Yu, Fengjiu Sun, Jun Zhang. Laser and plasma nitriding of titanium using CW-CO2 laser in the atmosphere. Current Applied Physics, 2009;9(1)227-233.
    [52] Jin-Woo Park, Youn-Jeong Kim, Je-Hee Jang, Tae-Geon Kwon, Yong-Chul Bae, Jo-Young Suh. Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces. Acta Biomaterialia, In Press,2009.
    [53] Jin-Woo Park, Je-Hee Jang, Chong Soo Lee, Takao Hanawa. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry. Acta Biomaterialia,2009;5(6):2311-2321.
    [54] Frank A. Müller, Marco C. Bottino, Lenka Müller, Vinicius A.R. Henriques, Ulrich Lohbauer, Ana Helena A. Bressiani, JoséC. Bressiani. In vitro apatite formation on chemically treated (P/M) Ti–13Nb–13Zr. Dental Materials,2008;24(1):50-56.
    [55] Ellen S. Gawalt, Kristina Brault-Rios, Mark S. Dixon, David C. Tang, and Jeffrey Schwartz. Enhanced Bonding of Organometallics to Titanium via a Titanium(III) Phosphate Interface. Langmuir, 2001;17(21):6743-6745.
    [56] Sarikaya M. Biomimetics: materials fabrication through biology. Proc Natl Acad Sci U S A. 1999;96(25):14183-5.
    [57] D. Green, D. Walsh, S. Mann, R. O. C. Oreffo. The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone,2002;30(6):810-815.
    [58] Sarikaya M, Tamerler C, Jen AK, Schulten K, Baneyx F. Molecular biomimetics: nanotechnology through biology. Nat Mater, 2003;2(9):577-85.
    [59] Evan A. Scott, Michael D. Nichols, Lee H. Cordova, Brandon J. George, Young-Shin Jun, Donald L. Elbert Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels. Biomaterials,2008;29(34): 4481-4493.
    [60] Martin A. Cole, Nicolas H. Voelcker, Helmut Thissen, Hans J. Griesser Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials, 2009;30(9): 1827-1850.
    [61] Kim YY, Douglas EP, Gower LB. Patterning inorganic (CaCO3) thin films via a polymer-induced liquid-precursor process. Langmuir. 2007;23(9):4862-70.
    [62] Kim HM, Miyaji F, Kokubo T, Nakamura T Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res. 1996;32(3):409-417.
    [63] Peltola T, Jokinen M, Rahiala H, P?tsi M, Heikkil? J, Kangasniemi I, Yli-Urpo A Effect of aging time of sol on structure and in vitro calcium phosphate formation of sol-gel-derived titania films.. J Biomed Mater Res. 2000;51(2):200-208.
    [64] Narayanan R, Seshadri SK, Kwon TY, Kim KH. Calcium phosphate-based coatings on titanium and its alloys. J Biomed Mater Res B Appl Biomater. 2008 ;85(1):279-99.
    [65] Un S, Durucan C. Preparation of hydroxyapatite-titania hybrid coatings on titanium alloy. J Biomed Mater Res B Appl Biomater. 2009 ;90(2):574-83.
    [66] Bunker BC, Rieke PC, Tarasevich BJ, Campbell AA, Fryxell GE, Graff GL, Song L, Liu J, Virden JW, McVay GL. Ceramic Thin-Film Formation on Functionalized Interfaces Through Biomimetic Processing. Science. 1994;264(5155):48-55.
    [67] H. B. Wen, J. G. C. Wolke, J. R. de Wijn, Q. Liu, F. Z. Cui, K. de Groot. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials, 1997;18(22):1471-1478.
    [68] Zvi Schwartz, Rene Olivares-Navarrete, Marco Wieland, David L. Cochran, Barbara D. Boyan Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on microstructured titanium surfaces. Biomaterials,2009;30(20):3390-3396.
    [69] Teodora Gratiela Tihan, Mioara Daniela Ionita, Roxana Gabriela Popescu, Dana Iordachescu Effect of hydrophilic–hydrophobic balance on biocompatibility of poly(methyl methacrylate) (PMMA)–hydroxyapatite (HA) composites. Materials Chemistry and Physics, 2009;118(2-3): 265-269.
    [70] Peter O'Hare, Brian J. Meenan, George A. Burke, Greg Byrne, Denis Dowling, John A. Hunt Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. Biomaterials,2010;31(3): 515-522.
    [71] Marco Biondi, Francesca Ungaro, Fabiana Quaglia, Paolo Antonio Netti. Controlled drug delivery in tissue engineering. Advanced Drug Delivery Reviews,2008;60(2):229-242
    [72] Urist MR, Kovacs S, Yates KA. Regeneration of an enchondroma defect under the influence of an implant of human bone morphogenetic protein. J Hand Surg, 1986;l1(3):417-419.
    [73] Kawamura M, Urist MR. Human fibrin is a physiologic delivery system for bone morphogenetic protein. Clin Orthop Relat Res. 1988;(235):302-10.
    [74] G. Decher, J. D. Hong, J. Schmitt. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 1992;210-211(2): 831-835.
    [75] Yang Y, He Q, Duan L, Cui Y and Li J. Assembled alginate/chitosan nanotubes for biological application, Biomaterials, 2007;28(20):3083-3090.
    [76] Hao Liu, Shiyu Fu, Hui Li, Huaiyu Zhan. Layer-by-layer assembly of lignosulfonates for hydrophilic surface modification. Industrial Crops and Products,2009;30(2):287-291.
    [77] Yan Hu, Kaiyong Cai, Zhong Luo, Rui Zhang, Li Yang, Linhong Deng, Klaus D. Jandt. Surface mediated in situ differentiation of mesenchymal stem cells on gene-functionalized titanium films fabricated by layer-by-layer technique. Biomaterials,2009;30(21):3626-3635.
    [78] Quan-Li Li, Zhi-Qing Chen, Brian W. Darvell, Quan Zeng, Gang Li, Guo-Min Ou and Ming-Yue Wu. Biomimetic Synthesis of PEC-HA Composite Analogous to Bone. Key Engineering Materials, 2007;336-338:1699-1702.
    [79] Jun Shi, Xiaopei Liu, Yujun Shang, Shaokui Cao Biomineralized polysaccharide alginate membrane for multi-responsive controlled drug delivery. Journal of Membrane Science, 2010;352(1-2): 262-270.
    [80] Fukumura H, Hayashi K, Yoshikawa S, Miya M, Yamamoto N, Yamashita I Complement-induced thrombus formation on the surface of poly(N-vinylpyrrolidone)-grafted polyethylene. Biomaterials. 1987;8(1):74-6.
    [81] L. Le Guéhennec, A. Soueidan, P. Layrolle, Y. Amouriq. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials,2007;23 (7):844-854.
    [82] Manoel G. Troia Jr., Guilherme E.P. Henriques, Marcelo F. Mesquita, Wagner S. Fragoso. The effect of surface modifications on titanium to enable titanium–porcelain bonding. Dental Materials,2008;24(1):28-33.
    [83] Gustavo Mendon?a, Daniela B.S. Mendon?a, Francisco J.L. Arag?o, Lyndon F. Cooper. Advancing dental implant surface technology–From micron-to nanotopography. Biomaterials,2008;29(28):3822-3835.
    [84] Jin-Woo Park, Youn-Jeong Kim, Chan Hee Park, Dong-Hee Lee, Young Gun Ko, Je-Hee Jang, Chong Soo Lee. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microroughsurface topography. Acta Biomaterialia,2009;5(8):3272-3280.
    [85] Xuanyong Liu, Paul K. Chu, Chuanxian Ding. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports,2004;47(3-4):49-121.
    [86] Chosa N, Taira M, Saitoh S, Sato N, Araki Y. Characterization of apatite formed on alkaline-heat-treated Ti. J Dent Res. 2004;83(6):465-9.
    [87] Rainer Müller, Jochen Abke, Edith Schnell, Dieter Scharnweber, Richard Kujat, Carsten Englert, Darius Taheri, Michael Nerlich, Peter Angele.Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen. Biomaterials, 2006;27(22): 4059-4068.
    [88] Poh-Hui Chua, Koon-Gee Neoh, En-Tang Kang, Wilson Wang. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials, 2008;29(10): 1412-1421.
    [89] Dai-Ping Song, Ming-Jun Chen, Ying-Chun Liang, Qing-Shun Bai, Jia-Xuan Chen, Xiong-Fei Zheng Adsorption of tripeptide RGD on rutile TiO2 nanotopography surface in aqueous solution. Acta Biomaterialia, 2010;6 (2):684-694.
    [90] Kenji Kashiwagi, Toru Tsuji, Kiyotaka Shiba Directional BMP-2 for functionalization of titanium surfaces.Biomaterials,2009;30(6):1166-1175
    [91] Stefan Rammelt, Till Illert, Susanne Bierbaum, Dieter Scharnweber, Hans Zwipp, Wolfgang Schneiders. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials,2006;27(32): 5561-5571.
    [92] Ander Abarrategi, Jesús García-Cantalejo, Carolina Moreno-Vicente, Ana Civantos, Viviana Ramos, JoséVicente Sanz Casado, Sandra Pérez-Rial, Ramón Martńez-Corriá, JoséLuis López-Lacomba Gene expression profile on chitosan/rhBMP-2 films: A novel osteoinductive coating for implantable materials. Acta Biomaterialia, 2009;5(7):2633-2646.
    [93] Dinesh S. Kommireddy, Shashikanth M. Sriram, Yuri M. Lvov, David K. Mills Stem cell attachment to layer-by-layer assembled TiO2 nanoparticle thin films. Biomaterials, 2006;27(24): 4296-4303.
    [94] Yu-Lung Hwang, Chia-Lung Kuo, Shun-Fa Hwang. The coating of TiC layer on the surface of nickel by electric discharge coating (EDC) with a multi-layer electrode. Journal of Materials Processing Technology,2010;210(4)642-652.
    [95] Suphasiriroj W, Yotnuengnit P, Surarit R, Pichyangkura R. The fundamental parameters of chitosan in polymer scaffolds affecting osteoblasts (MC3T3-E1). J Mater Sci Mater Med. 2009;20(1):309-20..
    [96] Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev.2002;54(1):37-51.
    [97] R. Jayakumar, M. Prabaharan, R.L. Reis, J.F. Mano. Graft copolymerized chitosan-present status and applications. Carbohydrate Polymers, 2005;62(2):142-158.
    [98]季娟娟,丁仲鹃,杨雪莲,等.壳聚糖膜对成骨细胞的毒性研究[J].实用口腔医学杂志,2008,24(5):630-634.
    [99] Liuyun Jiang, Yubao Li, Xuejiang Wang, Li Zhang, Jiqiu Wen, Mei Gong Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold. Carbohydrate Polymers, 2008;74(3):680-684.
    [100] Xuan Cai, Hua Tong, Xinyu Shen, Weixuan Chen, Juan Yan, Jiming Hu Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomaterialia, 2009;5(7): 2693-2703.
    [101] Quan-Li Li, Zhi-Qing Chen, Brian W. Darvell, Quan Zeng, Gang Li, Guo-Min Ou, Ming-Yue Wu. Biomimetic synthesis of the composites of hydroxyapatite and chitosan–phosphorylated chitosan polyelectrolyte complex. Materials Letters,2006;60(29-30):3533-3536.
    [102] Li QL, Chen ZQ, Darvell BW, Liu LK, Jiang HB, Zen Q, Peng Q, Ou GM. Chitosan-phosphorylated chitosan polyelectrolyte complex hydrogel as an osteoblast carrier. J Biomed Mater Res B Appl Biomater. 2007;82(2):481-6.
    [103] Li Q.-L., Wu M.-Y., Tang L.-L., Zhou J., Jiang Y., Darvell B.W. Bioactivity of a novel nanocomposite of hydroxyapatite and chitosan-phosphorylated chitosan polyelectrolyte complex. Journal of Bioactive and Compatible Polymers 2008 23(6):520-531.
    [104] Li QL, Huang N, Chen J, Wan G, Zhao A, Chen J, Wang J, Yang P, Leng Y. Anticoagulant surface modification of titanium via layer-by-layer assembly of collagen and sulfated chitosan multilayers. J Biomed Mater Res A. 2009;89(3):575-84.
    [105] T. Windhues, W. Borchard. Effect of acetylation on physico-chemical properties of bacterial and algal alginates in physiological sodium chloride solutions investigated with light scattering techniques. Carbohydrate Polymers,2003;52(1):47-52
    [106] Ohsumi H, Hirata H, Nagakura T, Tsujii M, Sugimoto T, Miyamoto K, Horiuchi T, Nagao M, Nakashima T, Uchida A. Enhancement of perineurialrepair and inhibition of nerve adhesion by viscous injectable pure alginate sol. Plast Reconstr Surg, 2005;116(3):823-830.
    [107] Orbay H, UnlüRE, Kerem M, Sens?z O.. Preapplication of lidocaine to split-thickness skin graft donor site to decrease pain during the removal of dressing. Ann Plas t Surg 2006;56(3):346-347.
    [108] Monica L. Moya, Ming-Huei Cheng, Jung-Ju Huang, Megan E. Francis-Sedlak, Shu-wei Kao, Emmanuel C. Opara, Eric M. Brey The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering. Biomaterials, 2010;31(10):2816-2826.
    [109] Inbar Freeman, Smadar Cohen The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials,2009;30(11):2122-2131.
    [110] Weiting Yu, Junzhang Lin, Xiudong Liu, Hongguo Xie, Wei Zhao, Xiaojun Ma Quantitative characterization of membrane formation process of alginate–chitosan microcapsules by GPC. Journal of Membrane Science,2010;346(2):296-301.
    [111] Orive G, Tam SK, Pedraz JL, HalléJP. Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials. 2006;27 (20):3691-700.
    [112] Dusseault J, Tam SK, Ménard M, Polizu S, Jourdan G, Yahia L, HalléJP. Evaluation of alginate purification methods : effect on polyphenol , endotoxin, and protein contamination.J Biomed Mater Res A 2006;76(2):243-251.
    [113] Seeherman H, Wozney JM. Delivery of bone morphogenetic proteins for orthopaedic tissue regeneration. Cytokine Growth Factor Rev 2005;16(3):329-345。
    [114] Di Silvio L, Gurav N, Sambrook R. The fundamentals of tissue engineering: new scaffolds. Med J Malaysia. 2004;59 (Suppl B):89-90.
    [115] C. Liu, Z. Xia, J.T. Czernuszka. Design and Development of Three -Dimensional Scaffolds for Tissue Engineering. Chemical Engineering Research and Design, 2007;85(7):1051-1064.
    [116] Patrícia B. Malafaya, Gabriela A. Silva, Rui L. Reis Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 2007;59 (4-5):207-233.
    [117] A. Ranella, M. Barberoglou, S. Bakogianni, C. Fotakis, E. Stratakis. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomaterialia, In Press, Corrected Proof, Available online 18 January 2010.
    [118] Qingfeng Zan, Chen Wang, Limin Dong, Peng Cheng, Jiemo Tian. Effect of surface roughness of chitosan-based microspheres on cell adhesion. Applied Surface Science, 2008;255(2):401-403.
    [119] Manabu Miura, Keiji Fujimoto Formation and recovery of a cell sheet by a particle monolayer with the surface roughness. Colloids and Surfaces B: Biointerfaces,2008;66(1):125-133.
    [120] Guillaume Lamour, Ali Eftekhari-Bafrooei, Eric Borguet, Sylvie Souès, Ahmed Hamraoui Neuronal adhesion and differentiation driven by nanoscale surface free-energy gradients. Biomaterials, 2010;31(14):3762-3771.
    [121] A. Ranella, M. Barberoglou, S. Bakogianni, C. Fotakis, E. Stratakis Tuningcell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomaterialia, In Press, Corrected Proof, Available online 18 January 2010.
    [122] Thomas Lechleitner, Frederik Klauser, Thomas Seppi, Judith Lechner, Paul Jennings, Paul Perco, Bernd Mayer, Doris Steinmüller-Nethl, Johannes Preiner, Peter Hinterdorfer, Martin Hermann, Erminald Bertel, Kristian Pfaller, Walter Pfaller. The surface properties of nanocrystalline diamond and nanoparticulate diamond powder and their suitability as cell growth support surfaces. Biomaterials, 2008;29(32):4275-4284.
    [123] Yasushi Sasai, Natsuko Matsuzaki, Shin-ichi Kondo, Masayuki Kuzuya Introduction of carboxyl group onto polystyrene surface using plasma techniques. Surface and Coatings Technology, 2008;202(22-23):5724-5727.
    [124] Hyosook Jung, Byeongdo Kwak, Ho Sung Yang, Giyoong Tae, Joon-Seop Kim, Kwanwoo Shin. Attachment of cells to poly(styrene-co-acrylic acid) thin films with various charge densities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008;313-314:562-566.
    [125] Yan Xu, Madoka Takai, Kazuhiko Ishihara Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials, 2009; 30 (28):4930-4938。
    [126] Raihan K. Uddin, Shiva M. Singh. cis-Regulatory sequences of the genes involved in apoptosis, cell growth, and proliferation may provide a target for some of the effects of acute ethanol exposure. Brain Research, 2006;1088 (1):31-44.
    [127] Quan-Li Li, Zhi-Qing Chen, Brian W. Darvell, Quan Zeng, Gang Li, Guo-MinOu, Ming-Yue Wu Biomimetic synthesis of the composites of hydroxyapatite and chitosan–phosphorylated chitosan polyelectrolyte complex. Materials Letters,2006;60(29-30):3533-3536.
    [128] Mayur G. Sankalia, Rajashree C. Mashru, Jolly M. Sankalia, Vijay B. Sutariya. Reversed chitosan–alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization. European Journal of Pharmaceutics and Biopharmaceutics, 2007;65 (2):215-232.
    [129] Heidi Vogt S?ther, Hilde K. Holme, Gjertrud Maurstad, Olav Smidsr?d, Bj?rn T. Stokke. Polyelectrolyte complex formation using alginate and chitosan. Carbohydrate Polymers,2008;74(4):813-821.
    [130] Ming-Yue Wu, Ning Chen, Lai-Kui Liu, Hua Yuan, Quan-Li Li, and Shou-Hui Chen. Chitosan/Alginate Multilayer Scaffold Encapsulating Bone Marrow Stromal Cells In Situ on Titanium. Journal of Bioactive and Compatible Polymers,.2009;24(4):301 - 315.
    [131] Perka C, Spitzer RS, Lindenhayn K, Sittinger M, Schultz O. Matrix-mixed culture: new methodology for chondrocyte culture and preparation of cartilage transplants. J Biomed Mater Res. 2000;49(3):305-11.
    [132]孙磊,孟国林,窦榆生,徐建强,刘丹平,胡蕴玉.不同浓度的海藻酸盐与异种骨构建组织工程载体研究[J].中国修复重建外科杂志,2003;17(2):140-142。
    [133]张武杰,李保国,张超,谢鑫荟,汤亭亭.载间充质干细胞海藻酸钠-壳聚糖微胶囊的制备及工艺优化[J].细胞与分子免疫学杂志,2007;23(9):864-866.
    [134] Bertrand Evrard, Annie Dosgilbert, Nathalie Jacquemot, Fran?ois Demeocq,Thibault Gilles, Jacques Chassagne, Marc Berger, Arlette Tridon. CFSE flow cytometric quantification of lymphocytic proliferation in extracorporeal photopheresis: Use for quality control. Transfusion and Apheresis Science,2010;42(1):11-19.
    [135]赵和平,孙元,袁远,仇华吉.基于CFSE染色的猪淋巴细胞增殖试验方法的建立[J].中国免疫学杂志,2009;25(2):2159-163.
    [136]马红梅,邹进,崔福斋,艾红军. CFDA SE标记观察人成骨细胞与骨支架材料附着情况的实验研究[J].口腔医学,2007;27(5):248-251.
    [137]宿玉成,主编.现代口腔种植学[M].北京:人民卫生出版社,2004:8.
    [138] Nyman S,Gottlow J,Karring T,Lindhe J.The regenerative potential of the periodontal ligament.An experimental study in the monkey. J Clin Periodontol. 1982;9(3)::257-265.
    [139] Bratthall G,Soderholm G,Neiderud AM,Kullendorff B,Edwardsson S, Attstrom R. Guided tissue regeneration in the treatment of human infrabony defects.Clinical,radiographical and microbiological results:a pilot study.J Clin Periodontol.1998;25(11 Pt 1):908-914.
    [140] Berry JE,Zhao M,Jin Q,Foster BL,Viswanathan H,Somerman MJ. Exploring the origins of cementoblasts and their trigger factors.Connect Tissue Res.2003;44 Suppl 1:97-102.
    [141] Bhatnagar RS,Qian JJ,Wedrychowska A,Sadeghi M,Wu YM,Smith N. Design of biomimetic habitats for tissue engineering with P-15,a synthetic peptide analogue of collagen.Tissue Eng.1999;5(1):53-65.
    [142] Sonoyama W,Seo BM,Yamaza T,Shi S. Human Hertwig's epithelial root sheath cells play crucial roles in cementum formation.J Dent Res. 2007;86(7):594-599.
    [143] Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament, Lancet.2004;364(9429):149-155.
    [144] Gronthos S,Mrozik K,Shi S,Bartold PM. Ovine periodontal ligament stem cells:isolation,characterization,and differentiation potential.Calcif Tissue Int. 2006;79(5):310-317.
    [145] Flores MG, Hasegawa M, Yamato M, Takagi R, Okano T, Ishikawa I. Cementum-periodontal ligament complex regeneration using the cell sheet technique. J Periodontal Res. 2008;43(3):364-71.
    [146] Cochran DL, King GN, Schoolfield J, Velasquez-Plata D, Mellonig JT, Jones A. The effect of enamel matrix proteins on periodontal regeneration as determined by histological analyses. J Periodontol 2003;74(7):1043-55.
    [147] Yamamoto T, Domon T, Takahashi S, Islam N, Suzuki R. Twisted plywood structure of an alternating lamellar pattern in cellular cementum of human teeth. Anat Embryol (Berl). 2000;202(1):25-30.
    [148] Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 2005;84(5):390-406.
    [149] McCulloch CA, Lekic P, McKee MD. Role of physical forces in regulating the form and function of the periodontal ligament. Periodontol 2000. 2000;24:56-72.
    [150] Cho MI, Garant PR. Development and general structure of the periodontium. Periodontol 2000 2000;24:9-27.
    [151] Butler WT, Brunn JC, Qin C. Dentin extracellular matrix (ECM) proteins:comparison to bone ECM and contribution to dynamics of dentinogenesis. Connect Tissue Res 2003;44(Suppl. 1):171-8.
    [152] Yamamoto T, Domon T, Takahashi S, Wakita M. Formation of an alternate lamellar pattern in the advanced cellular cementogenesis in human teeth. Anat Embryol (Berl) 1997;196(2):115-21.
    [1] Heungsoo Shin, Seongbong Jo, Antonios G. Mikos. Biomimetic materials for tissue engineering. Biomaterials, 2003;24(24):4353-4364.
    [2] Yuqing Wan, Jian Yang, Junlin Yang, Jianzhong Bei, Shenguo Wang. Cell adhesion on gaseous plasma modified poly-( -lactide) surface under shear stress field. Biomaterials, 2003;24(21):3757-3764.
    [3] Peter X. Ma. Biomimetic materials for tissue engineering. Advanced DrugDelivery Reviews, 2008;60(2):184-198.
    [4] Susan Liao, Casey K. Chan, S. Ramakrishna. Stem cells and biomimetic materials strategies for tissue engineering. Materials Science and Engineering:C, 2008;28(8):1189-1202.
    [5] Zuwei Ma, Zhengwei Mao, Changyou Gao Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2007;60(2):137-157.
    [6] J.M. Goddard, J.H. Hotchkiss. Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science,2007;32 (7):698-725.
    [7] Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials, 1999; 20(23-24): 2311-2321.
    [8] Kasemo B. Biological surface science. Surface Science, 2002; 500 (1-3):656-677.
    [9] Puleo DA, Thomas MV. Implant surfaces. Dent Clin North Am. 2006;50(3):323-338.
    [10] Xuanyong Liu, Paul K. Chu, Chuanxian Ding. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering R, 2004; 47(3-4):49–121.
    [11] L. Le Guéhennec, A. Soueidan, P. Layrolle, Y. Amouriq. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials,2007;23(7):844-854.
    [12] Il. Song Park, Tae Gyu Woo, Woo Yong Jeon, Hyeong Ho Park, Min Ho Lee, Tae Sung Bae, Kyeong Won Seol Surface characteristics of titanium anodizedin the four different types of electrolyte.Electrochimica Acta, 2007;53(2): 863-870.
    [13] L. Liu, Z. Liu, K.C. Chan, H.H. Luo, Q.Z. Cai, S.M. Zhang. Surface modification and biocompatibility of Ni-free Zr-based bulk metallic glass. Scripta Materialia, 2008;58(3): 231-234.
    [14] Frank A. Müller, Marco C. Bottino, Lenka Müller, Vinicius A.R. Henriques, Ulrich Lohbauer, Ana Helena A. Bressiani, JoséC. Bressiani. In vitro apatite formation on chemically treated (P/M) Ti–13Nb–13Zr. Dental Materials, 2008;24(1):50-56.
    [15] Jin-Woo Park, Je-Hee Jang, Chong Soo Lee, Takao Hanawa. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry. Acta Biomaterialia,2009;5(6):2311-2321.
    [16] Yu-Feng Chen, Yi-Hsin Hu, Yen-I Chou, Shih-Ming Lai, Chi-Chuan Wang Surface modification of nano-porous anodic alumina membranes and its use in electroosmotic flow.Sensors and Actuators B: Chemical,2010;145(1): 575-582.
    [17] Akira Nagaoka, Ken’ichi Yokoyama, Jun’ichi Sakai. Evaluation of hydrogen absorption behaviour during acid etching for surface modification of commercial pure Ti, Ti–6Al–4V and Ni–Ti superelastic alloys. Corrosion Science, 2010;52(4):1130-1138.
    [18] Guillaume Lamour, Ali Eftekhari-Bafrooei, Eric Borguet, Sylvie Souès, Ahmed Hamraoui Neuronal adhesion and differentiation driven by nanoscale surface free-energy gradients. Biomaterials, 2010;31(14):3762-3771.
    [19] Hyosook Jung, Byeongdo Kwak, Ho Sung Yang, Giyoong Tae, Joon-Seop Kim, Kwanwoo Shin. Attachment of cells to poly(styrene-co-acrylic acid) thinfilms with various charge densities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008;313-314:562-566.
    [20] Yan Xu, Madoka Takai, Kazuhiko Ishihara Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials, 2009;30(28):4930-4938.
    [21] Brett M. Silverman, Kristen A. Wieghaus, and Jeffrey Schwartz. Comparative Properties of Siloxane vs Phosphonate Monolayers on A Key Titanium Alloy. Langmuir. 2005;21(1):225-8.
    [22] D. A. Puleo, R. A. Kissling, M. -S. Sheu. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials, 2002;23(9): 2079-2087.
    [23] Koichi Kato, Emiko Uchida, En-Tang Kang, Yoshikimi Uyama, Yoshito Ikada. Polymer surface with graft chains. Progress in Polymer Science, 2003;28(2): 209-259.
    [24] Yasushi Sasai, Natsuko Matsuzaki, Shin-ichi Kondo, Masayuki Kuzuya Introduction of carboxyl group onto polystyrene surface using plasma techniques. Surface and Coatings Technology, 2008;202(22-23):5724-5727.
    [25] Wei Xia, Carl Lindahl, Jukka Lausmaa, Per Borchardt, Ahmed Ballo, Peter Thomsen, H?kan Engqvist. Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces. Acta Biomaterialia, 2010;6(4):1591-1600.
    [26] Ranella, M. Barberoglou, S. Bakogianni, C. Fotakis, E. Stratakis. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomaterialia, In Press, Corrected Proof, Available online 18 January 2010.
    [27] Qingfeng Zan, Chen Wang, Limin Dong, Peng Cheng, Jiemo Tian. Effect of surface roughness of chitosan-based microspheres on cell adhesion. Applied Surface Science, 2008;255(2):401-403.
    [28] Manabu Miura, Keiji Fujimoto Formation and recovery of a cell sheet by a particle monolayer with the surface roughness. Colloids and Surfaces B: Biointerfaces,2008;66(1):125-133.
    [29] Rainer Müller, Jochen Abke, Edith Schnell, Dieter Scharnweber, Richard Kujat, Carsten Englert, Darius Taheri, Michael Nerlich, Peter Angele.Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen. Biomaterials, 2006;27(22): 4059-4068.
    [30] Poh-Hui Chua, Koon-Gee Neoh, En-Tang Kang, Wilson Wang. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials, 2008;29(10): 1412-1421.
    [31] Dai-Ping Song, Ming-Jun Chen, Ying-Chun Liang, Qing-Shun Bai, Jia-Xuan Chen, Xiong-Fei Zheng Adsorption of tripeptide RGD on rutile TiO2 nanotopography surface in aqueous solution. Acta Biomaterialia, 2010;6(2):684-694.
    [32] Kenji Kashiwagi, Toru Tsuji, Kiyotaka Shiba Directional BMP-2 for functionalization of titanium surfaces.Biomaterials,2009;30(6):1166-1175.
    [33] J?rg Auernheimer, Horst Kessler .Benzylprotected aromatic phosphonic acids for anchoring peptides on titanium. Bioorganic & Medicinal Chemistry Letters,2006;16(2):271-273
    [34] Stefan Rammelt, Till Illert, Susanne Bierbaum, Dieter Scharnweber, HansZwipp, Wolfgang Schneiders. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials,2006;27(32): 5561-5571.
    [35] Sviatlana Kalinina, Hartmut Gliemann, Mónica López-García, Andre Petershans, J?rg Auernheimer, Thomas Schimmel, Michael Bruns, Alexandra Schambony, Horst Kessler, Doris Wedlich Isothiocyanate-functionalized RGD peptides for tailoring cell-adhesive surface patterns. Biomaterials, 2008;29(20):3004-3013.
    [36] Kei Oya, Yuta Tanaka, Haruka Saito, Kazuya Kurashima, Kazuya Nogi, Harumi Tsutsumi, Yusuke Tsutsumi, Hisashi Doi, Naoyuki Nomura, Takao Hanawa.Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG. Biomaterials, 2009;30(7):1281-1286.
    [37] C. Milburn, J. Chen, Y. Cao, G.M. Oparinde, M.O. Adeoye, A. Beye, W.O. Soboyejo. Investigation of effects of Argenine–Glycine–Aspartate (RGD) and nano-scale titanium coatings on cell spreading and adhesion. Materials Science and Engineering: C, 2009;29(1):306-314.
    [38] Celine Chollet, Christel Chanseau, Murielle Remy, Alain Guignandon, Reine Bareille, Christine Labrugère, Laurence Bordenave, Marie-C. Durrie. The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces. Biomaterials, 2009;30(5):711-720
    [39] Dai-Ping Song, Ming-Jun Chen, Ying-Chun Liang, Qing-Shun Bai, Jia-Xuan Chen, Xiong-Fei Zheng Adsorption of tripeptide RGD on rutile TiO2 nanotopography surface in aqueous solution. Acta Biomaterialia, 2010;6(2):684-694.
    [40] C. Chollet, S. Lazare, F. Guillemot, M.C. Durrieu Impact of RGDmicro-patterns on cell adhesion. Colloids and Surfaces B: Biointerfaces, 2010;75(1):107-114.
    [41] Patricia A. Soucy, Lewis H. Romer. Endothelial cell adhesion, signaling, and morphogenesis in fibroblast-derived matrix. Matrix Biology, 2009;28(5):273-283.
    [42] Krishanu Sengupta, Verónica Ivonne Hernández-Ramírez, JoséLuis Rosales-Encina, Ricardo Mondragón, Olga Lilia Garibay-Cerdenares, Donaciano Flores-Robles, Rosario Javier-Reyna, Silvana Pertuz, Patricia Talamás-Rohana. Physical, structural, and functional properties of theβ1 integrin-like fibronectin receptor (β1EhFNR) in Entamoeba histolytica. Infection, Genetics and Evolution,2009;9(5):962-970.
    [43] Cristina González-García, Susana R. Sousa, David Moratal, Patricia Rico, Manuel Salmerón-Sánchez. Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids and Surfaces B: Biointerfaces, 2010;77(2):181-190.
    [44] Michael Beyeler, Christof Schild, Roman Lutz, Matthias Chiquet, Beat Trueb Identification of a fibronectin interaction site in the extracellular matrix protein ameloblastin. Experimental Cell Research, In Press, Corrected Proof, Available online 4 January 2010.
    [45] Martin Schuler, Gethin Rh. Owen, Douglas W. Hamilton, Michael de Wild, Marcus Textor, Donald M. Brunette, Samuele G.P. Tosatti Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: A cell morphology study. Biomaterials, 2006;27 (21):4003-4015.
    [46] Stefan Rammelt, Till Illert, Susanne Bierbaum, Dieter Scharnweber, HansZwipp, Wolfgang Schneiders. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials, 2006;27(32):5561-5571.
    [47] Sandra Werner, Olivier Huck, Beno?t Frisch, Dominique Vautier, RenéElkaim, Jean-Claude Voegel, Gérard Brunel, Henri Tenenbaum. The effect of microstructured surfaces and laminin-derived peptide coatings on soft tissue interactions with titanium dental implants. Biomaterials, 2009;30 (12):2291-2301.
    [48] Michelle D. Kofron, Cato T. Laurencin. Bone tissue engineering by gene delivery. Advanced Drug Delivery Reviews, 2006;58(4):555-576.
    [49] Manolis Heliotis, Ugo Ripamonti, Carlo Ferretti, Cyrus Kerawala, Athanasios Mantalaris, Eleftherios Tsiridis The basic science of bone induction. British Journal of Oral and Maxillofacial Surgery, 2009;47(7):511-514.
    [50] Urist MR, Lietze A, Mizutani H, Takagi K, Triffitt JT, Amstutz J, DeLange R, Termine J, Finerman GA. A bovine low molecular weight bone morphogenetic protein (BMP) fraction. Clin Orthop Relat Res. 1982;(162):219-32.
    [51] J.A. Jansen, J.W.M. Vehof, P.Q. Ruhé, H. Kroeze-Deutman, Y. Kuboki, H. Takita, E.L. Hedberg, A.G. Mikos. Growth factor-loaded scaffolds for bone engineering. Journal of Controlled Release,2005;101(1-3):127-136.
    [52] Huiguang Zhu, Jian Ji, Rongyi Lin, Changyou Gao, Linxian Feng, Jiacong Shen. Surface engineering of poly( -lactic acid) by entrapment of alginate-amino acid derivatives for promotion of chondrogenesis. Biomaterials, 2002;23(15):3141-3148.
    [53] Yuan Lu Cui, Ai Di Qi, Wen Guang Liu, Xiang Hui Wang, Hong Wang, Dong Ming Ma, Kang De Yao. Biomimetic surface modification of poly( -lactic acid) with chitosan and its effects on articular chondrocytes in vitro.Biomaterials, 2003;24(21):3859-3868.
    [54] Doris Klee, Zahida Ademovic, Anja Bosserhoff, Hartwig Hoecker, G. Maziolis, Hans-Josef Erli. Surface modification of poly(vinylidenefluoride) to improve the osteoblast adhesion. Biomaterials, 2003;24(21):3663-3670.
    [55] Jin-Woo Park, Youn-Jeong Kim, Chan Hee Park, Dong-Hee Lee, Young Gun Ko, Je-Hee Jang, Chong Soo Lee. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomaterialia,2009;5(8):3272-3280.
    [56] Tadashi Kokubo, Hyun-Min Kim, Masakazu Kawashita Novel bioactive materials with different mechanical properties. Biomaterials, 2003;24 (13):2161-2175.
    [57] Un S, Durucan C. Preparation of hydroxyapatite-titania hybrid coatings on titanium alloy. J Biomed Mater Res B Appl Biomater, 2009 ;90(2):574-583.
    [58] J. Barbara Nebe, Lenka Müller, Frank Lüthen, Andrea Ewald, Claudia Bergemann, Egle Conforto, Frank A. Müller. Osteoblast response to biomimetically altered titanium surfaces. Acta Biomaterialia, 2008;4 (6):1985-1995.
    [59] Puleo DA, Kissling RA, Sheu MS. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4, on titanium alloy. Biomaterials, 2002;23 (9):2079-2087.
    [60] hi Ding, Jiangning Chen, Shuying Gao, Jianbing Chang, Junfeng Zhang, E. T. Kang Immobilization of chitosan onto poly- -lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells. Biomaterials, 2004;25(6):1059-1067.
    [61] Morra M, Cassinelli C, Carpi A, Giardino R, Fini M. Effects of molecular weight and surface functionalization on surface composition and cell adhesion to Hyaluronan coated titanium. Biomed Pharmacother, 2006;60(8):365-369.
    [62]白薇,陈治清,张敏,等.氨基注入钛表面及其微观分析[J].华西口腔医学杂志,2003,21(1):22-24.
    [63] Jeffrey Schwartz, Michael J. Avaltroni, Michael P. Danahy, Brett M. Silverman, Eric L. Hanson, Jean E. Schwarzbauer, Kim S. Midwood, Ellen S. Gawalt. Cell attachment and spreading on metal implant materials. Materials Science and Engineering: C, 2003;23(3): 395-400.
    [64] Morra M, Cassinelli C, Cascardo G, Carpi A, Fini M, Giavaresi G, Giardino R. Adsorption of cationic antibacterial on collagen-coated titanium implant devices. Biomed Pharmacother, 2004;58(8):418-422.
    [65] Porté-Durrieu MC, Guillemot F, Pallu S, Labrugère C, Brouillaud B, Bareille R, Amédée J, Barthe N, Dard M, Baquey Ch. Cyclo-(DfKRG) peptide grafting onto Ti-6Al-4V: physical characterization and interest towards human osteoprogenitor cells adhesion. Biomaterials. 2004;25(19):4837-46.
    [66] Finke B, Luethen F, Schroeder K, Mueller PD, Bergemann C, Frant M, Ohl A, Nebe BJ. The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials. 2007; 28(30):4521-34.
    [67] Xiao SJ, Wieland M, Brunner S. Surface reactions of 4-aminothiophenol with heterobifunctional crosslinkers bearing both succinimidyl ester and maleimide for biomolecular immobilization. J Colloid Interface Sci. 2005;290(1):172-83.
    [68] Hayakawa T, Yoshinari M, Nemoto K. Direct attachment of fibronectin to tresyl chloride-activated titanium. J Biomed Mater Res A,2003;67(2):684-688.
    [69] Y. Liu, K. de Groot, E.B. Hunziker. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone, 2005;36(5):745-757.
    [70] Decher G. Fuzzy Nanoassemblies: toward layered polymeric multicomposites. Science, 1997; 277:1232-1237.
    [71] Morra M, Cassinelli C, Cascardo G, Carpi A, Fini M, Giavaresi G, Giardino R. Adsorption of cationic antibacterial on collagen-coated titanium implant devices. Biomed Pharmacother. 2004;58(8):418-22.
    [72] Kaiyong Cai, Annett Rechtenbach, Jianyuan Hao, J?rg Bossert, Klaus D. Jandt Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: Characterization and cell behaviour aspects. Biomaterials, 2005;26(30):5960-5971.
    [73] Cai K, Hu Y, Jandt KD. Surface engineering of titanium thin films with silk fibroin via layer-by-layer technique and its effects on osteoblast growth behavior. J Biomed Mater Res A. 2007;82(4):927-35.
    [1] Norowski PA Jr, Bumgardner JD, Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater, 2009;88 (2):530-43.
    [2] Puleo D A, Thoma MV . Implant surface, Dent Clin N Am, 2006, 50: 323-328.
    [3] Malhotra N, Kundabala M, Acharya S. Current strategies and applications of tissue engineering in dentistry--a review part 1. Dent Update. 2009; 36(9):577-9, 581-2.
    [4] Kim TI, Jang JH, Kim HW, Knowles JC, Ku Y. Biomimetic approach to dental implants. Curr Pharm Des, 2008;14(22):2201-11.
    [5] Yen AH, Sharpe PT. Stem cells and tooth tissue engineering. Cell Tissue Res, 2008;331(1):359-72.
    [6] Ueda M, Tohnai I, Nakai H. Tissue engineering research in oral implant surger, Artif Organs,2001;25(3):164-171.
    [7] Yamada Y, Ueda M, Naiki T, Nagasaka T. Tissue-engineered injectable bone regeneration for osseointegrated dental implants, Clin Oral Implants Res,2004;15(5):589-597.
    [8] Kahnberg KE, Vannas-L?fqvist L. Maxillary osteotomy with an interpositional bone graft and implants for reconstruction of the severely resorbed maxilla: a clinical report. Int J Oral Maxillofac Implants. 2005;20(6):938-45.
    [9] Matthew R. Allen, Janet M. Hock, David B. Burr Periosteum: biology, regulation, and response to osteoporosis therapies. Bone, 2004;35 (5):1003-1012.
    [10] Ana Maria S. Sim?o, Marcio M. Beloti, Adalberto L. Rosa, Paulo T. de Oliveira, JoséMauro Granjeiro, Jo?o M. Pizauro, Pietro Ciancaglini. Culture of osteogenic cells from human alveolar bone: A useful source of alkaline phosphatase. Cell Biology International, 2007;31(11):1405-1413.
    [11] Seong Eun Ahn, Sinae Kim, Kyu Hyung Park, Sung Hwan Moon, Hae Jin Lee, Gi Jin Kim, Young Jae Lee, Keun Hong Park, Kwang Yul Cha, Hyung Min Chung. Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochemical and Biophysical Research Communications,2006;340(2):403-408.
    [12] R. Kuroda, K. Ishida, T. Matsumoto, T. Akisue, H. Fujioka, K. Mizuno, H. Ohgushi, S. Wakitani, M. Kurosaka. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis and Cartilage,2007;15(2):226-231.
    [13] Tai G, Polak JM, Bishop AE, Christodoulou I, Buttery LD. Differentiation of osteoblasts from murine embryonic stem cells by overexpression of the transcriptional factor osterix. Tissue Eng. 2004;10(9-10):1456-66.
    [14] Bourne S, Polak JM, Hughes SP, Buttery LD. Osteogenic differentiation of mouse embryonic stem cells: differential gene expression analysis by cDNA microarray and purification of osteoblasts by cadherin-11 magnetically activated cell sorting. Tissue Eng. 2004;10(5-6):796-806.
    [15] Gothard D, Roberts SJ, Shakesheff K, Buttery LD. Engineering Embryonic Stem Cell Aggregation Allows an Enhanced Osteogenic Differentiation In Vitro. Tissue Eng Part C Methods. 2009 Sep 14. [Epub ahead of print].
    [16] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potentialof adult human mesenchymal stem cells. Science. 1999;284(5411):143-147.
    [17] Ohgushi H, Kitamura S, Kotobuki N, Hirose M, Machida H, Muraki K, Takakura Y. Clinical application of marrow mesenchymal stem cells for hard tissue repair, Yonsei Med J,2004,45 Suppl:61-67.
    [18] G. Ciapetti, L. Ambrosio, G. Marletta, N. Baldini, A. Giunti .Human bone marrow stromal cells: In vitro expansion and differentiation for bone engineering. Biomaterials,2006;27(36):6150-6160.
    [19] Soo-Hong Lee, Heungsoo Shin. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced Drug Delivery Reviews, 2007;59(4-5):339-359.
    [20] Jennifer L. Moreau, Hockin H.K. Xu Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate–Chitosan composite scaffold. Biomaterials, 2009;30(14):2675-2682.
    [21] Shayesteh YS, Khojasteh A, Soleimani M, Alikhasi M, Khoshzaban A, Ahmadbeigi N. Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008;106(2):203-9.
    [22] B. Slater, M. Kwan, D. Wan, M. Longaker. From adiposity to bone. International Congress Series,2007;1302:79-88.
    [23] Hicok KC, Du Laney TV, Zhou YS, Halvorsen YD, Hitt DC, Cooper LF, Gimble JM. Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng,2004;10(3-4):371-380.
    [24] Qihai Liu, Lian Cen, Shuo Yin, Lei Chen, Guangpeng Liu, Jiang Chang, Lei Cui. A comparative study of proliferation and osteogenic differentiation ofadipose-derived stem cells on akermanite andβ-TCP ceramics. Biomaterials, 2008;29(36):4792-4799.
    [25] Guangpeng Liu, Heng Zhou, Yulin Li, Gang Li, Lei Cui, Wei Liu, Yilin Cao. Evaluation of the viability and osteogenic differentiation of cryopreserved human adipose-derived stem cells. Cryobiology, 2008;57(1):18-24.
    [26] Francesco Pieri, Enrico Lucarelli, Giuseppe Corinaldesi, NicolòNicoli Aldini, Milena Fini, Annapaola Parrilli, Barbara Dozza, Davide Donati, Claudio Marchetti. Dose-dependent effect of adipose-derived adult stem cells on vertical bone regeneration in rabbit calvarium. Biomaterials, 2010;31(13):3527-3535.
    [27] Urist MR, Kovacs S, Yates KA. Regeneration of an enchondroma defect under the influence of an implant of human bone morphogenetic protein. J Hand Surg, 1986, l1( 3) : 417-419.
    [28] J.A. Jansen, J.W.M. Vehof, P.Q. Ruhé, H. Kroeze-Deutman, Y. Kuboki, H. Takita, E.L. Hedberg, A.G. Mikos. Growth factor-loaded scaffolds for bone engineering. Journal of Controlled Release,2005;101(1-3):127-136.
    [29] Kenji Kashiwagi, Toru Tsuji, Kiyotaka Shiba. Directional BMP-2 for functionalization of titanium surfaces. Biomaterials, 2009;30(6):1166-1175.
    [30] Kawamura M, Urist MR.Human fibrin is a physiologic delivery system for bone morphogenetic protein.Clin Orthop, 1988, 235: 302.
    [31] Oju Jeon, Su Jin Song, Sun-Woong Kang, Andrew J. Putnam, Byung-Soo Kim. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(l-lactic-co-glycolic acid) scaffold. Biomaterials, 2007;28(17):2763-2771.
    [32] Yufeng Zhang, Jianhua Song, Bin Shi, Yining Wang, Xiaohui Chen, Cui Huang, Xuecao Yang, Dongxuan Xu, Xiangrong Cheng, Xinwen Chen. Combination of scaffold and adenovirus vectors expressing bone morphogenetic protein-7 for alveolar bone regeneration at dental implant defects. Biomaterials, 2007;28(31):4635-4642.
    [33] Wei Wu, Fulin Chen, Yanpu Liu, Qin Ma, Tianqiu Mao Autologous Injectable Tissue-Engineered Cartilage by Using Platelet-Rich Plasma: Experimental Study in a Rabbit Model. Journal of Oral and Maxillofacial Surgery, 2007;65(10):1951-1957.
    [34] Yunsong Liu, Yongsheng Zhou, Hailan Feng, Gui-e Ma, Yongwei N. Injectable tissue-engineered bone composed of human adipose-derived stromal cells and platelet-rich plasma. Biomaterials, 2008;29(23):3338-3345.
    [35] Francesco Pieri, Enrico Lucarelli, Giuseppe Corinaldesi, Milena Fini, NicolòNicoli Aldini, Roberto Giardino, Davide Donati, Claudio Marchetti Effect of Mesenchymal Stem Cells and Platelet-Rich Plasma on the Healing of Standardized Bone Defects in the Alveolar Ridge: A Comparative Histomorphometric Study in Minipigs. Journal of Oral and Maxillofacial Surgery,2009;67(2):265-272.
    [36] Kim TI, Jang JH, Kim HW, Knowles JC, Ku Y. Biomimetic approach to dental implants. Curr Pharm Des. 2008;14(22):2201-11.
    [37] G. He, J. Hu, S.C. Wei, J.H. Li, X.H. Liang, E. Luo Surface modification of titanium by nano-TiO2/HA bioceramic coating. Applied Surface Science, 2008;255(2):442-445.
    [38] Wei Xia, Carl Lindahl, Jukka Lausmaa, Per Borchardt, Ahmed Ballo, Peter Thomsen, H?kan Engqvist. Biomineralized strontium-substitutedapatite/titanium dioxide coating on titanium surfaces. Acta Biomaterialia, 2010;6(4):1591-1600.
    [39] D. Puppi, F. Chiellini, A.M. Piras, E. Chiellini. Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 2010;35(4): 403-440.
    [40] A. Michiardi, G. Hélary, P.-C.T. Nguyen, L.J. Gamble, F. Anagnostou, D.G. Castner, V. Migonney. Bioactive polymer grafting onto titanium alloy surfaces. Acta Biomaterialia, 2010;6(2):667-675.
    [41] Xiaoqing Xue, Jin Wang, Ying Zhu, Qiufen Tu, Nan Huang. Biocompatibility of pure titanium modified by human endothelial cell-derived extracellular matrix. Applied Surface Science, 2010;256(12):3866-3873.
    [42] M. Pegueroles, C. Aparicio, M. Bosio, E. Engel, F.J. Gil, J.A. Planell, G. Altankov. Spatial organization of osteoblast fibronectin matrix on titanium surfaces: Effects of roughness, chemical heterogeneity and surface energy. Acta Biomaterialia, 2010;6(1):291-301.
    [43] Hynda K Kleinman, Deborah Philp, Matthew P Hoffman. Role of the extracellular matrix in morphogenesis. Current Opinion in Biotechnology, 2003;14(5):526-532.
    [44]宿玉成,主编.现代口腔种植学[M].北京:人民卫生出版社,2004:8.
    [45] Curtis DA, Sharma AB, Finzen FC.The use of dental implants to improve quality of life for edentulous patients. J Calif Dent Assoc. 2008;36(4):275-80
    [46]徐君伍,主编.口腔修复理论与临床[M].北京:人民卫生出版社, l999:476-480.
    [47] Nyman S,Gottlow J,Karring T,Lindhe J.The regenerative potential of the periodontal ligament.An experimental study in the monkey.J Clin Periodontol.1982;9(3):257-265.
    [48] Bratthall G,Soderholm G,Neiderud AM,Kullendorff B,Edwardsson S, Attstrom R. Guided tissue regeneration in the treatment of human infrabony defects.Clinical,radiographical and microbiological results:a pilot study. J Clin Periodontol. 1998;25(11 Pt 1):908-14.
    [49] Berry JE,Zhao M,Jin Q,Foster BL,Viswanathan H,Somerman MJ. Exploring the origins of cementoblasts and their trigger factors. Connect Tissue Res. 2003;44 Suppl 1:97-102.
    [50] Bhatnagar RS,Qian JJ,Wedrychowska A,Sadeghi M,Wu YM,Smith N. Design of biomimetic habitats for tissue engineering with P-15,a synthetic peptide analogue of collagen. Tissue Eng. 1999;5(1):53-65.
    [51] Sonoyama W,Seo BM,Yamaza T,Shi S. Human Hertwig's epithelial root sheath cells play crucial roles in cementum formation.J Dent Res. 2007;86(7):594-9.
    [52] Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149-55.
    [53] Gronthos S,Mrozik K,Shi S,Bartold PM. Ovine periodontal ligament stem cells:isolation,characterization,and differentiation potential.Calcif Tissue Int. 2006;79(5):310-7.
    [54] Gomez Flores M,Hasegawa M,Yamato M,Takagi R,Okano T,Ishikawa I. Cementum-periodontal ligament complex regeneration using the cell sheet technique. J Periodontal Res. 2008;43(3):364-71.
    [55] Kazuaki Matsumura, S.-H.Suong-Hyu Hyon, Naoki Nakajima, Hiroo Iwata,Akira Watazu, Sadami Tsutsumi. Surface modification of poly(ethylene-co-vinyl alcohol): hydroxyapatite immobilization and control of periodontal ligament cells differentiation. Biomaterials, 2004;25 (19):4817-4824.
    [56] McCulloch CA. Origins and functions of cells essential for periodontal repair: the role of fibroblasts in tissue homeostasis. Oral Dis, 1995;1(4):271-278.
    [57] Bruno Braga Benatti, Karina Gonzales Silvério, Márcio Zaffalon Casati, Enílson Ant?nio Sallum, Francisco Humberto Nociti Jr. Physiological features of periodontal regeneration and approaches for periodontal tissue engineering utilizing periodontal ligament cells. Journal of Bioscience and Bioengineering, 2007;103(1):1-6.
    [58] Anusaksathien O, Giannobile WV. Growth factor delivery to re-engineer periodontal tissues. Curr Pharm Biotechnol. 2002;3(2):129-39.
    [59] Ching-Ni Njauw, Hongwei Yuan, Lei Zheng, Min Yao, Manuela Martins-Green. Origin of periendothelial cells in microvessels derived from human microvascular endothelial cells. The International Journal of Biochemistry & Cell Biology,2008;40(4):710-720.
    [60] Imen Elloumi Hannachi, Kazuyoshi Itoga, Yoshikazu Kumashiro, Jun Kobayashi, Masayuki Yamato, Teruo Okano. Fabrication of transferable micropatterned-co-cultured cell sheets with microcontact printing. Biomaterials, 2009;30(29):5427-5432.
    [61] H. Yamazoe, T. Okuyama, H. Suzuki, J. Fukuda. Fabrication of patterned cell co-cultures on albumin-based substrate: Applications for microfluidic devices. Acta Biomaterialia, 2010;6(2):526-533.
    [62] Yu J, Deng Z, Shi J, Zhai H, Nie X, Zhuang H, Li Y, Jin Y. Differentiation ofdental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng. 2006;12(11):3097-105.
    [63] Cochran DL, King GN, Schoolfield J, Velasquez-Plata D, Mellonig JT, Jones A. The effect of enamel matrix proteins on periodontal regeneration as determined by histological analyses. J Periodontol 2003;74(7):1043-55.
    [64] Yamamoto T, Domon T, Takahashi S, Islam N, Suzuki R. Twisted plywood structure of an alternating lamellar pattern in cellular cementum of human teeth. Anat Embryol (Berl), 2000;202(1):25-30.
    [65] Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 2005;84(5):390-406.
    [66] McCulloch CA, Lekic P, McKee MD. Role of physical forces in regulating the form and function of the periodontal ligament. Periodontol. 2000;24:56-72.
    [67] Cho MI, Garant PR. Development and general structure of the periodontium. Periodontol 2000 2000;24:9-27.
    [68] Butler WT, Brunn JC, Qin C. Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis. Connect Tissue Res 2003;44(Suppl. 1):171-178.
    [69] Yamamoto T, Domon T, Takahashi S, Wakita M. Formation of an alternate lamellar pattern in the advanced cellular cementogenesis in human teeth. Anat Embryol (Berl) 1997;196(2):115-121
    [70] Cheng Lin , Qing-Shan Dong, Lei Wang.Dental implants with the periodontium: A new approach for the restoration of missing teeth. Medical Hypotheses2009;72:58-61
    [71] Bosshardt DD, Sculean A,Windisch P, Pjetursson BE, Lang NP. Effects ofenamel matrix proteins on tissue formation along the roots of human teeth. J Periodontal Res 2005;40(2):158-67.
    [72] Ueda M, Tohnai I, Nakai H. Tissue engineering research in oral implant surgery. Artif Organs, 2001;25(3):164-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700