用户名: 密码: 验证码:
新型磁致驱动材料的制备和执行器研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机磁性材料与聚合物复合制成的磁性聚合物材料将磁性能和聚合物的弹性结合在一起,在外界的磁激励下可迅速、可控的改变形状,当外界磁激励撤销后,又能恢复到原始的形状,动作平滑,无噪音,属于柔性介质材料,且是非接触式的。磁性聚合物材料是新颖智能材料。可应用于仿生智能玩具、新型医疗器械和康复器械、可穿戴机器人(Wearable Robot)、磁致动执行器、传感器等。磁性聚合物材料已成为当今功能材料研究领域中的热点之一。
     本文研究内容如下:
     1.本文用化学共沉淀法制备用于磁性复合膜的纳米Fe_3O_4磁性粒子,并采用物理法分散(超声波和机械搅拌)和化学法分散(柠檬酸根偶联剂)相结合的制备方法。以解决金属和聚合物的相容性差、在基体中易于团聚的困难。由于纳米粒子的组成、性能、工艺条件等参数的变化都对复合膜的性能有显著的影响,为控制纳米复合膜的特性,利用混合水平正交表安排正交试验,以产物的磁化率作为衡量指标,采用极差分析法对结果进行分析,得到制备纳米磁性粒子的最佳实验工艺条件。
     对制备得到的纳米Fe_3O_4用X射线衍射确定晶型和晶径大小;透射电子显微镜观察团聚情况和颗粒大小;振动样品磁强计测得其磁化曲线,分析饱和磁化强度。表明样品已达到纳米粒径,分散性远胜于分析纯Fe_3O_4,具有优良的磁性能。
     论文进一步研究了添加柠檬酸根对纳米Fe_3O_4的制备和性能的影响,并发现添加柠檬酸盐能阻碍Fe_3O_4的氧化,可获得粒子直径更小的纳米Fe_3O_4,
     2.研究了自脱落性纳米磁性复合膜和防水性纳米Fe_3O_4/PVA磁性复合膜的制备方法,并通过选用不同的增塑剂和添加量对纳米磁性复合膜进行了改性研究。
     通过红外光谱、热分析、磁化性能测试,研究材料不同的配比和不同的制备工艺对所制备的纳米磁性复合膜材料的性能影响。透射电子显微镜观察发现纳米Fe_3O_4/PVA磁性复合膜比Fe_3O_4/PVA磁性复合膜光滑,并受Fe_3O_4含量影响。论文还研究了膜的厚薄和干燥方式、磁场强度、增塑剂含量、Fe_3O_4含量对纳米磁性复合膜形变特性的影响,并通过磁化率测试试验得到了磁化率最高的膜的配方。
     为克服Fe_3O_4/PVA磁性复合膜在防水性上的缺点,研究了制备Fe_3O_4/PVDF磁性复合膜的方法。透射电子显微镜测试表明其表面比纳米Fe_3O_4/PVA磁性复合膜光滑。力学性能测试得出其弹性模量比添加增塑剂的Fe_3O_4/PVA磁性复合膜更小,延伸率则更大。磁致变形性能和磁化率比不添加增塑剂的Fe_3O_4/PVA磁性复合膜都小,其性能总体上不如添加增塑剂的Fe_3O_4/PVA磁性复合膜。
     3.在磁致驱动执行器的几何参数设计和电磁场分析计算基础上,研制了纳米磁性复合膜制造的磁致驱动执行器的执行装置和控制电路。
     应用ANSYS参数化设计语言,建立了执行器有限元模型,进行磁致驱动执行器的磁场分布分析。获得了执行器的性能参数,进而对执行器的结构参数进行了优化设计。在磁致驱动执行器三维虚拟样机的运动学、动力学实时仿真基础上,用原理样机验证了磁致驱动执行器的动态特性模型的适用性。
Magnetic polymer materials are made by inorganic magnetic materials and polymer. It can combine magnetic and elastic property of polymer together; can rapidly and controllable change shape along with the outside magnetic stimulation. When the stimulation is released, magnetic polymer materials can restore to the original shape, by smooth movement and without noise. It belongs to the flexible medium and non-contact style materials. Magnetic polymer material is new intelligent materials. Which can be used in intelligent bionic toys, new medical equipment and rehabilitation devices, Wearable Robot, actuators drived by magnetic, sensors, etc. Magnetic polymer materials have been regarded as one of the most hotspot researches of functional materials.
     In this paper, we study the content as follows:
     1. This paper preparat the nano Fe_3O_4 magnetic particle of magnetic composite membrane by the chemical coprecipitating method and combine the preparation of method physics (ultrasound and mechanical agitation) and chemical (citric acid root coupling agent) scatter. That solve the difficulty of compatibility of metal and polymer and make them easy to reunion in the matrix.
     Such as the changes of nanoparticles’parameters of composition, performance, technological conditions can significantly influence the performance of the composite film. In order to control characteristics of nano magnetic composite membrane, using mixed levels orthogonal table to arrangement orthogonal test, using the susceptibility of product as measure gauge, analysing result by extreme difference analysis, getting the optimum technological conditions of preparation of magnetic nanoparticles.
     Nano Fe_3O_4 is determined crystal size and crystal size by X-ray diffraction; observed conglomeration and granular size by transmission electron microscope, get magnetization curve by vibrating specimen magnetometer; analysis saturation magnetization of magnetization curve. Show the size of sample has reached nanometer particle size, dispersity of sample is far better than analytical reagent Fe_3O_4, sample has fine magnetic performance.
     In the paper further studying the affect on preparation and performance of nano Fe_3O_4 by add citrate. Found salt of citric acid can hinder oxidation of Fe_3O_4, get nano Fe_3O_4 which grain diameter is smaller.
     2. Study preparation methods of nano magnetic composite membrane which come off by itself and waterproof nano Fe_3O_4/PVA magnetic composite membrane, and study on modification through choose different plasticizer and additive amount on nano magnetic composite membrane.
     Study the effect of different proportion and different preparation process of the preparation of nano magnetic composite membrane material through infrared spectrum, thermal analysis, the test of magnetization Performance. Found the surface of magnetic Fe_3O_4/PVA nano composite membrane is smoother than the surface of Fe_3O_4/PVA magnetic composite membrane, surface is also affected by Fe_3O_4 content. Study characteristics influence of the nano magnetic composite membrane’s deformation through the research of membrane’s thickness, the way to dry, magnetic field intensity, plasticizer content. Get the membrane’s formula which magnetic susceptibility is the highest through the susceptibility test.
     In order to overcome the shortcoming of Fe_3O_4/PVA magnetic composite membrane’s waterproofness, study the preparation method of Fe_3O_4/PVDF magnetic composite membrane. Found the surface of Fe_3O_4/PVDF magnetic composite membrane is smoother than Fe_3O_4/PVA nano magnetic composite membrane through transmission electron microscope, modulus of elasticity of Fe_3O_4/PVDF magnetic composite membrane is more small than magnetic Fe_3O_4/PVA nano composite membrane which is added plasticizer through mechanics performance testing, elongation of Fe_3O_4/PVDF magnetic composite membrane is larger than Fe_3O_4/PVA nano magnetic composite membrane which is added plasticizer. Deformation performance and magnetic susceptibility of Fe_3O_4/PVDF magnetic composite membrane is smaller than Fe_3O_4/PVA magnetic composite membrane which add no plasticizer. Fe_3O_4/PVDF magnetic composite membrane’s performance in general is no better than that of adding plasticizer.
     3. Develop executive device and control circuit of actuators drived by magnetic field which is made by nano magnetic composite membrane base on the geometric parameter design and magnetic field analysis.
     Establish finite element model of the actuators by using ANSYS parametric design language, analysis magnetic field distribution of the actuators drived by magnetic field. Get the performance parameters of the actuators and optimized its structural parameters. Verify the applicability of the dynamic characteristics model of the actuators through prototype based on kinematic and dynamic real-time simulation of 3-D virtual prototype of the actuators.
引文
【1】. Roentgen, W.C., Roentgen, W.C., About the changes in shape and volume of dielectrics caused by electricity [J]. Wied. Ann., 1880, 11, pp: 771-786
    【2】. Julius et Korteweg [J].Wied. Ann., 1881, 12, pp: 647-665
    【3】. Eguchi, M., On the permanent electret [J]. Philosophical Magazine, 1925, 49, pp: 178
    【4】. Fukada, E., J. Yasuda. Piezoelectric effects in collagen [J]. Jpn J. Appl. Phys., 1964, 3, pp: 117-121
    【5】. Kawai, H., The Piezoelectricity of Polyvinylidene Fluoride[J]. Jpn. J. Appl. Phys, 1969, 8, pp: 975-976
    【6】. Pelrine R, Kornbluh R, Pei Q, Joseph J. High-speed electrically actuated elastomers with strain greater than 100%,[J]. Science, 2000, 287(5454), pp: 836-839
    【7】. Pelrine R., Roy Kornbluh, Qibing Pei, Scott Stanford, Seajin Oh, Joe Eckerle, Dielectric Elastomer Artificial Muscle Actuators: Toward Biomimetic Motion[C]. Smart Structures and Materials, 2002 Electroactive Polymer Actuators and Devices (EAPAD), Proceedings of SPIE, 2002, 4695, pp: 126-137
    【8】.苏生荣,应申舜,面向机器人驱动的人工肌肉技术研究进展[J].机械科学与技术,2009, 28(6)
    【9】. P. Sommer-Larsen, G. Kofod, M.H. Shridhar, M. Benslimane, P. Gravesen, Performance of dielectric elastomer actuators and materials[C]. Proceedings of the Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, 2002, 4695, pp: 158-166
    【10】. Q. Pei, M. Rosenthal, R. Pelrine, S. Stanford, R. Kornbluh. Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots[C]. SPIE Smart Structures and Materials 2003 (EAPAD), San Diego, 2003, 5051, pp: 281-290.
    【11】. Jingping Wang, Jianfen Liu, Minfen Lu, Jian Meng, Preparation and Characterization of Fe_3O_4 Single Crystal Nanoparticles with High Crystallinity[C]. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems,Zhuhai, China, 2006, January 18– 21, pp: 459-461
    【12】. Patrick John Prendergast, Peter McHugh. Topics in Bio-Mechanical Engineering[M]. chapter 7, Trinity Centre for Bioengineering & National Centre for Biomedical Engineering Science. 2004, pp: 184 - 215
    【13】. Zhang Q M, Zhao J, Shrout T, Kim N, Cross L E, Amin A, Kulwicki B M. Characteristics of the electromechanical response and polarization fo electric field biased ferroelectrics[J]. J Appl Phys, 1995, 77, pp: 2549-2555
    【14】. Su J. Electroactive Polymers for Robotic Applications[M]. chapter 4, Springer London, London, 2007, pp: 91 - 120
    【15】. Zhang Q M, Bharti V, Zhao X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer[J]. Science, 1998, 280, pp: 2101-2104
    【16】. C. Huang, R. Klein, F. Xia, H. Li, Q.M. Zhang, F. Bauer and Z.-Y. Cheng, Poly(vinylidene fluoride-trifluoroethylene) based high performance electroactive polymers[C], IEEE Trans. Diel. Elec. Insu. 2004, 11, pp: 299-311
    【17】. Xia F, Cheng Z Y, Xu H, Li H, Zhang Q M, Kavarnos G, Ting R, Abdul-Sadek G, Belfield KD. High Electromechanical Responses in a Poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) Terpolymer[J]. Adv Mater, 2002, 14, pp: 1574-1577
    【18】. Zhang Q M, Huang C, Xia F, Su J. Electroactive Polymer Actuators as Artificial Muscles[M]. 2nd edition, Chapter 4, SPIE, Press, Bellingham, WA, 2004, pp: 89-120
    【19】. Chu B J, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q M. A dielectric polymer with high electric energy density and fast discharge speed[J]. Science, 2006, 313(5785), pp: 334-336
    【20】. Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Krüger P, Lêsche M, Kremer F. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers[J]. Nature, 2001,410, pp: 447-450
    【21】. Cheng H, Zhang Q M, Antal J. Nematic anisotropic liquid-crystal gels-self-assemblednanocomposites with high electromechanical response[J]. Adv Funct Mater, 2003, 13, pp: 525-529
    【22】. Kundler I, Finkelmann H. Director reorientation via stripe-domains in nematic elastomers: influence of cross-link density, anisotropy of the network and smectic clusters[J]. Macromol. Chem. Phys., 1998, 199, pp: 677-686
    【23】. Shahinpoor M. Electrically-Activated Artificial Muscles Made With Liquid Crystal Elastomers[J]. Proc SPIE, 2000, 3987(27), pp: 187-192
    【24】. Yoseph Bar-Cohen et. al. Electroactive polymer(EAP) actuators as artificial muscle[M]. 2nd edition, SPIE ress, Bellingham, WA, 2004
    【25】. Uchida M, Taya M. Solid polymer electrolyte actuator using electrode reaction.[J]. Polymer, 2001, 42, pp: 9281-9285
    【26】. Osada Y, Okuzaki H, Hori, H Nature. A polymer gel with electrically driven motility[J]. Nature, 1992, 355, pp: 242-244
    【27】. Otake M, Kagami Y, Kuniyoshi Y., Inaba M., Inoue H. Inverse Kinematics of Gel Robots made of Electroactive Polymer Gel[C]. Proceeding of the 2002 IEEE international conference on Robotics and Automation, Washington DC. 2002, pp: 3224-3229
    【28】. Hirai T, Nemoto H, Hirai M, Hayashi S. Electrostriction of poly(vinyl alcohol) gel - a possibl application for artificial muscle[J]. J Appl Polym Sci, 1994, 53, pp: 79-85
    【29】. Hara S, Zama T, Takashima W, Kaneto K. Free-standing gel-like polypyrrole actuators doped with bis(perfluoroalkylsulfonyl) imide exhibiting extremely large strain[J]. Smart marerials and structures, 2005, 14, pp: 1501-1510
    【30】. Madden J D, Cush R A, Kanigan T S. Fast contracting polypyrrole actuators[J]. Synth Met, 2000, 113(1-2), pp: 185-192
    【31】. Hara S, Zama T, Takashima W, Kaneto K. Artificial muscles based on polypyrrole actuators with large strain and stress induced electrically[J]. PolymJ, 2004, 36, pp: 151-161
    【32】. Spinks GM, Mottaghitalab V, Bahrami-Samani M,Whitten P G, Wallace G G. CarbonNanotube Reinforced Polyaniline Composite Fibres for High Strength Artificial Muscles[J]. Advanced Materials, 2006, 18, pp: 637
    【33】. Vidal F, Plesse C, Palaprat G, Kheddar A, Citerin J, Teyssi′e D, Chevrot C. Conducting IPN actuators: From polymer chemistry to actuator with linear actuation[J]. Synthetic Metals, 2006, 156(21~24), pp: 1299-1304
    【34】. Otero, Jesus G. The Real Exchange Rate in Colombia: An Analysis Using Multivariate Cointegration[J]. Applied Economics, Taylor and Francis Journals, 1999, 31(5), pp: 661-71
    【35】. Lee Seung-Ki, Lee Sang J., An Ho-Jeong, Cha Seung-Eun, Chang Jun Keun, Kim Byungkyu, Pak James Jungho. Biomedical applications of electroactive polymers and shape-memory alloys[C]. Proc. SPIE Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), Yoseph Bar-Cohen, Ed. 2002, 4695, pp: 17-31
    【36】. Spinks G. M., Truong V. T. Work-per-cycle analysis for electromechanical actuators. Sensors And Actuators A-Physical[J]. 2005, 119, pp: 455-461
    【37】. Baughman Ray H, Zakhidov Anvar A, de Heer Walt A. Carbon nanotubes--the route toward applications[J]. Science , 2002, Aug, 2, 297(5582), pp: 787-92.
    【38】. Baughman Ray H., Cui Changxing, Zakhidov Anvar A., et al. Carbon nanotube actuators[J]. Science, 1999, 284(5418), pp: 1340-1344
    【39】. John D.W. Madden, J.N. Barisci, P.A. Anquetil, G.M. Spinks, G.G. Wallace, R.H. Baughman, I.W. Hunter. Fast Carbon Nanotube Charging and Actuation[J]. Advanced Materials, 2006, 18(7), pp: 870-873
    【40】. Fukushima T, AidaIonic T. Ionic liquids for soft functional materials with carbon nanotubes [J]. Chem Eur J ,2007, 13, pp: 5048-5058
    【41】. M.Zrinyi. Intelligent polymer gels controlled by magnetic fields[J]. Colloid Polymer Sci, 2000, 278, pp: 98-103
    【42】. M. Zrinyi, J. Fehe′r, G. Filipcsei. Novel gel actuator containing TiO2 particles operated under static electric field,[J]. Macromolecules, 2000, 33, pp: 5751-5753
    【43】. R V Ramanujan, L L Lao. The mechanical behavior of smart magnet–hydrogel composites[J]. Smart Materials and Structures, 2006, 15, pp: 952-956
    【44】.梅涛,陈永,张培强,伍小平.铁磁橡胶执行器与微型游泳机器人的尺度效应2001, 9(6): 523-525
    【45】. Kornbluh R., Harsha Prahlad, Ron Pelrine, Scott Stanford, Marcus A. Rosenthal, Philip A. von Guggenberg. Rubber to rigid, clamped to undamped: towards composite materials with wide-range controllable stiffness and damping[C]. Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies, ed. E. Anderson, Proc. SPIE, 2004, 5388, pp: 372-386
    【46】. Pelrine R., Peter Sommer-Larsen, Roy Kornbluh, Richard Heydt, Guggi Kofod, Qibing Pei, Peter Gravesen. Applications of Dielectric Elastomer Actuators[C]. Proceedings of SPIE, Smart Structures and Materials, 2001, 4329
    【47】. Eckerle, J., J.S. Stanford, J. Marlow, Roger Schmidt, S. Oh, T. Low, V. Shastri. A biologically inspired hexapedal robot using field-effect electroactive elastomer artificial muscles[C]. Proc. SPIE, Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, 2001, 4332
    【48】. Ebron V H, Yang Z, Seyer DJ, KozlovM E, Oh J, Xie H, Raza J, Hall L J, Ferraris J P, MacDiarmid A G, Baughman R H. Fuel-powered artificial muscles[J]. Science, 2006, 311(5767), pp:1580
    【49】. Kornbluh R., et. al. High-field electrostriction of elastomeric polymer dielectrics for actuation [C]. Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices, Proc. SPIE, 1999, 3669, pp: 149-161
    【50】. Pei Q., R. Pelrine, S. Stanford, R. Kornbluh, M. Rosenthal. Electroelastomer rolls and their application for biomimetic walking robots[J]. Synthetic Metals, 2003, 135(1-3), pp: 129-131
    【51】. Pei Q., M. Rosenthal, Harsha Prahlad, Ron Pelrine, Scott Stanford. Multiple degrees of freedom electroelastomer roll actuators[J]. Smart Materials and Structures, 2004, 13(5), pp: N86-N92
    【52】. F.Carpi, D. De Rossi. Dielectric elastomer cylindrical actuators: electromechanical modeling and experimental evaluation[J]. Materials Science and Engineering C, 2004, 24 , pp: 555-562
    【53】. F. Carpi, D. De Rossi. Theoretical description and fabrication of a new dielectric elastomer actuator showing linear contractions[C]. Proc. of Actuator 2004, Bremen June 14-16, 2004, pp: 344-347
    【54】. Carpi federico, De rossi danilo. Electroactive polymer contractible actuator[P]. European Patent: WO2004109817, December 16, 2004
    【55】. Pelrine Ronald E., Kornbluh Roy D. Electroactive polymer devices[P]. US Patent: 6,545,384. July 20, 2000
    【56】. Pelrine Ronald E., Kornbluh Roy D., Pei Qibing, Joseph Jose P. Electroactive polymer electrodes[P]. US Patent: 6,583,533. November 15, 2001
    【57】. Pei Qibing, Pelrine Ronald E., Kornbluh Roy D. Electroactive polymers[P]. US Patent: 6,812,624. July 20, 2000
    【58】. Yoseph Bar-Cohen. EAP actuators as Artificial muscle[M]. SPIE-International Society for Optical Engine, October 2001
    【59】. Pelrine Ronald E., Kornbluh Roy D., Eckerle Joseph S. Elastomeric dielectric polymer film sonic actuator[P]. US Patent: 6,343,129. July 19, 1999
    【60】. Andreas Wingert, Matthew Lichter, Steven Dubowsky, Moustapha Hafez. Hyper-Redundant Robot Manipulators Actuated by Optimized Binary Dielectric Polymers[C]. Smart Structures and Materials Symposium 2002: Electroactive Polymer Actuators and Devices, Proc. SPIE, 2002, pp: 415-423
    【61】. Kornbluh Roy D., Pelrine Ronald E. Gallagher Paul K., Eckerle Joseph S., Czyzyk Donald E., Shastri Subramanian Venkat, Pei Qibing. Electroactive polymer animated devices[P]. US Patent 6,586,859. April 4, 2001
    【62】. Yoseph Bar-Cohen. Electroactive polymer[EAP] actuators as artificial muscles-capabilities, potentials and challenges[C], Robotics 2000 and Space 2000, Albuquerque, NM, USA, 2000, pp: 191-02.
    【63】. Y.Bar-Cohen, S.Leary, M.Shahinpoor, et al. Flexible low-mass device and mechanisms actuated by electroactive polymers[C], Proceeding of SPIE Conference Electroactive Polymer Actuators and Devices, Newport Beach, CA, 1999, pp: 51-56.
    【64】. Pelrine Ronald E., Kornbluh Roy D. Master/slave electroactive polymer systems[P]. US Patent: 6,876,135. May 31, 2002
    【65】. Pei Qibing, Pelrine Ronald E., Kornbluh Roy D. Stanford Scott E., Bonwit Neville A., Heim Jonathan R. Rolled electroactive polymers[P].US Patent: 6,891,317. May 21, 2002
    【66】. F. Carpi, D. De Rossi. Electromechanical characterization of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counter loads[J]. Sensors and Actuators A, 2003, 107, pp: 85-95
    【67】.李国栋编著.当代磁学[M].中国科学技术大学出版社, 1999
    【68】.戴道生,钱昆明著.铁磁学[M].北京:科学出版社, 1987
    【69】. Feng-Xiang Wang, Wen-Jun Li, Qing-Xin Zhang, et al. Design and Control of Linear Actuators Made by Magnetically Controlled Shape Memory Alloy[C]. Proceeding of the 2005 IEEE International Conference on Mechatronics, TaiPei, TaiWan, 2005, pp: 583-588
    【70】. Daye, Natalie. SWW celebrates five years[J]. Design Engineering(Toronto), 2003, 49(3), pp: 16-18
    【71】.崔丹,沈晓冬,林本兰.四氧化三铁纳米粉的制备应用[J].无机盐工业, 2005, 37(2): 4-6
    【72】.陈兵,樊玉光,周三平.共沉淀法制备Fe_3O_4纳米粉体工艺的优化[J].机械工程材料, 2006, 30(9): 61-63
    【73】.黄昆原著;韩汝琦改编.固体物理学[M].北京:高等教育出版社, 1988. 10
    【74】.许并社等编著.纳米材料及应用技术[M].北京:化学工业出版社, 2003. 12
    【75】. Franz Faupel, Ralf Willecke, Axel Thran. Diffusion of metals in polymers[J]. Materials Science and Engineering, 1998, 22, pp: 1-55
    【76】. Ishikawa T, Kataoka S, Kandori K. The influence of carboxylate ions on the growthofβ-FeOOH particles[J]. J. Mater. Sci, 1993, 28, pp: 2693-2698
    【77】. A. Bee, R. Massart, S. Neveu. Synthesis of very fine maghemite particles[J]. J. MMM, 1995, 149, pp: 6-9
    【78】. K. J. Davies, et al. J. MMM, 1993, 122, pp: 24-28
    【79】. Kandori K, Fukuoka M, Ishikawa T. Effects of citrate ions on the formation of ferric oxide hydroxide particles[J]. J. Mater. Sci, 1991, 26, pp: 3313-3319
    【80】.汪汉斌,超小型高分散纳米四氧化三铁粒子的制备及表征[D].华中科技大学硕士学位论文, 2004, 7
    【81】.梁敬魁编著.粉末衍射法测定晶体结构[M].北京:科学出版社, 2003
    【82】.黄昆原著,韩汝琦改编.固体物理学[M].北京:高等教育出版社, 1988, 10
    【83】.崔丹,沈晓冬,林本兰.四氧化三铁纳米粉的制备应用[J].无机盐工业, 2005, 37(2): 4-6
    【84】.陈兵,樊玉光,周三平.共沉淀法制备Fe_3O_4纳米粉体工艺的优化[J].机械工程材料, 2006, 30(9): 61-63
    【85】.李砅,侯乙东,李旦振等.纳米Fe_3O_4磁性粒子的制备及物性研究[J].无机材料学报, 2003, 18(4): 929-932
    【86】.黄双,杨眉,徐松等.微乳液法制备纳米Fe_3O_4磁性颗粒的研究[J].武汉工程职业技术学院学报, 2006, 18(3): 39-44
    【87】.李卫,杨华.添加剂对四氧化三铁粒子分散性的影响[J].湖南师范大学自然科学学报, 2004, 27(4): 51-54
    【88】.陈辉.高温分解法合成Fe_3O_4磁性纳米颗粒[J].河南化工, 2004, (2): 11-12
    【89】.英廷照,沈辉,章永化等.高分散纳米Fe_3O_4颗粒的制备和表征[J].机械科学与技术, 1998, 17(11): 147-148, 151
    【90】.许并社等编著.纳米材料及应用技术[M].北京:化学工业出版社, 2003, 12
    【91】.高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].化学工业出版社, 2003: 144-207
    【92】.梁发思,谢世杰译. E.P.Plueddemann等著.硅烷和钛酸酯偶联剂[M].上海科学技术文献出版社, 1987: 1-20
    【93】.王世荣,李祥高,刘东志等.表面活性剂化学[M].北京:化学工业出版社, 2005
    【94】.邹涛,郭灿雄,段雪等.强磁性Fe_3O_4纳米粒子的制备及其性能表征[J].精细化工, 2002, 19(12): 707-710
    【95】.宋丽贤,卢忠远,刘德春等.分解沉淀法制备磁性纳米Fe_3O_4的研究及表征[J]. 化工进展, 2006, 25(1): 54-57
    【96】.汪汉斌,刘祖黎,卢强华等.柠檬酸根对纳米Fe_3O_4颗粒的生长及性能的影响[J].无机化学学报, 2004, 20(11): 1279-1083
    【97】.武汉大学化学与分子科学学院实验中心编.物理化学实验[M].武汉:武汉大学出版社, 2004, 8
    【98】.郑传明,吕桂琴编.物理化学实验[M].北京:北京理工大学出版社, 2005, 8
    【99】.张克立.固体无机化学[M].武汉:武汉大学出版社, 2005, 1
    【100】.江波,陈埔,向明.化学交联PVA水凝胶中水的状态[J].高分子材料科学与工程, 1994, 1: 130-132
    【101】. Yutaka Sakurada, AIdnofi Sueoka, Masam Kawahashi. Blood Purification Device Using Membranes Dedved Poly (Vinyl alcoho1) and Copolymer ofEthylene and Vinyl Alcohol[J]. Polym J, 1987, 19(5), pp: 501-513
    【102】.张炜,李辉勤,俞宏英,孟惠民,顾正秋,孙冬柏. PVA水凝胶(PVA-H)的干燥与溶胀性能[J].北京科技大学学报, 2002, 24(2): 161-164.
    【103】. Guifen Yi, Xiaobin Zhang, Fu Liul, Jipeng Cheng, Yuhong Mil, Huai Zhang. Preparation of CNTs-supported Fe3O4 and Fe3C Nanoparticles and the Investigation on their Magnetic Properties[C]. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems Zhuhai, China, 2006, pp: 649-652,
    【104】.唐龙贵,翁志学,潘祖仁.聚乙烯醇(PVA)使用及其改性[J].棉纺织技术, 1994, (7): 409
    【105】.吴自强,邹异.氨基改性PVA缩甲醛胶的合成[J].化学建材, 1996, (1): 19
    【106】.徐京鹏,徐耀,王远兴.聚乙烯醇引入有机硅基团的研究[J].江西化工, 1999, (4): 15
    【107】.林芸,陈秉栓.磷酸醋化聚乙烯醇的合成工艺及其性质初探[J].化学应用与研究,1996, 8(4): 547.
    【108】.宋旭艳,彭少贤,黄龙.卤化聚乙烯醇的研究[J].中国塑料, 2001, 9(9): 36
    【109】.夏赤丹,湛洁,余汉年,范汉元.泡花碱和己二异氰酸酷同时对聚乙烯醇胶水改性的研究[J].中国胶粘剂, 2002, 12(3): 26-27
    【110】.张宝贵,付圣权,张可达.碱金属离子改性聚乙烯醇渗透汽化膜[J].应用化学, 1994, 11(2): 81-84
    【111】.周向东.接枝改性聚乙烯醇的纯绵织物阻燃机理[J].印染, 2001, 6: 27-28
    【112】.张公正,周名华,蔡建强,陈俊南,改性聚乙烯醇偏光膜的制备及性能研究[J]. 功能材料, 1995, 26(1): 82-85
    【113】.孟平蕊,李良波,孟桂芳,陈翠仙,蒋维钧.碱金属盐改性PvA-MA酯化交联膜的制备与表征[J].合成树脂及塑料, 2000, 17(6): 6-8
    【114】. Da-Jen Yao1, Chun-Yi Lin, Fangang Tseng. The application of Iron Oxide magnetic nanoparticles to improve the binding efficiency of the IgG and Thiol SAMs[C]. Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, 2007, January 16 - 19, pp: 172-175
    【115】.谢琼,陈国斌,张一甫.改性脉醛树脂胶粘剂的合成研究[J].岳阳师范学院学报, 2002, 15(3): 70-73
    【116】.潘传章,高分子水溶性胶粉的研制及应用[J].化工技术与开发, 2002, 31(4): 43-44
    【117】.孟令辉,邢玉清,张宝山.集成材用胶粘剂的研制[J].化工与粘合,1996, 3: 144-1 47
    【118】. Li R H, Barbari T A. Performance of Poly(vinylalcohol) thin一gel comPosite ultra filtr ation membranes[J]. J Membrane sci, 1995, 105, pp: 71-78
    【119】. Lang K, Sourirajan S, Matsura T, etal. A study on the PreParation of PolyVinyl alcohol thin一film comPosite membranes and reverse osmosis testing[J]. Desalination, 1996, 104, pp: 185-196
    【120】. Llng K, Matsuura T, Chowclhury G. PreParation and testing of PolyVinyl alcohol compo sit emembranes forreverse osmosis[J]. The canadian J Chem Eng, 1995, 73, pp:681-696
    【121】. LI R H, Barbari T A. Characterization and mechanical support of asymmetric hydrogen membranes based on the inteifacial cross一linking of poly(vinylalcohol) with tolu ene diisocyanate[J]. J Membrane sci, 1996, 111, pp: 115-112
    【122】.盛野,王洪艳.改进聚乙烯醇基料耐水性的研究[J].化学世界, 2001, 12: 633-634
    【123】.邱运仁,张启修,吴振东.改性PVA超滤膜的制备与性能研究[J].膜科学与技术, 2001, 5(21): 25-28
    【124】.项爱民等.聚乙烯醇改性及吹膜技术研究[J].中国塑料, 17(2), 2003: 60-62
    【125】.杜拴丽,张春燕,改性聚乙烯醇/淀粉无醛胶粘剂的研究[J].中国胶粘剂, 2003, 13 (1)
    【126】.陈文炳,郁建.改性PVA用于烷烃、芳烃的脱水研究[J].石油化工, 1995, 24(9): 619-621
    【127】.范悦,稽培军,徐坚,叶美玲.聚乙烯醇高分子表面活性剂的研究[J].化工冶金, 1997, 18(3): 216-219
    【128】.苑会林,马沛岚,李军.聚乙烯醇吹膜加工性能研究[J].塑料工业, 31(9), 2003: 23-25
    【129】.王蜻,苑会林等.改性剂对聚乙烯醇薄膜性能的影响[J].塑料工业, 32(7), 2004: 30-31
    【130】.祝志峰.几种极性增塑剂对淀粉/PVA混合浆相分离速度的影响[J].武汉大学学报, 2001, 47(2): 161-164.
    【131】.德言红,外光谱法在高分子研究中的应用[M].北京:科学出版社, 1982: 83-88
    【132】.郑传明,吕桂琴编.物理化学实验[M].北京:北京理工大学出版社, 2005.8
    【133】.武汉大学化学与分子科学学院实验中心编.物理化学实验[M].武汉:武汉大学出版社, 2004.8
    【134】.张静,涂伟萍,夏正斌.聚乙烯醇改性研究进展[J].合成纤维工业, 2005, 28 (1): 57-60
    【135】.徐京鹏,徐耀,王远兴.聚乙烯醇引入有机硅基团的研究[J].江西化工, 1997 (4): 15-18
    【136】.樊晓东,张静,孔祥文.复合改性聚乙烯醇胶粘剂的研制[J].沈阳化工学院学报, 2006, 20(4): 261
    【137】.石万聪,石志博,蒋平平.增塑剂及其应用[M].北京:化学工业出版社, 2002
    【138】.孙宝玉,林洁琼,梁淑卿,等.压电式微定位机构极其控制系统的研究[J].压电与声光, 2005, 27(2): 139-141
    【139】.林伟,叶虎平,叶梅等.一种新型压电陶瓷控制器的研究[J].压电与声光, 2005, 7(3): 247-249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700