用户名: 密码: 验证码:
深空探测太阳帆航天器新型轨道设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深空探测有助于人们更好地了解宇宙和人类的起源,促进社会发展和科技进步。随着探测距离的不断增加和任务开支的上涨,目前的连续小推力系统也难以满足某些任务的需求。近年来,人们提出了多种形式的无燃料推进系统,其中太阳帆技术最为成熟。与传统航天器相比,太阳帆能够完成一些能量变化很大的非开普勒轨道,如日心角动量翻转逆向轨道和恒星际探测轨道等。
     在日心二体模型下,太阳帆帆面保持合适的固定姿态角,便可沿着逆向轨道逃离太阳引力场。为求解逆向轨道可行域问题,文中引入速度图法,将参数优化问题转化为方程求根问题,解析地给出了能够形成逆向轨道的最小光压因子。在光压因子给定时,得到了能够形成逆向轨道的精确姿态角范围,并进一步分析了轨道近日点约束对姿态角范围的影响。鉴于逆向轨道的特性,文中通过仿真讨论了轨道的几个应用任务。
     在固定姿态角逆向轨道研究的基础上,本文提出了两类新型逆向周期轨道,包括“三维双逆向周期轨道”和“多重逆向周期轨道”。由于太阳帆没有燃料消耗,人们往往研究其时间最优轨道设计问题。文中应用间接法将时间最优控制问题转化为两点或多点边值问题求解,得到了两类周期轨道的时间最优解。针对两类轨道的平面和三维情况,仿真分析了轨道的特性,并给出了可能的应用任务。针对间接法求解时可能出现局部最优解的问题,文中详细介绍了排除非期望轨道的方法。
     在恒星际探测任务中,太阳帆通过日心光压加速能够达到每年10AU甚至更高的飞行速度。光压加速轨道有两类,分别为正向甩摆和逆向甩摆。针对一次光压加速的正向甩摆轨道,本文提出了新的优化目标函数,数值仿真验证了新函数的有效性,减少了任务时间。另外发现逆向轨道是时间最优控制模型下的局部最优解。为了进一步缩短任务时间,引入子星抛射的概念,在正向甩摆轨道近日点处自由释放一颗子航天器,使得原航天器获得更高的巡航飞行速度。文中利用参数化仿真详细讨论了任务飞行时间与各设计变量之间的关系,突出了子星抛射对任务的益处。
Deep space exploration is not only beneficial for revealing the origin of theuniverse and life in general, but also for promoting the development of the society andadvancements of technology. With the increasing exploration boundaries and a need forshorter mission times and costs, alternatives to the current continuous low-thrustpropulsion systems are being actively sought. Recently, solar sailing has gainedconsiderable interest for use in future missions, since it does not depend on propellants,chemical or nuclear. In contrast to the achievable missions using conventional chemicalpropulsion, a number of non-Keplerian orbits can be enabled by using solar sailing, e.g.,significant variations of the orbital energy can be achieved, resulting in angularmomentum reversal (H-reversal) and interstellar probe trajectories.
     In the two-body heliocentric dynamical model, a sailcraft can escape the solarsystem along the H-reversal trajectory with appropriate constant sail attitude angles. Inthis thesis, a new phase space of hodograph method is adopted to investigate thefeasible region of the H-reversal trajectories. The minimum sail lightness numberrequired to form the H-reversal trajectory can be analytically identified by solving a setof algebraic equations, instead of a parameter optimization problem. For a givenlightness number and the constraint of the perihelion distance, the feasible sail attitudeangles for the H-reversal trajectories can be obtained parametrically. In view of theorbital characteristics, some potential mission scenarios are presented through numericalsimulations.
     Based on the H-reversal trajectory with fixed attitude angles, some novel periodicorbits are proposed, including the “3D double-reversal orbit” and the “multi-reversalorbit”. Since there is no fuel consumption, the time-optimal trajectory design is usuallythe focus for a solar sail mission. The new periodic orbits are obtained from thetime-optimal control model, which is solved using an indirect method, involving thesolution to a two-point (TPBVP) or even a multi-point boundary value problem(MPBVP). Both the planar and3D cases for the periodic orbits are presented along withthe orbit properties and potential mission applications. The method to eliminate theunexpected solutions with respect to the global optimal result is also discussed in detail.
     For the interstellar missions, a sailcraft can reach a cruise speed of10AU/Y oreven higher with the solar photonic assist (SPA) by closely approaching the Sun. Thereare two types of SPA flybys, i.e., the direct flyby and the H-reversal flyby, respectively.The direct single SPA flyby is adopted in this thesis to complete the interstellar mission.A new objective function is proposed leading to an improved time-optimal solution andits advantage is confirmed through numerical simulations. The H-reversal flybys areunanticipated and obtained as locally optimal results. In order to reduce the missiontime further, a design of novel dual-satellite sailcraft is introduced for the direct flybywith probe release at the perihelion point, allowing the interstellar probe to reach ahigher terminal speed. Parametric studies are performed to show the advantages of theprobe release and illustrate the relations between the mission time and the relevantparameters.
引文
[1]李俊峰,宝音贺西.深空探测中的动力学与控制.力学与实践,2007,29(4):1-9.
    [2]叶培建,彭兢.深空探测与我国深空探测展望.深空探测研究,2007,5(1):1-6.
    [3] Dankanich J W. Low-thrust propulsion technologies, mission design, and application.Aerospace Technologies Advancements, Thawar T. Arif (Ed.), ISBN:978-953-7619-96-1.
    [4] Tsiokovski K E. Extension of man into outer space.1921[cf. also, Symposium JetPropulsion No.2, United Scientific and Technical Presses,1936(in Russian)].
    [5] Friedman L, et al. Solar sailing the concept made realistic. AIAA Paper78-82, Jan.1978.
    [6] Tsu T C. Interplanetary travel by solar sail. Journal of the American Rocket Society,1959,29:422–427.
    [7] London H S. Some exact solutions of the equations of motion of a solar sail with a constantsetting. Journal of the American Rocket Society,1960,30:198–200.
    [8] Van der Ha J, Modi V J. Long-term evaluation of three-dimensional heliocentric solar sailtrajectories with arbitrary fixed sail setting. Celestial Mechanics and Dynamical Astronomy,1979,19:113–138.
    [9] Zhukov A N, and Lebedev V N. Variational problem of transfer between heliocentriccircular orbits by means of a solar sail. Cosmic Research,1964,2:41-44.
    [10] Sauer C G Jr. Optimum solar sail interplanetary trajectories. AIAA/AAS AstrodynamicsConference, AIAA Paper76-792, San Diego, CA, Aug.18-20,1976.
    [11] Jayarman T S. Time-optimal orbit transfer trajectory for solar sail spacecraft. Journal ofGuidance, Control, and Dynamics,1979,3(6):536-542.
    [12] Wood L J, Bauer T P, Zondervan K P. Comment on “Time-optimal orbit transfer trajectoryfor solar sail spacecraft”. Journal of Guidance, Control, and Dynamics,1981,5(2):221-224.
    [13] Mengali G, Quarta A. Optimal three-dimensional interplanetary rendezvous using non-idealsolar sail. Journal of Guidance, Control and Dynamics,2005,28(1):173-177.
    [14] Dachwald B, Mengali G, Quarta A, et al. Parametric model and optimal control of solarsails with optical degradation. Journal of Guidance, Control and Dynamics,2006,29(5):1170-1178.
    [15] MacDonald M, McInnes C R. Geosail: an enhanced magnetospheric mission using a smalllow cost solar sail.51stInternational Astronautical Federation Congress,2000.
    [16] McInnes C R, Macdonald M, Angelopolous V, et al. Geosail: exploring the geomagnetictail using a small solar sail. Journal of Spacecraft and Rockets,2001,38(4):622-629.
    [17] Leipold M, Seboldt W, et al. Mercury sun-synchronous polar orbiter with a solar sail. ActaAstronautica,1996,39(1-4):143-151.
    [18] McInnes C R, Hughes G W, Macdonald M. Low cost Mercury orbiter and Mercury samplereturn mission susing solar sail propulsion. The Aeronautical Journal,2003,107:469–478.
    [19] Hughes G W, Macdonald M, et al. Sample return from Mercury and other terrestrial planetsusing solar sail propulsion. Journal of Spacecraft and Rockets,2006,43(4):828–835.
    [20] Dachwald B, Ohndorf A, Wie B. Solar sail trajectory optimization for the Solar PolarImager (SPI) Mission. AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Keystone, Colorado,2006.
    [21] Macdonald M, Hughes G W, et al. Solar polar orbiter: a solar sail technology referencestudy. Journal of Spacecraft and Rockets,2006,43(5):960-972.
    [22] McInnes C R, Simmons J F L. Solar sail halo orbits I: heliocentric case. Journal ofSpacecraft and Rockets,1992,29(4):466-471.
    [23] McInnes C R, Simmons J F L. Solar sail halo orbits II: geocentric case. Journal ofSpacecraft ad Rockets,1992,29(4):472-479.
    [24] Gong Shengping, Li Junfeng, Baoyin Hexi. Passive stability design for the solar sail ondisplaced orbits. Journal of Spacecraft and Rocket,2007,44(5):1071-1080.
    [25] Gong Shengping, Li Junfeng, Baoyin Hexi. Analysis of displaced solar sail orbits withpassive control. Journal of Guidance Control and Dynamics,2008,31(3):782-785.
    [26] McInnes C R, Macdonald M, Simmons J F L. Solar sail parking in restricted three-bodysystem. Journal of Guidance, Control, and Dynamics,1994,17(6),399-406.
    [27] Gong Shengping, Li Junfeng, Baoyin Hexi. Relative motion around artificial Lagrangepoints, Transactions of the Japan Society for Aeronautical and Space Sciences,2009,51(174):220-226.
    [28] McInnes C R. Solar sailing: technology, dynamics and mission applications.1sted.,Springer Praxis, England, U.K.,1999, ISBN:1-85233-102-X.
    [29] Macdonald M, McInnes C R. Solar sail mission applications and future advancement.Second International Symposium on Solar Sailing (ISSS-2010), Brooklyn, NY, USA,2010.
    [30] Lappas V, Leipold M, Lyngvi A, et al. Interstellar heliopause probe: system design of asolar sail mission to200AU. AIAA Guidance, Navigation, and Control Conference andExhibit, San Francisco, California, AIAA-2005-6084,2005.
    [31] Macdonald M, McInnes C R, Hughes G W. Technology requirements of explorationbeyond Neptune by solar sail propulsion. Journal of Spacecraft and Rockets,2010,47(3):472–483.
    [32] Leipold M, Fichtner H, et al. Heliopause explorer–a sailcraft mission to the outerboundaries of the solar system. Acta Astronautica,2006,59:785–796.
    [33] Dachwald B. Solar sail performance requirements for missions to the outer solar systemand beyond. IAC-04-S.P.11, Vancouver, Canada, October2004.
    [34] Sauer C G Jr. Solar sail trajectories for solar polar and interstellar probe missions.Astrodynamics1999, edited by Howell K, Hoots F, and Kaufman B, Advances in theAstronautical Sciences, Univelt, Inc.,2000,103:547–562.
    [35] Leipold M, Wagner O. Solar photonic assist trajectory design for solar sail missions to theouter solar system and beyond. Advances in the Astronautical Sciences,1998,100(2):1035–1045.
    [36] McInnes C R. Delivering fast and capable missions to the outer solar system. Advances inSpace Research,2004,34(1):184–191.
    [37] Macdonald M. Solar sailing: applications and technology advancement. In: Advances inSpacecraft Technologies,2011. InTech, Chapter2. ISBN978-953-307-551-8.
    [38] Janhunen P. Electric sail for spacecraft propulsion. Journal of Propulsion and Power,2004,20(4):763–764.
    [39] Janhunen P, Sandroos A. Simulation study of solar wind push on a charged wire: basis ofsolar wind electric sail propulsion. Annales Geophysicae,2007,25(3):755–767.
    [40] Janhunen P. The electrical sail—a new propulsion method which may enable fast missionsto the outer solar system. Journal of the British Interplanetary Society,2008,61:322–325.
    [41] Quarta A A, Mengali G. Electric sail mission analysis for outer solar system exploration.Journal of Guidance, Control, and Dynamics,2010,33(3):740-755.
    [42] Wei B. Solar sail attitude control and dynamics, Part I. Journal of Guidance, Control, andDynamics,2004,27(4):526-535.
    [43] Wei B. Solar sail attitude control and dynamics, Part II. Journal of Guidance, Control, andDynamics,2004,27(4):536-544.
    [44] Diedrich B L. Attitude control and dynamics of solar sail [Master Thesis]. USA: Universityof Washington,2001.
    [45] Dachwald B. Optimal solar-sail trajectories for missions to the outer solar system. Journalof Guidance, Control and Dynamics,2005,28(6):1187–1193.
    [46] Vulpetti G. Sailcraft at high speed by orbital angular momentum reversal. Acta Astronautica,1997,40(10):733-758.
    [47]王松霞,徐世杰,陈统.太阳帆飞行器轨道动力学分析.中国空间科学技术,2006,26(2):30-37.
    [48] Baoyin Hexi, McInnes C R. Solar sail equilibria in the elliptical restricted three-bodyproblem. Journal of Guidance, Control, and Dynamics,2006,29(3):538-543.
    [49] Baoyin Hexi, McInnes C R. Solar sail halo orbits at the Sun-Earth artificial L1point.Celestial Mechanics and Dynamical Astronomy,2006,94:155–171.
    [50]秦建飞,宝音贺西,李俊峰.飞向Halo轨道的太阳帆航天器轨迹优化设计.清华大学学报(自然科学版),2007,47(6):1361-1365.
    [51] Gong S P, Baoyin H X, Li J F. Solar sail formation flying around displaced solar orbits.Journal of Guidance Control and Dynamics,2007,30(4):1148-1152.
    [52] Gong S P, Baoyin H X, Li J F. Relative orbit design and control of formation arounddisplaced solar orbits. Aerospace Science and Technology,2008,12(2):195-201.
    [53]崔祜涛,骆军红,崔平远,冯军华.基于控制杆的太阳帆姿态控制研究.宇航学报,2008,29(2):560-566.
    [54]崔乃刚,刘家夫,荣思远.柔性太阳帆航天器动力学建模与姿态控制.哈尔滨工业大学学报,2011,43(7):1-5.
    [55] Garner C, Leipold M. Developments and activities in solar sail propulsion. AIAA2000-0126,36thAIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,Huntsville, Alabama, USA, July16-19,2000.
    [56] Nishimura Y, Tsuda Y, Mori O, et al. The deployment experiment of solar sail with asounding rocket.55thIAC conference, Vancouver, Canada,2004:1-8.
    [57] Friedman L, Pichkhadze K, et al. COSMOS1: the attempt to fly the first solar sail mission.34thCOSPAR Scientific Assembly, The Second World Space Congress, Houston, TX,USA, IAA-11-1-03,2002.
    [58]龚胜平.太阳帆航天器动力学与控制研究[博士学位论文].北京:清华大学,2008.
    [59] Mori O, Tsuda Y, Sawada H, et al. World's first demonstration of solar power sailing byIKAROS. Second International Symposium on Solar Sailing (ISSS-2010), Brooklyn, NY,USA,2010.
    [60] Sasaki S, Fujimoto M, et al. Jupiter magnetospheric orbiter and the Trojan asteroid explorerin EJSM.38thCOSPAR Scientific Assembly, Bremen, Germany, July15-18,2010.
    [61] http://science.nasa.gov/science-news/science-at-nasa/2008/31jul_solarsails/[Citied fromNASA website by March25,2013].
    [62] http://en.wikipedia.org/wiki/NanoSail-D2[Citied from Wikipedia by March25,2013].
    [63] Macdonald M, McInnes C R. Solar sail science mission applications and advancement.Advances in Space Research,2010,48:1702-1716.
    [64] Wie B. Sail flatness, attitude, and orbit control issues for an ST-7solar sail spacecraft.NASA SSTWG FY01, Solar Sail Technical Interchange Meeting, NASA Goddard SpaceFlight Center,2001.
    [65] Wright J, Warmke J. Solar sailing mission applications. Paper No.76-808, in: AIAA/AASAstrodynamics Conference, San Diego, August1976.
    [66] Sauer C G Jr. A comparison of solar sail and ion drive trajectories for a Halley's cometrendezvous mission. American Astronautical Society, Paper77-4, Sept.1977.
    [67] Vulpetti G. Missions to the heliopause and beyond by staged propulsion spacecrafts. TheWorld Space Congress,43rd, Washington DC,28Aug.-5Sept.1992, IAA-92-0240.
    [68] http://en.wikipedia.org/wiki/Solar_sail [Citied from Wikipedia by March25,2013].
    [69] Vulpetti G. Sailcraft at high speed by orbital angular momentum reversal. Acta Astronautica,1997,40(10):733-758.
    [70] Vulpetti G.3D high-speed escape heliocentric trajectories by all-metallic-sail low-masssailcraft. Acta Astronautica,1996,39:161-170.
    [71] Vulpetti G. General3D H-reversal trajectories for high-speed sailcraft. Acta Astronautica,1999,40(1):67-73.
    [72] Mengali G, Quarta A A, Romagnoli D, et al. H2-reversal trajectory: a new missionapplication for high-performance solar sails. Second International Symposium on SolarSailing (ISSS2010), Brooklyn, New York,2010.
    [73] Gong Shengping, Li Junfeng, Zeng Xiangyuan. Utilization of an H-reversal trajectory of asolar sail for asteroid deflection. Research in Astronomy and Astrophysics,2011,11(10):1123–1133.
    [74] Mengali G, Quarta A A. Optimal heliostationary missions of high-performance sailcraft.Acta Astronautica,2007,60(8-9):676-683.
    [75] Dandouras I, Pirard B, Prado J Y. High performance solar sails for linear trajectories andheliostationary missions. Advances in Space Research,2004,34(1):198–203.
    [76] Battin R. An introduction to the mathematics and method of astrodynamics. AIAAEducation Series, AIAA, Reston, VA20191,1999.
    [77] Wokes S, Palmer P, and Roberts M. Classification of two-dimensional fixed-sun-anglesolar sail trajectories. Journal of Guidance, Control and Dynamics,2008,31(5):1249-1258.
    [78] Coverstone V L, Prussing J E. Technique for escape from geosynchronous transfer orbitusing a solar sail. Journal of Guidance, Control and Dynamics,2003,26(4):628-634.
    [79] Rowe W M, Luedke E E, Edwards D K. Thermal radiative properties of solar sail filmmaterials.2ndAIAA/ASME Thermophysics and Heat Transfer Conference, Palo Alto,California, USA, May24-26,1978, Paper AIAA78-852.
    [80] Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE InternationalConference on Neural Networks. IV.1995:1942-1948.
    [81] Storn R, Price K. Differential evolution-a simple and efficient heuristic for globaloptimization over continuous spaces. Journal of Global Optimization11,1997:341–359.
    [82] Koon W S, Lo M W, Marsden J E, et al. Dynamical systems, the three body problem andspace mission design. Berlin, Germany: Springer,2007.
    [83] Wilczak D, Zgliczynski P. Heteroclinic connections between periodic orbits in planarrestricted circular three-body problem-a computer sssisted proof. Communications inMathematical Physics,2003,234(1):37-75.
    [84] Wu J, Wang C, Wang S, et al. Solar polar orbit radio telescope for space weather forecast.ILWS workshop2006, GOA, Feb.19-24,2006.
    [85] Slyunyayev M, Konyukhov S. About part of space experiment in solving problem toprotect the Earth against collision with asteroid. Proceedings of the54thInternationalAstronautical Congress, Bremen,2003.
    [86] Degtyarev A, Ventskovsky O. Global challenges‐global solutions: the space approach.Proceedings of the60thInternational Astronautical Congress, Daejeon,2009.
    [87] Jonathan T. Near Earth objects—a threat and an opportunity. Physics Education,2003,38(3):218-223.
    [88] Joris T O. Optimal control of gravity-tractor spacecraft for asteroid deflection. Journal ofGuidance, Control and Dynamics,2010,33(3):823-833.
    [89] Davis J, Singla P, Junkins J L. Identifying near-term missions and impact keyholes forasteroid99942Apophis.7thCranfield Conference on Dynamics and Control of Systemsand Structures in Space.2006. Old Royal Naval College, Greenwich, UK: CranfieldUniversity Press.
    [90] Dachwald B, Kahle R, Wei B. Head-on impact deflection of NEAs: a case study for99942Apophis. Planetary Defense Conference2007, Washington D. C., USA, March05-08,2007.
    [91] Ahrens T J, Harris A W. Deflection and fragmentation of near-earth asteroids. Nature,1992,36:429-433.
    [92] Farquhar R W. The control and use of libration-point satellites [Ph.D. Dissertation]. USA:Dept. of Aeronautics and Astronautics, Stanford University, Stanford, CA,1968.
    [93] Belbruno E. Capture dynamics and chaotic motions in celestial mechanics: withapplications to the construction of low energy transfers. Princeton University Press,2004,ISBN978-0-691-09480-9.
    [94] Boltyanski V. Sufficient conditions for Lagarange, Mayer, and Bolza optimizationproblems. Mathmatical Problems in Engineering,2001,7:177-203.
    [95] Bryson A E, Ho Y C. Applied optimal control. Blaisdell Publishing Corporation,1969,ISBN:69-10425.
    [96] Pontryagin L S, Boltyanskii V G, Gamkrelidze R V, et al. The mathematical theory ofoptimal processes. Authorized Translation from the Russian, Translator: Trirogoff, K. N.,Editor: Neustadt, L.W.,1962.
    [97] Jiang Fanghua, Li Junfeng, Baoyin Hexi. Practical techniques for low-thrust trajectoryoptimization with homotopic approach. Journal of Guidance, Control and Dynamics,2012,35(1):245-258.
    [98] Stimpson L D, Greenfield M L, Jaworski W, et al. Thermal control of a solar sail.2ndAIAA/ASME Thermophysics and Heat Transfer Conference. AIAA Paper78-885, PaloAlto, CA, USA, May24–26,1978.
    [99] McInnes C R. Orbits in a generalized two-body problem. Journal of Guidance, Control andDynamics,2003,26(5):743–749.
    [100] Morselli A. The gamma large area space telescope: GLAST. Chinese Journal of Astronomyand Astrophysics Supplement,2003,3:523–530.
    [101] Quarta A A, Mengali G. Solar sail capabilities to reach elliptic rectilinear orbits. Journal ofGuidance, Control and Dynamic,2011,34(3):923–926.
    [102] http://www.nasa.gov/mission_pages/voyager/[Cited from NASA website by March25,2013].
    [103] Garner C E, Layman W, Gavit S A, et al. A solar sail design for a mission to the nearinterstellar medium. Space Technology and Applications International Forum (STAIF2000), Albuquerque, NM, TR JPL-99-1857,2000.
    [104] Fahroo F, Ross I M. Direct trajectory optimization by a Chebyshev pseudospectral method.Journal of Guidance, Control and Dynamics,2002,25(1):160-166.
    [105] Gao Y, Kluever C A. Low-thrust interplanetary orbit transfers using hybrid trajectoryoptimization method with multiple shooting. AIAA2004-5088, AIAA/AAS AstrodynamicsSpecialist Conference and Exhibit, Providence, RI,2004.
    [106] Sharma D N, Scheeres D J. Solar-system escape trajectories using solar sails. Journal ofSpacecraft and Rocket,2004,41(4):684-687.
    [107] Vulpetti G. Reaching extra-solar-system targets via large post-perihelion lightness-jumpingsailcraft. Acta Astronautica,2011,68(5-6):636-643.
    [108] Quarta A A, Mengali G. Solar sail missions to Mercury with Venus gravity assist. ActaAstronautica,2009,65(3-4):495-506.
    [109] Melman J, Orlando G, and et al. Trajectory optimization for a mission to Neptune andTriton. AIAA2008-7366, AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Honolulu, Hawaii, August18-21,2008.
    [110] Ramanan R V. Strategy for deployment of multiple satellites for collision-free relativeorbital motion. Journal of Guidance, Control and Dynamics,2000,23(3):556-558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700