用户名: 密码: 验证码:
复杂机构结构太阳帆航天器动力学建模与控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有独特推进优势的航天器一直是航天领域研究重点与关注焦点之一。太阳帆这类以光压为动力的新型航天器已成为航天界研究热点之一。因其具有“轻质巨大”、“几何非线性”、“结构机构复杂”等实际力学与机械特性,对太阳帆在轨运行具有重要影响。因此本文对太阳帆结构静力学、结构动力学、姿态动力学、刚柔耦合动力学与控制等问题开展研究,具体研究内容如下:
     第一,对考虑结构几何非线性的太阳帆进行静力学分析及基于此的推力模型折损研究。将方形太阳帆支撑杆视为主体刚度支撑结构,认为帆面随之形变而形变。在帆面太阳角变化较缓情况下,针对帆面与支撑杆为两点和无穷点两种连接方式,对支撑杆受光压静力作用进行静力学研究。首先基于虚功原理建立单元有限元平衡方程,而后集成为整体结构有限元模型,并结合边界条件对所得方程组进行缩减处理,再基于牛顿迭代算法对缩减后的方程组进行数值求解。基于此给出太阳帆因形变而导致的推力折损分析。计算结果说明,支撑杆的非线性轴向位移较大,且相同参数条件下无穷点连接方式下的推力折损小于两点连接方式下的推力折损;
     第二,对考虑结构几何非线性的太阳帆进行结构动力学建模与计算。视支撑杆为主体刚度支撑结构,对其进行光压静力、滑动质量块、摆动的控制叶片等综合作用下的振动分析。首先使用拉格朗日方程方法建立了无穷点连接方式下支撑杆轴向和横向振动微分方程组,模型具有明显的强耦合、非线性和系数矩阵时变等特点。使用隐式无条件稳定的纽马克-贝塔算法将每个时间步的动力学方程组转化为非线性代数方程组,基于牛顿迭代算法对所得方程组进行求解分析。并对滑块质量、滑块滑动速度及控制叶片作用力的角速度对结构振动响应的影响进行分析。计算结果说明滑块质量和滑动速度对支撑杆振动有一定影响,而控制叶片作用力的角速度对振动响应的影响较微弱;
     第三,对考虑控制杆、滑动质量块、控制叶片等复杂机构作用下的大柔性太阳帆进行姿态动力学建模。给定太阳帆基本构型与假设,给出坐标系定义、广义坐标选取和相应坐标变换。给出有效载荷、滑块和支撑杆的位置和速度及相关能量。求取控制叶片广义外力矩。最终基于拉格朗日方程方法建立太阳帆姿态动力学方程,模型具有很强的非线性耦合特点。本章工作为太阳帆刚柔耦合动力学分析与控制奠定基础;
     第四,对在轨正常运行的太阳帆进行刚柔耦合动力学与控制研究。在前述结构振动建模和姿态动力学建模基础之上经简化得到用于姿态/振动控制和动力学仿真的刚柔耦合动力学方程。以地球静止轨道上的太阳帆轨道提升任务为例,开展太阳帆姿态/振动控制研究。其中,针对太阳帆因受质心/压心偏差而致的常值干扰力矩问题,分别设计最优比例积分(PI)、线性二次调节器(LQR)控制器,并进行动力学仿真与对比分析。理论分析与仿真表明,上述两种调节器均可在姿态角、角速度动态响应性能与所需控制力矩之间进行折衷,最优PI调节器在消除太阳帆姿态角稳态偏差方面更具优势。
The spacecraft with unique propulsion advantage is one of the researchpriorities and focuses in the field of aerospace. Solar sail, which makes use ofsunlight as the propulsion thrust, has been one of the hotspots. Solar sail has thefeatures of light-weight, geometric nonlinearity, complex mechanisms and structures.The problems are important for solar sail to operate on orbit. Therefore, thedissertation will carry out research on structural statics and dynamics, attitudedynamics, and rigid-flexible coupling dynamics and control. The detail is asfollowing.
     First, the dissertation analyzes the structural statics for solar sail consideringgeometric nonlinearity, then the thrust loss is carried out based on structuraldeformation. The solar sail support beam is considered as the main stiffness supportstructure and the film surface will be deformation with the support beam. The staticanalysis is carried out for the conditions of infinity and two points connectingbetween support beam and the film undergoing static force generated by lightpressure. The element equations are derived based on the principle of virtual work.Then the whole structure equations are assembled. The reduced equations arederived by considering boundary conditions. Newton-iterative algorithm is proposedto deal with the nonlinear algebraic equations. The thrust loss caused by thedeformation is given based on static analysis. The computational results indicatethat the nonlinear axial displacement is comparatively large, and the thrust loss forinfinity points connecting style is smaller than two points connecting style under thecondition of identical parameters.
     Second, the dissertation studies the structural dynamics for solar sailconsidering geometric nonlinearity. The support beam is considered as the mainsupport structure. The vibration analysis of nonlinear beam undergoing static forcegenerated by light pressure, the force generated by sliding mass and control vanes iscarried out. The axial and transverse vibration equations with the properties ofstrong coupling, nonlinearity and time-varying coefficient matrix are established byLagrange equation method. The vibration equations are transformed into nonlinearalgebraic equations utilizing implicit unconditionally stable Newmark-β algorithmfor each time step. The nonlinear algebraic equations are solved by Newton-iterativealgorithm. Based on the analysis above, the vibration response affected by the massand velocity of the sliding mass, the angular velocity of the force generated bycontrol vanes are analyzed in detail. The computational results indicate that the massand velocity of sliding mass affect the vibration response, and the angular velocity of the force generated by control vanes hardly affects vibration response.
     Third, the dissertation gives the attitude dynamics for large-flexible solar sailconsidering complex mechanisms such as control boom, sliding mass, control vanes.The basic configuration and assumptions, the related reference frames, thegeneralized coordinates, the coordinate transformations are given. The position andvelocity vectors of payload, sliding mass, and support beam are derived. And thegeneralized external torque caused by control vanes is given. The attitude dynamicsequations having the properties of nonlinearity and coupling are obtained byLagrange equation method. The attitude dynamic modeling is the basis for therigid-flexible coupling dynamic analysis and control.
     Fourth, the dissertation carries out rigid-flexible coupling dynamics and controlstudies for solar sail. The rigid-flexible coupling dynamic equations for controllersdesign and dynamic simulations are derived based on vibration analysis and attitudedynamic modeling above-mentioned. Based on above work, the studies ofattitude/vibration control are carried out for solar sail on geostationary orbit (GEO).The controllers designed by optimal proportion and integral (PI) and linear quadraticregulator (LQR) are given for the problem of constant disturbance torque caused bythe center of pressure and the center of mass of solar sail. And the simulations andthe comparations are given. The theory analysis and simulations indicate that theLQR and optimal PI regulators can give a compromise between the dynamicresponse performance of attitude angles, angular velocities and control input torques.The PI regulator has more advantage to eliminate the steady state attitude angleserror for solar sail.
引文
[1] Colin McInnes. Solar Sailing: Technology, Dynamics, and MissionApplications[M]. London: Springer-Praxis,1999:1-12.
    [2] V.Lappas,M. Leipold,A. Lyngvi,P. Falkner,H. Fichtner,H. Fichtner.Interstellar Heliopause Probe: System Design of a Solar Sail Mission to200AU[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.San Francisco, California, AIAA,2005-6085:1-25.
    [3] Bernd Dachwald. Optimal Solar-Sail Trajectories for Missions to the OuterSolar System[J]. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS,2005,28(6):1187-1193.
    [4] Bernd Dachwald. Optimal Solar Sail Trajectories for Missions to the OuterSolar System[C]//AIAA/AAS Astrodynamics Specialist Conference andExhibit, Providence, Rhode Island, AIAA,2004-5406:1-11.
    [5] V. Lappas, S. Wokes, M. Leipold, A. Lyngvi, P. Falkner. Guidance and Controlfor an Interstellar Heliopause Probe (IHP) Solar Sail Mission to200AU[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit,San Francisco, California, AIAA,2005-6085:1-21.
    [6] James D.Biggs, Colin R.McInnes, Thomas Waters. Control of Solar SailPeriodic Orbits in the Elliptic Three-Body Problem[J]. JOURNAL OFGUIDANCE,CONTROL,AND DYNAMICS,2009,32(1):318-320.
    [7] Colin R. McInnes, Malcolm Macdonald, Malcolm Macdonald MalcolmMacdonald. GEOSAIL: Exploring the Geomagnetic Tail Using a Small SolarSail[J]. JOURNAL OF SPACECRAFT AND ROCKETS,2001,38(4):622-629.
    [8] Vaios Lappas, Giovanni Mengali, Alessandro A.Quarta, Jesus Gil-Fernandez,Tilo Schmidt, Bong Wie. Practical Systems Design for anEarth-Magnetotail-Monitoring Solar Sail Mission[J]. JOURNAL OFSPACECRAFT AND ROCKETS,2009,46(2):381-393.
    [9] Roy M. Young. Updated Heliostorm Warning Mission: Enhancements Basedon New Technology[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics, and Materials Conference, Honolulu, Hawaii, AIAA,2007-2249:1-13.
    [10] Hiroshi Furuya, Osamu Mori, Hirotaka Sawada. Manufacturing and Folding ofSolar Sail “IKAROS”[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference, Denver, Colorado, AIAA,2011-1967:1-4.
    [11] Hiraku Sakamoto, Yoji Shirasawa, Daisuke Haraguchi etc. A Spin-up ControlScheme for Contingency Deployment of the Sailcraft IKAROS [C]//52ndAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and MaterialsConference, Denver, Colorado, AIAA,2011-1892:1-15.
    [12] Sawada, H., Mori, O., Okuizumi, N., Shirasawa. Report on Deployment SolarPower Sail Mission of IKAROS[C]//Proceedings of the Second InternationalSymposium on Solar Sailing (ISSS2010), The New York City College ofTechnology of the City University of New York, July2010.
    [13] Nobukatsu Okuizumi, Azusa Mura, Saburo Matsunaga etc. Small-scaleExperiments and Simulations of Centrifugal Membrane Deployment of SolarSail Craft "IKAROS"[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference, Denver, Colorado, AIAA,2011-1888:1-7.
    [14] Ryu Funase, Masayuki Sugita, Osamu Mori, Yuichi Tsuda. MODELING OFSPINNING SOLAR SAIL BY MULTI PARTICLE MODEL AND ITSAPPLICATION TO ATTITUDE CONTROL SYSTEM[C]//ASME2009International Design Engineering Technical Conferences and Computers andInformation in Engineering Conference (IDETC/CIE2009), San Diego,California, August30-September2,2009:1-12.
    [15] Yuya Mimasu, Akifumi Kitajima, Tomohiro Yamaguchi etc. PhotonAcceleration Model of Flexible Spinning Solar Sail [C]//53rd InternationalAstronautical Congress, Houston,USA,October10-19,2002:1-7.
    [16] Les Johnson, Mark Whorton, Andy Heaton, etc. NanoSail-D: A solar saildemonstration mission[J]. Acta Astronautica,2011(68):571-575.
    [17] Chris Biddy, Chris Alford, Michael Bertino, etc. CHALLENGES ANDDESIGN OF LIGHT-SAIL1BOOM DEPLOYMENT MODULE[C]//Proceedings of the Second International Symposium on Solar Sailing (ISSS2010), The New York City College of Technology of the City University ofNew York, July2010:87-90.
    [18] Nehrenz. Initial Design and Simulation of the LightSail-1AttitudeDetermination and Control System[C]//Proceedings of the SecondInternational Symposium on Solar Sailing (ISSS2010), The New York CityCollege of Technology of the City University of New York, July2010:135-140.
    [19] Juan M. Fernandez, VaiosJ. Lappas, Andrew J. Daton-Lovett. Completelystripped solar sail concept using bi-stable reeled composite booms[J]. ActaAstronautica,2011(69):78-85.
    [20] Willem H. Steyna, Vaios Lappas. Cubesat solar sail3-axis stabilization usingpanel translation and magnetic torquing[J]. Aerospace Science and Technology,2011,15(6):476-485.
    [21] Lappas, V., Visagie, L., Adeli, etc. CubeSail: A Low Cost Small CubesatMission for Solar Sailing and Deorbiting LEO Objects[C]//Proceedings of theSecond International Symposium on Solar Sailing (ISSS2010), The New YorkCity College of Technology of the City University of New York, July2010.
    [22] Vaios Lappas, Nasir Adelia, Lourens Visagie, etc. CubeSail: A low costCubeSat based solar sail demonstration mission[J]. Advances in SpaceResearch,2011(48):1890-1901.
    [23]罗达,周军,刘莹.利用太阳帆辅助平动点探测器的轨道保持[J].计算机仿真,2010,27(6):93-97.
    [24]王春成,张旭东,黄文浩,郑津津.探月飞行中太阳帆航天器帆面光学性能演化[J].中国科学技术大学学报,2007,37(1):82-86.
    [25]贾灵伟,张洋,王永.基于粒子群算法的太阳帆同步轨道轨迹优化[J].电子技术,2010(7):12-14.
    [26]钱航,郑建华.太阳帆航天器行星际轨道转移优化算法[J].空间控制技术与应用,2012,38(1):18-22.
    [27]罗超,郑建华,高东.太阳帆航天器的轨道动力学和轨道控制研究[J].宇航学报,2009,30(6):2111-2117.
    [28] Ming Xu, Shi-Jie Xu. Displaced orbits generated by solar sails for thehyperbolic and degenerated cases[J]. Acta Mechanica Sinica,2012,28(1):211-220.
    [29] Ming Xu, Shijie Xu. Structure-Preserving Stabilization for HamiltonianSystem and its Applications in Solar Sail[J]. JOURNAL OFGUIDANCE,CONTROL,AND DYNAMICS,2009,32(3):997-1004.
    [30] C. Talley, W. Clayton, P. Gierow, J. McGee and J. Moore. ADVANCEDMEMBRANE MATERIALS FOR IMPROVED SOLAR SAILCAPABILITIES[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures,Structual Dynamics, and Materials Conference:3rd AIAA GossamerSpacecraft Forum, Denver, Colorado, AIAA,2002-1561:1-8.
    [31] David Edwards,Randy Baggett. Developments and Activities in Solar SailPropulsion[C]//37th AIAA/ASME/SAE/ASEE Joint Propulsion Conferenceand Exhibit, Salt Lake City, Utah, AIAA,2001-3234:1-18.
    [32] F. Dalla Vedova, H. Henrion, M. Leipold, etc. The Solar Sail Materials (SSM)Project-Status of Activities[J]. Advances in Space Research,2011(48):1922-1926.
    [33] Christoph Sickinger, Lars Herbeck, Elmar Breitbach. Structural engineering ondeployable CFRP booms for a solar propelled sailcraft[J]. Acta Astronautica,2006(58):185-196.
    [34] Joachim Block n, Marco Straubel, Martin Wiedemann. Ultralight deployablebooms for solar sails and other large gossamer structures in space[J]. ActaAstronautica,2011(68):984-992.
    [35] Michael A. Brown. A deployable mast for solar sails in the range of100-1000m[J]. Advances in Space Research,2011(48):1747-1753.
    [36] Dale A. Lawrence, Scott W. Piggott. Integrated Trajectory and AttitudeControl for a Four-Vane Solar Sail[C]//AIAA Guidance, Navigation, andControl Conference and Exhibit, San Francisco, California, AIAA,2005-6082:1-16.
    [37]骆军红,袁宴波,廖志忠.基于控制叶片的太阳帆姿态控制系统建模与仿真[J].系统仿真学报,2009,21(24):7920-7924.
    [38]骆军红.李晓东.冯军华.太阳帆航天器被动姿态控制研究[J].飞行力学,2008,26(5):47-50.
    [39] Edward Mettler, A. Behcet A c kmese, Scott R. Ploen. Attitude Dynamics andControl of Solar Sails with Articulated Vanes[C]//AIAA Guidance, Navigation,and Control Conference and Exhibit, San Francisco, California, AIAA,2005-6081:1-20.
    [40]崔祜涛,骆军红,崔平远,冯军华.基于控制杆的太阳帆姿态控制研究[J].宇航学报,2008,29(2):560-566.
    [41] Edward Mettler, Scott R. Ploen. Solar Sail Dynamics and Control using aBoom Mounted Bus Articulated by a Bi-State Two-Axis Gimbal and ReactionWheels[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Monterey, California, AIAA,2002-4992:1-11.
    [42] Christina Scholz, Daniele Romagnoli, Bernd Dachwald, Stephan Theil.Performance Analysis of an Attitude Control System for Solar Sails UsingSliding Masses[J]. Advances in Space Research,2011(48):1822-1835.
    [43] Christina Scholz, Daniele Romagnoli, Bernd Dachwald. PERFORMANCEANALYSIS OF AN ATTITUDE CONTROL SYSTEM FOR SOLAR SAILSUSING SLIDING MASSES[C]//Proceedings of the Second InternationalSymposium on Solar Sailing (ISSS2010), The New York City College ofTechnology of the City University of New York, July2010:171-176.
    [44] Stephanie Thomas, Michael Paluszek, Bong Wie, David Murphy. AOCSPerformance and Stability Validation for Large Flexible Solar SailSpacecraft[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, Tucson, Arizona, AIAA,2005-3926:1-18.
    [45]罗超,郑建华.采用滑块和RSB的太阳帆姿态控制[J].哈尔滨工业大学学报,2011,43(3):95-101.
    [46] Ryu Funase, Yoji Shirasawa, Yuya Mimasu, Osamu Mori, Yuichi Tsuda,Takanao Saiki, Jun’ichiro Kawaguchi. On-orbit Verification of Fuel-FreeAttitude Control System for Spinning Solar Sail Utilizing Solar RadiationPressure[J]. Advances in Space Research,2011(48):1740-1746.
    [47] Bong Wie. Thrust Vector Control Analysis and Design for Solar-SailSpacecraft[J]. JOURNAL OF SPACECRAFT AND ROCKETS,2007,44(3):545-557.
    [48] Bong Wie, David Murphy. Solar-Sail Attitude Control Design for a Sail FlightValidation Mission[J]. JOURNAL OF SPACECRAFT AND ROCKETS,2007,44(4):809-811.
    [49] Bong Wie, David Murphy, Michael Paluszek, Stephanie Thomas. RobustAttitude Control Systems Design for Solar Sails, Part1: PropellantlessPrimary ACS[C]//AIAA Guidance, Navigation, and Control Conference andExhibit, Providence, Rhode Island, AIAA,2004-5010:1-28.
    [50] Bong Wie, David Murphy, Michael Paluszek, Stephanie Thomas. RobustAttitude Control Systems Design for Solar Sails, Part2: MicroPPT-basedSecondary ACS[C]//AIAA Guidance, Navigation, and Control Conference andExhibit, Providence, Rhode Island, AIAA,2004-5011:1-16.
    [51] Bong Wie. Solar Sail Attitude Control and Dynamics, Part2[J]. JOURNAL OFGUIDANCE, CONTROL, AND DYNAMICS,2004,27(4):536-544.
    [52] Bong Wie. Dynamic Modeling and Attitude Control of Solar Sail Spacecraft:Part II[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit,Monterey, California, AIAA,2002-4573:1-12.
    [53] Bong Wie. Solar Sail Attitude Control and Dynamics, Part1[J]. JOURNAL OFGUIDANCE, CONTROL, AND DYNAMICS,2004,27(4):526-535.
    [54] Bong Wie. Dynamic Modeling and Attitude Control of Solar Sail Spacecraft:Part I[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit,Monterey, California, AIAA,2002-4572:1-12.
    [55] Romagnoli, D., Oehlschl gel, T. High Performance Two Degrees of FreedomAttitude Control for Solar Sails[J]. Advances in Space Research,2011(48):1869-1879.
    [56] A Bolle, C Circi. Solar sail attitude control through in-plane moving masses[J].Proceedings of the Institution of Mechanical Engineers, Part G: Journal ofAerospace Engineering,2008,222(4):81-94.
    [57] B D LeFevre, R Jha. Attitude dynamics of a square solar sailcraft duringspin-deployment[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2010,225(3):1-8.
    [58] Brian D. LeFevre, Ratneshwar Jha.(Student Paper) Attitude Dynamics andStability of Solar Sails During Deployment[C]//47thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, andMaterials Conference, Newport, Rhode Island, AIAA,2006-1704:1-15.
    [59] ZHANG Jin, ZHAI Kun, WANG TianShu. Control of large angle maneuversfor the flexible solar sail[J]. SCIENCE CHINA Physics, Mechanics&Astronomy,2011,54(4):770-776.
    [60] Suzanne Weaver Smith, Haiping Song, John R. Baker, Jonathan Black.Flexible Models for Solar Sail Control[C]//46thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&MaterialsConference, Austin, Texas, AIAA,2005-1801:1-30.
    [61] Gong, SP; Li, JF; Baoyin, HX, Solar Sail Three-Body Transfer TrajectoryDesign,Journal of Guidance, Control, and Dynamics,2010,33(3):873-886.
    [62] Gong S P, Li J F, BaoYin H X. Solar sail transfer trajectory from L1point tosub L1point[J] Aerospace Science and Technology,2011,15(7):544-554.
    [63] Gong S P, Li J F, BaoYin H X. Solar radiation pressure used for formationflying control around the Sun-Earth libration point, Applied Mathematics andMechanics-English Edition,2009,30(8):1009-1016.
    [64] Gong S P, BaoYin H X, Li J F. Multi-Satellite Reconfiguration of Formationaround Libration Point[J]. Transactions of the Japan Society for Aeronauticaland Space Sciences,2009,51(174):213-219.
    [65] Gong S P, Li J F, BaoYin H X. Relative Motion around Artificial LagrangePoints, Transactions of the Japan Society for Aeronautical and Space Sciences,2009,51(174):220-226.
    [66] Gong S P, Li J F, BaoYin H X. Formation reconfiguration in restricted threebody problem, Acta Mechanic Sinica,2007,23(3):321-328.
    [67] Roy M. Young. Updated Heliostorm Warning Mission: Enhancements Basedon New Technology[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics, and Materials Conference, Honolulu, Hawaii, AIAA,2007-2249:1-13.
    [68] Li Xuqiang, Liu Luhua, Tang Guojian. Research on solar sail halo orbitsaround artificial lagrange point[C]//Systems and Control in Aeronautics andAstronautics (ISSCAA),20103rd International Symposium on,2010,347-352.
    [69] John L. Mest. THE GEOSTORM WARNING MISSION: ENHANCEDOPPORTUNITIES BASED ON NEW TECHNOLOGY[C]//14th AAS/AIAASpace Flight Mechanics Conference Maui, Hawaii,2004, AAS04-102:1-15.
    [70] Masaki Nakamiya, Hiroshi Yamakawa, Daniel J. Scheeres, etc. InterplanetaryTransfers Between Halo Orbits: Connectivity Between Escape and CaptureTrajectories[J]. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS,2010,33(3):803-813.
    [71] Matteo Ceriotti, Colin R. McInnes. Generation of Optimal Trajectories forEarth Hybrid Pole Sitters[J]. JOURNAL OF GUIDANCE, CONTROL, ANDDYNAMICS,2011,34(3):847-859.
    [72] Martin Thomas Ozimek. Low-Thrust Trajectory Design and Optimization ofLunar South Pole Coverage Missions[D]. Ph.D Thesis, PURDUEUNIVERSITY,2010:1-19.
    [73] MACDONALD M, MCINNES C R. Solar sail capture trajectories atmercury[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Monterey, California, AIAA,2002-4990:1-7.
    [74] HUGHES GW, MACDONALD M, MCINNES etc. Sample return fromMercury and other terrestrial planets using solar sail propulsion[J]. Journal ofSpacecraft and Rockets,2006,43(4):828-834.
    [75] STEVENS R, ROSS I M. Preliminary design of earth-mars cyclers using solarsails[J]. Journal of Spacecraft and Rockets,2005,42(1):132-137.
    [76] Malcolm Macdonald,Gareth W. Hughes, Colin R. McInnes, etc. Solar PolarOrbiter: A Solar Sail Technology Reference Study[J]. JOURNAL OFSPACECRAFT AND ROCKETS,2006,43(5):960-972.
    [77] Bernd Dachwald, Andreas Ohndorf, Bong Wie. Solar Sail TrajectoryOptimization for the Solar Polar Imager (SPI) Mission[C]//AIAA/AASAstrodynamics Specialist Conference and Exhibit, Keystone, Colorado, AIAA,2006-6177:1-18.
    [78] Dr. Travis S. Taylor, Tryshanda T. Moton, Don Robinson. SOLAR SAILAPPLICATION TO COMET NUCLEUS SAMPLE RETURN[C]//39thAIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville,Alabama, AIAA,2003-5275:1-9.
    [79] M. Leipold, A. Lyngvi, P. Falkner, V. Lappas, H. Fichtner, S. Kraft, B. Heber.INTERSTELLAR HELIOPAUSE PROBE DESIGN OF A CHALLENGINGMISSION TO200AU[C]//Proceedings of the Second InternationalSymposium on Solar Sailing (ISSS2010), The New York City College ofTechnology of the City University of New York, July2010:111-119.
    [80] Malcolm Macdonald, Colin McInnes, Gareth Hughes. TechnologyRequirements of Exploration Beyond Neptune by Solar Sail Propulsion[J].JOURNAL OF SPACECRAFT AND ROCKETS,2010,47(3):472-483.
    [81] LAPPAS V, LEIPOLD M, LYNGVI A,et al. Interstellar heliopause probe:system design of a solar sail mission to200AU[C]//AIAA Guidance,Navigation, and Control Conference and Exhibit, San Francisco, California,AIAA,2005-6084:1-25.
    [82] Teppei Oyama, Hiroshi Yamakawa, Yoshiharu Omura. Orbital Dynamics ofSolar Sails for Geomagnetic Tail Exploration[J]. JOURNAL OFSPACECRAFT AND ROCKETS,2008,45(2):316-323.
    [83] Vaios Lappas, Giovanni Mengali, Alessandro A. Quarta. Practical SystemsDesign for an Earth-Magnetotail-Monitoring Solar Sail Mission[J]. JOURNALOF SPACECRAFT AND ROCKETS,2009,46(2):381-393.
    [84] Trevor Williams, Matthew Abate. Capabilities of Furlable Solar Sails forAsteroid Proximity Operations[J]. JOURNAL OF SPACECRAFT ANDROCKETS,2009,46(5):967-975.
    [85] Esther Morrow, D. J. Scheeres, Dan Lubin. Solar Sail Orbit Operations atAsteroids[J]. JOURNAL OF SPACECRAFT AND ROCKETS,2001,38(2):279-286.
    [86] Gong S P, Li J F, Zeng X Y. Utilization of an H-reversal trajectory of a solarsail of asteroid deflection[J]. Research in Astronomy Astrophysics,2011,11(10):1123-1133.
    [87] Gong S P, Gao Y F, Li J F. Dynamics and control of a solar collector systemfor near Earth object deflection [J]. Research in Astronomy Astrophysics,2011,11(2):205-224.
    [88] Colin R. McInnes. Deflection of near-Earth asteroids by kinetic energyimpacts from retrograde orbits[J]. Planetary and Space Science,2004,52(7):587-590.
    [89] Joris T. Olympio. Optimal Control of Gravity-Tractor Spacecraft for AsteroidDeflection[J]. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS,2010,33(3):823-833.
    [90] Bernd Dachwald, Bong Wie. Solar Sail Kinetic Energy Impactor TrajectoryOptimization for an Asteroid-Deflection Mission[J]. JOURNAL OFSPACECRAFT AND ROCKETS,2007,44(4):755-764.
    [91] Bong Wie. Dynamics and Control of Gravity Tractor Spacecraft for AsteroidDeflection[J]. Journal of Guidance, Control, and Dynamics,2008,31(5):1413-1423.
    [92] Bong Wie. Dynamics and Control of Gravity Tractor Spacecraft for AsteroidDeflection[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Honolulu, Hawaii, AIAA,2008-6253:1-23.
    [93]龚胜平.太阳帆航天器动力学与控制研究[D].北京:清华大学博士论文,2009:106-132.
    [94] Gong S P, Li J F, BaoYin H X. Formation flying solar-sail gravity tractors indisplaced orbit for towing near-Earth asteroids[J]. Celestial Mechanics andDynamical Astronomy,2009(105):159-177.
    [95] Gong S P, BaoYin H X., Li J F. Solar sail formation flying around displacedsolar orbits[J]. Journal of Guidance Control and Dynamics,2007,30(4):1148-1152.
    [96] Gong S P, Li J F, BaoYin H X. Analysis of displaced solar sail orbits withpassive control[J]. Journal of Guidance Control and Dynamics,2008,31(3):782-785
    [97] Gong S P, Li J F, BaoYin H X. Passive stability design for the solar sail ondisplaced orbits[J]. Journal of Spacecraft and Rocket,2007,44(5):1071-1080.
    [98] Gong S P, BaoYin H X, Li J F. Relative orbit design and control of formationaround displaced solar orbits[J]. Aerospace Science and Technology,2008,12(2):195-201.
    [99] Gong S P, Li J F, BaoYin H X. Formation around planetary displaced orbit,Applied Mathematics and Mechanics-English Edition,2007,28(6):759-767.
    [100]Gong S P, BaoYin H X., Li J F. Coupled attitude-orbit dynamics and controlfor displaced solar orbits[J]. Acta Astronautica,2009(65):730-737.
    [101]Malcolm Macdonald, Colin McInnes. Solar sail science mission applicationsand advancement[J]. Advances in Space Research,2011,48(11):1702-1716.
    [102]Shahid Baig, Colin R. McInnes. Light-Levitated Geostationary CylindricalOrbits Are Feasible[J]. JOURNAL OF GUIDANCE, CONTROL, ANDDYNAMICS,2010,33(3):783-794.
    [103]Lucking, Charlotte, Colombo, Camilla, Mcinnes, Colin. A passive highlatitude deorbiting strategy[C]//25th Annual IAA/USU Conference on Smallsatellites, Logan, Utah,2011:1-10.
    [104]Tesia L. Albarado, William A. Hollerman, etc. Electron ExposureMeasurements of Candidate Solar Sail Materials. Journal of Solar EnergyEngineering,2005,127(1):125-130.
    [105]William A. Hollerman, Noah P. Bergeron, and Robert J. Moore. ProtonSurvivability Measurements for Candidate Solar Sail Materials[C]//2005IEEENuclear Science Symposium Conference Record, Fajardo,2005:1436-1400.
    [106]Roman Ya. Kezerashvili. Thickness requirement for solar sail foils[J]. ActaAstronautica,2009(65):507-518.
    [107]F. Dalla Vedova, H. Henrion, M. Leipold. THE SOLAR SAIL MATERIALSPROJECT-STATUS OF ACTIVITIES[C]//Proceedings of the SecondInternational Symposium on Solar Sailing (ISSS2010), The New York CityCollege of Technology of the City University of New York, July2010:97-102.
    [108]Hirotaka Sawada, Sagamihara, Osamu Mori, Sagamihara, etc. Mission Reporton The Solar Power Sail Deployment Demonstration of IKAROS[C]//52ndAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and MaterialsConference19th AIAA/ASME/AHS Adaptive Structures Conference, Denver,Colorado, AIAA,2011-1887:1-11.
    [109]James L. Gaspar, Troy Mann, Vaughn Behun. Development of Modal TestTechniques for Validation of a Solar Sail Design[C]//45thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&MaterialsConference, Palm Springs, California, AIAA,2004-1665:1-11.
    [110]David Lichodziejewski, Billy Derbès, Dr. Kara Slade, Troy Mann. VACUUMDEPLOYMENTAND TESTING OF A4-QUADRANT SCALABLEINFLATABLE RIGIDIZABLE SOLAR SAIL SYSTEM[C]//46thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&MaterialsConference, Austin, Texas, AIAA,2005-2122:1-13.
    [111]U. Geppert a, B. Biering, F. Lura, J. Block, M. Straubel, R. Reinhard. The3-step DLR–ESA Gossamer road to solar sailing[J]. Advances in SpaceResearch,2011,48(11):1095-1701.
    [112]S. Nasir Adeli, Theodorous Theodorou, Vaios J. Lappas. GroundDemonstration of a Solar Sail Attitude Control Actuator[C]//AIAA Guidance,Navigation, and Control Conference, Toronto, Ontario Canada, AIAA,2010-8071:1-14.
    [113]Edward E. Montgomery IV, Les Johnson. THE DEVELOPMENT OF SOLARSAIL PROPULSION FOR NASA SCIENCE MISSIONS TO THE INNERSOLAR SYSTEM[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics&Materials Conference, Palm Springs, California, AIAA,2004-1506:1-6.
    [114]Rodney L. Burton, Victoria L. Coverstone. UltraSail-Ultra-Lightweight SolarSail Concept[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, Tucson, Arizona, AIAA,2005-4117:1-12.
    [115]Jules Simo, Colin R. McInnes. Displaced periodic orbits with low-thrustpropulsion in the Earth-Moon System [C]//19th AAS/AIAA Space FlightMechanics Meeting, Georgia, USA, AAS,2009-153:1-15.
    [116]Giovanni Mengali,Alessandro A. Quarta. Tradeoff Performance of HybridLow-Thrust Propulsion System[J]. JOURNAL OF SPACECRAFT ANDROCKETS,2007,44(6):1263-1270.
    [117]Giovanni Mengali,Alessandro A. Quarta. Trajectory Design with HybridLow-Thrust Propulsion System[J]. JOURNAL OF GUIDANCE, CONTROL,AND DYNAMICS,2007,30(2):419-427.
    [118]Hanco Evert Loubser. The development of Sun and Nadir sensors for a solarsail CubeSat[D]. Master of Science in Engineering at the University ofStellenbosch,2011,.
    [119]Philip Hendrik Mey. Development of Attitude Controllers and Actuators for aSolar Sail Cubesat[D]. Master of Science in Electronic Engineering atStellenbosch University,2011.
    [120]ANDRZEJ PUKNIEL. THE DYNAMICS AND CONTROL OF THECUBESAIL MISSION—A SOLAR SAILING DEMONSTRATION[D].Doctor in Philosophy in Aerospace Engineering in the Graduate College of theUniversity of Illinois at Urbana-Champaign,2010.
    [121]Andrew Pukniel, Victoria Coverstone, Rodney Burton, David Carroll. Thedynamics and control of the CubeSail mission: a solar sailing demonstration[J].Advances in Space Research,2011,48(11):1902-1910.
    [122]I. Dandouras, B. Pirard, J. Y. Prado. High performance solar sails for lineartrajectories and heliostationary missions[J]. Advances in Space Research,2004,34(1):198-203.
    [123]Yasuyuki Miyazaki, Funabashi, Yoji Shirasawa, etc. Conserving FiniteElement Dynamics of Gossamer Structure and Its Application to SpinningSolar Sail "IKAROS"[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference19th AIAA/ASME/AHSAdaptive Structures Conference13t, Denver, Colorado, AIAA,2011-2181:1-17.
    [124]David W. Sleight, Danniella M. Muheim. Parametric Studies of Square SolarSails Using Finite Element Analysis[C]//45th AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics&Materials Conference, Palm Springs,California, AIAA,2004-1509:1-13.
    [125]David W. Sleight, Troy Mann, David Lichodziejewski, Billy Derbès. StructuralAnalysis and Test Comparison of a20-Meter Inflation-Deployed SolarSail[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,and Materials Conference, Newport, Rhode Island, AIAA,2006-1706:1-16.
    [126]Hirokata Sawada, Osamu Mori, Nobukatsu Okuizumi. Mission Report on TheSolar Power Sail Deployment Demonstration of IKAROS[C]//52ndAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and MaterialsConference, Denver, Colorado, AIAA,2011-1887:1-11.
    [127]KLAUS-JURGEN BATHE, SAID BOLOURCHI. LARGE DISPLACEMENTANALYSIS OF THREE-DIMENSIONAL BEAM STRUCTURES[J].INTERNATIONAL JOURNAL FOR NUMERICAL METHODS INENGINEERING,1979,14(7):961-986.
    [128]张宏生.杆系结构几何非线性动静态分析方法及其在塔机中的应用[D].哈尔滨工业大学博士学位论文,2009.
    [129]吴庆雄,陈宝春,韦建刚.三维杆系结构的几何非线性有限元分析[J].工程力学,2007,24(12):19-24.
    [130]Adnan Ibrahimbegovi. On finite element implementation of geometricallynonlinear Reissner’s beam theory: three-dimensional curved beam[J].Computer Methods in Applied Mechanics and Engineering,1995(122):11-26.
    [131]WILLIAM F. SCHMIDT. NONLINEAR BENDING OF BEAMS USING THEFINITE ELEMENT METHOD[J]. Computers&Structures,1977,8(1):153-158.
    [132]P. Frank Pai, Tony J. Anderson, Eric A. Wheater. Large-deformation tests andtotal-Lagrangian finite-element analyses of flexible beams[J]. InternationalJournal of Solids and Structures,2000,37(21):2951-2980.
    [133]黄文,李明瑞,黄文彬.杆系结构几何非线性分析的有限元法[J].北京农业工程大学学报,1994,14(4):16-23.
    [134]M. A. OMAR, A. A. SHABANA. A TWO-DIMENSIONAL SHEARDEFORMABLE BEAM FOR LARGE ROTATION AND DEFORMATIONPROBLEMS[J]. Journal of Sound and vibration,2001,243(3):565-576.
    [135]Li Chen. An integral approach for large deflection cantilever beams[J].International Journal of Non-Linear Mechanics,2010,45(3):301-305.
    [136]Marcel H. Ang Jr.t, Wang Wei, Low Teck-Seng. On the Estimation of theLarge Deflection of a Cantilever.Beam. Industrial Electronics, Control, andInstrumentation,1993. Proceedings of the IECON '93., InternationalConference on,15-19Nov1993,1604-1609vol.3
    [137]葛如海,储志俊.悬臂梁集中载荷大挠度弯曲变形的一种解[J].应用力学学报,1997,14(4):71-77.
    [138]A. Banerjee, B. Bhattacharya, A.K. Mallik. Large deflection of cantileverbeams with geometric non-linearity: Analytical and numerical approaches[J].International Journal of Non-Linear Mechanics,2008,43(5):366-376.
    [139]I. F. PA1, A. N. PALAZOTTO. LARGE-DEFORMATION ANALYSIS OFFLEXIBLE BEAMS[J]. International Journal of Solids and Structures,1996,33(9):1335-1353.
    [140]何晓婷,陈山林.悬臂梁大挠度问题的双参数摄动解[J].应用数学和力学,2006,27(4):404-410.
    [141]Ji Wang, Jian-Kang Chen, Shijun Liao. An explicit solution of the largedeformation of a cantilever beam under point load at the free tip[J]. Journal ofComputational and Applied Mathematics,2008,212(2):320-330.
    [142]钱伟长.宁波甬江大桥的大挠度非线性计算问题[J].应用数学和力学,2002,23(5):441-451.
    [143]B.S. Shvartsman. Large deflections of a cantilever beam subjected to afollower force[J]. Journal of Sound and Vibration,2007(304):969-973.
    [144]M. Mutyalarao, D.Bharathi, B.Nageswara Rao. On the uniqueness of largedeflections of a uniform cantilever beam under a tip-concentrated rotationalload[J]. International Journal of Non-Linear Mechanics,2010,45(4):433-441.
    [145]Femke M. Morsch, Nima Tolou, Just L. Herder. COMPARISON OFMETHODS FOR LARGE DEFLECTION ANALYSIS OF A CANTILEVERBEAM UNDER FREE END POINT LOAD CASES[C]. Computers andInformation in Engineering Conference, IDETC/CIE2009, August30-September2,2009, San Diego, California, USA
    [146]SEUNG-YOON LEE. Geometrically exact modeling and nonlinear mechanicsof highly flexible structures[J]. PHD dissertation, the faculty of the graduateschool, university of Missouri-Columbia,
    [147]B.S. Sarma, T.K. Varadan. Lagrange-type formulation for finite elementanalysis of non-linear beam vibrations[J]. Journal of Sound and Vibration,1983,86(1):61-70.
    [148]J. Hino, T. Yoshimura, N. Ananthanarayana. Vibration analysis of non-linearbeams subjected to a moving load using the finite element method[J]. Journalof Sound and Vibration,1985,100(4):477-491.
    [149]T. Yoshimura, J. Hino, T. Kamata, N. Ananthanarayana. Random vibration of anon-linear beam subjected to a moving load: A finite element methodanalysis[J]. Journal of Sound and Vibration,1988,122(2):317-329.
    [150]CHUH MEI. Finite Element Analysis of Nonlinear Vibration of BeamColumns[J]. AIAA Journal,1973,11(1):115-117.
    [151]J. W. Hou, J. Z. Yuant. Calculation of Eigenvalue and Eigenvector Derivativesfor Nonlinear Beam Vibrations[J]. AIAA JOURNAL,1988,26(7):872-880.
    [152]M. MUKHOPADHYAY, A. H. SHEIKH. LARGE AMPLITUDE VIBRATIONOF HORIZONTALLY CURVED BEAMS: A FINITE ELEMENTAPPROACH[J]. Journal of Sound and Vibration,1995,180(2):128-140.
    [153]Sultan A. Q. Siddiqui. Noniinear Beam Behaviour with a Moving Mass[D]. Athesis for the degree of Doctor of Philosophy in Mechanical Engineering of theUniversity of Waterloo,1998.
    [154]M. I. MCEWAN, J. R.WRIGHT, J. E. COOPER AND A. Y. T. LEUNG. ACOMBINED MODAL/FINITE ELEMENT ANALYSIS ECHNIQUE FORTHE DYNAMIC RESPONSE OF A NON-LINEAR BEAM TO HARMONICEXCITATION[J]. Journal of Sound and vibration,2001,243(4):601-624.
    [155]T. Yoshimura, J. Hino, N. Anantharayana. Vibration analysis of a non-linearbeam subjected to moving loads by using the galerkin method[J]. Journal ofSound and Vibration,1986,104(2):179-186.
    [156]Mesut Simsek. Non-linear vibration analysis of a functionally gradedTimoshenko beam under action of a moving harmonic load[J]. CompositeStructures,2010(92):2532-2546.
    [157]M. Simsek, T.Kocaturk. Nonlinear dynamic analysis of an eccentricallyprestressed damped beam under a concentrated moving harmonic load[J].Journal of Sound and Vibration,2009(320):235-253.
    [158]S.A.Q. Siddiqui; M.F. Golnaraghi, G.R. Heppler. Large free vibrations of abeam carrying a moving mass[J]. International Journal of Non-LinearMechanics,2003,38(10):1481-1493.
    [159]T.-P. CHANG, Y.-N. LIU. DYN.AMIC FINITE ELEMENT ANALYSIS OF ANONLINEAR BEAM SUBJECTED TO A MOVING LOAD[J]. Inl. J. SoltiStrucrures,1996,33(12):1673-1688.
    [160]X. XU, W. XU, J. GENIN. A NON-LINEAR MOVING MASS PROBLEM[J].Journal of Sound and Vibration,1997(204):495-504.
    [161]A.N. Yanmeni Wayou, R. Tchoukuegno, P. Woafo. Non-linear dynamics of anelastic beam under moving loads[J]. Journal of Sound and Vibration,2004(273):1101-1108.
    [162]JAMES A. BENNETT, JOE G. EiSLEY. A Multiple Degree-of-FreedomApproach to Nonlinear Beam Vibrations[J]. AIAA JOURNAL,1970,8(4):734-739.
    [163]Dumitru I. Caruntu. ON GEOMETRIC NONLINEAR VIBRATIONS OFNONUNIFORM BEAMS[C]//2007ASME International MechanicalEngineering Congress and Exposition, Seattle, Washington, USA,2007:1-6.
    [164]Marie-Blanche Cornil, Laurent Capolungo, Jianmin Qu, Vivek A. Jairazbhoy.Free vibration of a beam subjected to large static deflection[J]. Journal ofSound and Vibration,2007(303):723-740
    [165]He J, Gong S P, Li J F. A curved surface solar radiation pressure force modelfor solar sail deformation[J]. SCIENCE CHINA Physics, Mechanics&Astronomy,2012,53(1):141-155.
    [166]刘锦阳.刚-柔耦合动力学系统的建模理论研究[D].上海交通大学,2000:15-31.
    [167]谭惠丰,于增信,杜星文.层合板六参量几何非线性高阶剪切理论[J].固体力学学报,2000,21(1):19-26.
    [168]David W. Sleight, Danniella M. Muheim. Parametric Studies of Square SolarSails Using Finite Element Analysis [C]//45th AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics&Materials Conference, Palm Springs,California, AIAA,2004-1509:1-13.
    [169] Yoji Shirasawa, Osamu Mori, Yasuyuki Miyazaki. Analysis of MembraneDynamics using Multi-Particle Model for Solar Sail Demonstrator"IKAROS"[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics and Materials Conference, Denver, Colorado, AIAA,2011-1890:1-14.
    [170]苑春方,彭苏萍,张中杰,刘振宽. Kelvin-Voigt均匀粘弹性介质中传播的地震波[J].中国科学D辑地球科学,2005,35(10):957-962.
    [171]屠善澄.卫星姿态动力学与控制[M].北京:中国宇航出版社2001:22-339.
    [172]解学书.最优控制-理论与应用[M].北京:清华大学出版社,1986:264-610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700