用户名: 密码: 验证码:
复杂光学曲面慢刀伺服超精密车削技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂光学曲面在提高光学系统性能。实现特殊光学特性。减少系统零件数量。减小系统尺寸等方面有许多显而易见的优点。随着光电信息技术的迅猛发展。复杂光学曲面零件的应用领域将十分广阔。复杂光学曲面无疑是非球面光学零件发展和应用的趋势之一。但目前还远未能纳入到现代光学系统的主流当中。问题的重要原因之一就在于复杂光学曲面的超精密制造相当困难。随着机床技术的进步。直线电机驱动、主轴伺服等一系列新技术应用于超精密车床的设计中。使得一种新的基于慢刀伺服技术的超精密车削创成加工成为可能。机床具有主轴伺服的多轴联动功能。刀具可严格按照规划路径相对于工件复杂表面运动。实现各种高精度的复杂曲面加工。本文以慢刀伺服车削技术作为复杂光学曲面的加工手段。对其创成原理、刀具设计、轨迹规划和精度分析等几方面的关键技术开展研究。
     1、慢刀伺服超精密车削技术原理及关键技术
     通过对机床结构和创成运动的分析。研究了慢刀伺服车削加工原理。揭示了其与快刀伺服和普通三轴数控加工之间的根本区别。分析指出:直线轴运动性能、先进插补技术以及主轴位置控制是技术关键所在。为研究制约进给驱动性能的关键因素。建立了直线驱动进给系统模型。开展了一系列仿真及实验研究。研究表明进给轴达到高动态、高精度驱动的必要条件是:导轨具有足够的动态刚度。反馈环节量化误差噪声抑制到较低水平。针对复杂曲面数控插补问题。提出了适应加工特点的参数计算方法。将PvT插补技术引入复杂曲面车削。解决了使用线性插补存在的弊端。从伺服轴驱动能力限制和轨迹跟踪精度两个角度分析。得到伺服轴执行能力幅频图。用于确定可加工范围。这些研究为构建慢刀伺服加工平台。正确选择慢刀伺服加工方法奠定了理论基础。
     2、复杂光学曲面慢刀伺服超精密车削的刀具设计理论
     刀具设计是指刀具模型的建立和几何参数的确定。运用解析分析方法。得到了切削刃轮廓的空间解析模型。为确定刀具几何参数的合理范围。从复杂曲面面形、加工表面微观形貌、加工表面光学特性以及加工材料等角度。研究了对刀具几何参数的制约关系。复杂曲面每一点处对刀具的限制均不相同。通过对曲面基本方程的分析。推导出代表制约关系的关键矢量。解决了复杂曲面对刀具制约问题。这些工作为复杂曲面慢刀伺服车削加工合理设计刀具提供了理论支撑。
     3、复杂光学曲面慢刀伺服超精密车削的刀具路径规划理论
     精确规划刀具路径是复杂曲面车削加工的基本要求。在合理规划刀具接触点轨迹的基础上。采用误差控制的方法离散。提出法向偏置和稳定x轴偏置两种方法补偿刀具切削刃轮廓。结合提出的刀位点修正方法解决前角非零刀具过切与欠切问题。可高效精确获得合理刀具路径。针对刀具路径在曲面边界外的情况。创造性地利用空间曲线插值技术在螺旋曲线上延拓刀位轨迹。实现了刀具路径的平滑过渡。为达到提高复杂光学曲面车削精度的目的。提出了基于刀位点修正的慢刀伺服车削误差补偿算法。利用数据滤波方法或Zemike重构方法。从加工误差中分离出需要补偿的误差分量。对刀具路径进行修正后再次加工。可实现特定面形误差成分的补偿。这些研究为生成高质量的数控程序。拓展加工范围。提高加工精度提供了理论指导。
     4、慢刀伺服超精密车削的精度建模与仿真分析
     加工过程定量分析包含几何仿真和误差分析两个相互联系的重要方面。用z-map矢量表达曲面。以刀位点间隔作为仿真步长。通过坐标变换和拟合算法获得刀刃轮廓扫描曲面。讨论了矢量与NuRBS曲面交点的求解方法。对z-map矢量进行更新。解决了慢刀伺服车削的几何仿真问题。针对各种误差源的影响。详细研究了误差特征矩阵。以多体系统理论推导了包含误差因素的成形函数。解决了仿真分析误差影响的问题。精度仿真、预测、分析系统的建立为深入认识慢刀伺服车削机理。开展精度分析。预测加工结果等提供了有力手段。
     5、复杂光学曲面慢刀伺服超精密车削实验
     复杂光学曲面加工实验用于所述理论的全面验证。离轴抛物面镜的加工主要体现了以仿真分析为指导。解决刀具对中误差对面形精度的影响;在凹球面反射镜阵列加工中。主要体现了刀具路径规划方式对伺服轴动态性能的不同要求;在波前校正眼镜加工中。主要验证了加工、检测、修正、再加工循环对提高面形精度的作用;螺旋相位板、连续相位板的加工主要体现了慢刀伺服技术在解决传统工艺难题方面的优势。
     从上述几方面入手。探讨了如何利用慢刀伺服超精密车削技术实现复杂光学曲面高精度加工。研究成果对慢刀伺服车削加工机床的建立具有指导作用。对复杂曲面慢刀伺服车削加工具有技术支撑作用。
Freeform surfaces can be used in optical systems to achieve novel functions, improve performances, reduce size, and decrease the cost of various products. Therefore, optical freeform surfaces find applications in the fields of optics, medicine, fiber communication, life science, aerospace etc. Freeform optics has become the key element of quantitative light technology, which is becoming increasingly important in various fields. However, designers are reluctant to utilize freeform surfaces due to the complexity and uncertainty of their fabrication. Slow Slide Servo is a novel machining process capable of generating freeform optical surfaces or rotationally non-symmetric surfaces at high levels of accuracy. In order to achieve high accuracy optical complex surface by using Slow Tool Servo turning, the major research efforts include the following points.
     1. The theory of Slow Tool Servo turning and key technologies. A systematic introduction of the theory of Slow Tool Servo turning is first given by analyzing machine architecture and movements. By comparing with some other conventional technologies, the key technologies are high dynamic feed drive system, advanced interpolation technology and position control spindle technology. Then, the research emphasis on the performance of feed drive system and curve interpolation algorithm. Several aspects are discussed to improve the motion accuracy and control performance of feed drive system. PVT interpolation algorithm is introduced to Slow Tool Servo turning to overcome inherit drawback of conventional interpolation algorithm. In order to estimate the machining scope and accuracy, study on the machining capacity of Slow Tool Servo turning.
     2. The design theory of tool geometry parameters in ultra-precision Slow Tool Servo turning complex optical surface. Based on the requirements of slow tool servo, two types of tool are designed and analytic geometry models of cutting edge are built. A geometrical approach is introduced to formulate the relationship between tool tip and complex surface. By virtue of surface analytic method, the problem is solved efficiently, combined with the NURBS representation of complex surface. Experiments are carried out to validate solving algorithm. In addition, the relation models between tool shape and roughness, optical property and materials are built.
     3. The programming theory of tool path in ultra-precision Slow Tool Servo turning complex optical surface. In the basic design algorithm of complex optical surface slow tool servo turning, firstly study on the tool contact path design method and accuracy control skills of discrete process. Then, cutting edge compensation problem is considered. Two algorithms (normal direction compensation method and keeping X steady method) are proposed to avoid interfaces between surface and tool tip of zero rake angle. A tool path correct algorithm is developed to overcome over cutting and lack cutting due to non-zero rake angel. With regard to the calculate problem of tool path outer of surface region, space curve interpolation algorithm and surface continuation methods are proposed. In order to improve the manchining accuracy, error compensation algorithm is studied base on the tool path correction.
     4. The error model and simulation algorithm of Slow Tool Servo turning. Base on the discrete vector intersection, geometry simulation algorithm of slow tool servo turning is constructed. Then, major error sources and its transformations in complex surface turning are analyzed. An error model of slow tool servo turning is built base on multi-body theory. Experiments are carried out to validate simulation algorithm and error model.
     5. Finally, plentiful experiments are performed on a variety of complex optical surfaces including off-axis parabolic, array lenses, wave front correcting glass, spiral phase plate, continuous phase plate and so on. The successful machining results prove the validity and advantages of the proposed algorithms and the proposed process improvements.
引文
[1] Atad-Ettedgui E, Peacock T, Montgomery D, Gostick D, McGregor H, Cliff M.Opto-Mechanical Design of SCUBA-2 [C]. Proceedings of SPIE, 2006, 6273:62732H.
    [2] Rickens K, Riemer O, Brinksmeier E, Dreischer T, Voland C, Ries H, PerdiguesArmengol J M. Ultraprecision Manufacturing of Freeform Optical Surfaces forAstronomical Applications
    [3] Winsor R S, MacKenty J W, Stiavelli M, Greenhouse M A, Mentzell J E, Ohl R G,Green R F. Optical design for an Infrared Multi-Object Spectrometer (IRMOS) [C].Proceedings of SPIE, 2000, 4092: 102~108.
    [4] Garrard K, Sohn A, Ohl R G, Mink R, Chambers V J. Off-axis biconic mirrorfabrication [C]. Proceedings of the European Society for Precision Engineeringand Nanotechnology Annual Meeting, 2002.
    [5] http://www.ii-vi.com
    [6] Langeveld W. Possible Application of Wavefront Coding to the LSST [R]. US:Stanford University, 2007.
    [7] Arnison M R, Cogswell C J, Sheppard C J R, T?r?kz P. Wavefront CodingFluorescence Microscopy Using High Aperture Lenses [C]. Springer: OpticalImaging and Microscope, 2003:143~165.
    [8] Muyo G, Harvey A R. Wavefront Coding for Athermalization of Infrared ImagingSystems [C]. Electro-Optical and Infrared Systems Technology and Applications,2004, 5612: 227~235.
    [9] Gahagan K T, Swartzlander G A, Trapping of Low index Microparticles in anOptical Vortex [J]. Journal of Optical Society Americation B, 1998, 15: 524~534.
    [10] Buer C S, Gahagan K T, Swartzlander G A, Weathers P J. Insertion ofMicroscopic Objects Through Plant Cell Walls Using Laser Microsurgery[J],Biotechnology and Bioengineering, 1998, 60: 348~355.
    [11] Buer C S, Gahagan K T, Swartzlander G A, Weathers P J. Differences in opticaltrapping prompt investigations ofAgrobacterium surface chacteristies [J], Journalof Industrial Microbiology and Biotechnology, 1998 21: 233~236.
    [12] Berzanskis A, Matijosius A, Piskarkas A, Smilgevicius V, Stabinis A. Conversionoftopological charge of optical vortices in a parametric frequency convener [J].Optical Communication, 1997, 140: 273~276.
    [13] Beijersbergen M W, Coerwinkel P R C, Woerdman J P, Helical-wavefront laserbeams produced by a spiral phase plate [J]. Opt. Comm. 1994, 12: 321~327.
    [14] Perry T S. The battle for the SX-70 [J]. Spectrum IEEE, 1989, 26(5): 45~49.
    [15] Li Q S, et al. Computer controlled fabrication of free-form glass lens [C]. SPIEConference on Optical Manufacturing and Testing III, 1999, 3782: 203~212.
    [16] Timinger A, Muschaweck J, Riesa H. Designing tailored free-form surfaces forgeneral illumination [C]. Proceedings of SPIE, 2003, 5186: 128~132.
    [17] Morgan D J, Cook L. Conformal window design with static and dynamicaberration correction [P]. US Patent: 6018424, 2000.
    [18] Agata K, Ogawa J, Furuichi K, Fukunaga H, Takeuchi T. An Ultra Short-FocusFront Projector Using Reflective Projection Optics [J], NEC Technical Journal,2006,1(3): 89~93.
    [19]潘君骅.光学非球面的设计、加工与检验[M].北京:科学出版社,1994.
    [20] Aspden R, Mcdonough R, Nitchie F R. Computer assisted optical surfacing [J].Applied Optics, 1972, 11(12): 2739~2747.
    [21] Jones R A. Computer controlled polisher demonstration [J]. Applied Optics, 1980,19(12): 2072~2076.
    [22] Jones R A. Computer-controlled grinding of optical surface [J]. Applied Optics,1982, 21(5): 1134~1138.
    [23] Jones R A. Segmented mirror polishing experiment [J]. Applied Optics, 1982,21(3): 561.
    [24] Faehnle O W, Brug H, Frankena H J. Fluid polishing of optical surface [J].Applied Optics, 1998, 37(28): 6671~6673.
    [25]方慧,郭培基,余景池.液体喷射抛光材料去除机理的研究[J].光学技术,2004,30(2):248-250
    [26]周林.光学镜面离子束修形理论与工艺研究[D].长沙:国防科学技术大学,2008:1~14.
    [27]周旭升.大中型非球面计算机控制研抛工艺方法研究[D].长沙:国防科学技术大学,2007:1-13.
    [28]彭小强.确定性磁流变抛光的关键技术研究[D].长沙:国防科技大学,2004.
    [29]张学成.磁射流抛光技术研究[D].长沙:国防科技大学,2007:1-20.
    [30]辛企明.近代光学制造技术[M].北京:国防工业出版社,1997.
    [31] Ruckman J, Fess E M, Pollicove H M. Deterministic Processes for ManufacturingConformal (freefrom) Optical Surfaces [C]. Proceedings of SPIE, 2001, 4375:108~113
    [32] Ruckman J, A Tutorial on Deterministic Microgrinding [J], News latter of thecenter for optics manufacturing, 1999, 7(6): 1~4.
    [33] Craig R. Friedrich and Michael J. Vasile. Development of the micro millingprocess for high aspect ratio microstructures [J]. Microsytem Technologies, 1996,2(3): 144~148.
    [34] Ekkard Brinksmeier, Lutz Autschbach. Ball-end Milling of Free-form Surfaces forOptical Mold Inserts [C]. Proceedings of ASPE, 2004.
    [35] Cheng K. 5-axis Ultraprecision Bench-Top Micro Milling Machine [EB].http://www.brunel.ac.uk/.
    [36] Cheng M N, Cheung C F, Lee W B, To S, Kong L B. Theoretical and experimentalanalysis of nano-surface generation in ultra-precision raster milling International[J]. Journal of Machine Tools & Manufacture, 2008, 48: 1090~1102.
    [37] Cheung C F, Lee W B, To S. A Framework of a Model-based Simulation Systemfor Predicting Surface Generation in Ultra-precision Raster Milling of FreeformSurfaces [C]. ASPE Proceedings, 2004.
    [38] Park G, Bement M T, Hartman D A, et al. The use of active materials formachining processes: A review [J]. International Journal of Machine Tools &Manufacture[J]. 2007, 47: 2189-2206.
    [39] Montesanti R C. A High Bandwidth Rotary Fast Tool Servo[D]. MassachusettsInstitute of Technology Ph.D Thesis Proposal, 2004.
    [40] Gan S W, Rahman M, Lim H S, A high precision piezoelectric fine tool servosystem for diamond turning[C]. The 1st International Conference onNanomanufacturing (nanoMan2008).
    [41] Gao W, Aaoki J, Ju B F, et al., Surface profile measurement of a sinusoidal gridusing an atomic force microscope on a diamond turning machine[J]. PrecisionEngineering, 2007, 31: 304-309.
    [42] FTS_brochure_08, Precitech Inc
    [43] Catalog_2008, Kinetic Ceramics Inc
    [44]朱振华。李蓓智,杨建国.压电驱动超精密加工微定位工作台的设计与研究[J].精密制造与自动化.2005(4)
    [45]张元良,刘欣,方加宝.陈懋圻非轴对称光学表面超精密加工若干关键技术[J].大连理工大学学报,1999,39(6):766-770.
    [46]许黎明,胡德金,邓琦林,赵晓明.压电陶瓷微位移驱动技术研究[J],机械工程学报,2002,38:43-47.
    [47]黄世涛,冯之敬.MF型音圈电机驱动的微进给机构伺服方法研究航空精密制造技术2005 41(5):12-15.
    [48]Zhang H J,Chen S J,Zhou M,et al.Fast T001 Servo Control for Diamond CuttingMicrostructured Optical Components[C].The 1 st International Conference OilNanomanufacturing(nanoMan2008).
    [49]戴一帆,段纬然,王贵林,杨帆.音圈电机驱动的快刀伺服系统建模与性能分析[J],国防科技大学学报,2008,30(1):78-82.
    [50] Lu X D, Trumper D L. Ultrafast Tool Servos for Diamond Turning [J]. CIRPAnnals-Manufacturing Technology, 2005, 54: 383~388.
    [51] Lu X D, Trumper D L. Spindle rotary position estimation for fast tool servotrajectory generation [J]. International Journal of Machine Tools & Manufacture,2007, 147: 1362~1367.
    [52] Rogers K, Roblee J. Freeform Machining with Precitech Servo Tool Options [EB].http://www.precitech.com/.
    [53] Tohme Y, Lowe J. Machining of Freeform Optical Surfaces by Slow Slide ServoMethod [C]. Proceedings of ASPE, 2003.
    [54] Nathan P B. Live-Axis Turning [D]. Raleigh: Mechnical Engineering NorthCarolina State University, 2005: 1~22
    [55] Zdanowicz E M. Design of a Fast Long Range Actuator–FLORA II [D]. Raleigh:Mechnical Engineering North Carolina State University, 2009.
    [56] Tohme Y, Murray R. Principles and Applications of the Slow Slide Servo [EB].http://www.nanotechsys.com/.
    [57] Li L, Huang C N, Yi A Y, Fabrication of Micro and Diffractive Optical Devices byUse of Slow Tool Servo Diamond Turning Process [C], Proceedings of ASPE,2005.
    [58] Yi A Y, Raasch T W, Design and fabrication of a freeform phase plate forhigh-order ocular aberration correction [J], APPLIED OPTICS, 2005, 44(32):6869~6876.
    [59] Huang C N, Li L, Yi A Y, Design and fabrication of a micro Alvarez lens arraywith a variable focal length [J], Microsyst Technology, 2009, 15: 559~563.
    [60] Yi A Y, Li L, Design and fabrication of a microlens array by use of a slow toolservo [J], Optics Letters, 2005, 30(13): 1707-1709.
    [61]Ian J.Samaders,Leo Ploeg,Michiel Dorrepaal,Bart vall Venrooij,Fabricationand Metrology of Freeform Aluminum Mirrors for the SCUBA-2 Instrument[C].Proceedings ofSPIE,2005,5869:586905Proceedings of SPIE, 2005, 5869: 586905
    [62] Fang F Z, Zhang X D, Hu X T. Cylindrical coordinate machining of opticalfreeform surfaces [J]. OPTICS EXPRESS, 2008, 16(10): 7323~7329.
    [63] Zhang X D, Fang F Z, Wang H B, Wei G S, Hu X T. Ultra-precision machining ofsinusoidal surfaces using the cylindrical coordinate method [J]. Journal ofMicromechanics and Microengineering, 2009, 19: 1~7.
    [64]朱正心等.机械制造技术[M].北京:机械工业出版社,1999:3-14.
    [65]GB/T 19660-200,工业自动化系统与集成、机床数值控制坐标系和运动命名[S].
    [66] Schmidt C, Bruckl S. Impact of Frictionless Air Bearing Technology on theControl Requirements of Feed Drive Systems in Ultraprecision Machine Tools. 9thInternational Precision Engineering Seminar and 4th International Conference onUltraprecision in Manufacturing Engineering 9-IPES/UME4, 1997: 345-350.
    [67] Schmidt C, Heinzl J, Brandenburg G. Control Approaches for High PrecisionMachine Tools with Air bearings. IEEE Trans. on Industrial Electronics, 1999,46(5): 979~989.
    [68] Delta Tau Data Systems, Inc. Turbo PMAC User Manual [EB],http://www.deltatau.com/.
    [69]关朝亮,戴一帆,王建敏,尹自强.基于直线电机驱动的空气静压导轨动静态倾覆特性研究[J].机械科学与技术,2010.
    [70]孟祥忠,刘作宗.QFT在高速线性电机直接驱动平面运动定位控制系统中的应用[J].控制理论与应用,2006,23(2):225-228.
    [71]曲智勇,董申,张飞虎.基于DSP的直线电机位置伺服系统[J].机械工程师,2002:15~17.
    [72]翁秀华,郭庆鼎,刘德君.基于干扰观测器的双直线电机驱动系统同步控制[J].组合机床与自动化加工技术,2004,10:30~32.
    [73]杨开明,叶佩青,尹文生.基于极点配置的直线电机运动控制器设计[J].微电机,2005,38(3):49-51.
    [74]孙宜标,郭庆鼎.基于交叉耦合应力补偿的双直线电机的精密同步控制应用研究[J].电气传动,2003,3:32~35.
    [75]郭庆鼎,孙艳娜.基于内模原理的直线永磁同步伺服电机Hinf控制[J].控制理论与应用,2000,17(4):509~512,518.
    [76]杨开明,叶佩青,尹文生.精密工作台直线电机推力波动补偿研究[J].组合机床与自动化加工技术,2005,8:32~33,36.
    [77]贾激雷,陈晖,傅建中.数控直线电机进给定位误差补偿技术研究[J].机电工程,2005,22(7):15~17
    [78] Widrow B. A study of rough amplirude quantization by means of Nyquistsampling theory [J], IRE Trans., 1956, CT3(4): 266~276.
    [79] Bertram J E. The effect of quantization in sample feedback systems [J]. AIEE onApplic and Industry, 1958, 77: 177~182.
    [80]张洪钺等.动态系统的数字控制.北京:新时代出版社,1988.
    [81] Guan C L, Dai Y F, Xie X H, Yin Z Q. Investigation on feedback control of linearmotors in ultraprecision-machine feed-drive systems [J]. Journal of VacuumScience and Technology B, 2009, 27(3): 1351~1354.
    [82] Moore Nanotechnology Systems, LLC. Nanotech 450UPL Specification Overview[Z]. 2006.
    [83]莫建林,王伟,许晓呜,张卫东.系统辨识中的闭环问题[J].控制理论与应用,2002,19(1):9-14,22.
    [84]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000:
    [85] Pieg L, Tiller W. The NURBS Book[M]. New York: Springer-Verlag, 1997.
    [86] Kanolt C, Multifocal Opthalmic Lenses [P], United States Patent: 2878721, 1959
    [87] Jeff R, Factors Affecting Surface Finish in Diamond Turning [EB].http://www.precitech.com/.
    [88] Thompson A K. Scattering effects of machined optical surfaces [D]. Orlando:University of Central Florida, 1992.
    [89] Riedl M. Advances in single-point diamond turning provide improvedperformance for visible as well as ir optics [C]. SPIE’s OE-magazine, 2004.
    [90] Saba T T. Optical Surface Analysis Code [Z], Greenbelt: NASA Goddard SpaceFlight Center, 1993: 5~72.
    [91] Harvey J E, Krywonos A, Vernold C L. Modified Beckmann-Kirchhoff ScatteringTheory for Rough Surfaces with Large Scattering and Incident Angles []. OpticalEngineering, 2007, 46(7): 078002.
    [92] Zhao J Y, Cui Q F, Wang P. Scatter Analysis of Diffractive Surface Manufacturedby Single Point Diamond Turning [C]. Proceedings of SPIE, 2007, 6724:67241N-1
    [93] Sumitomo Electric Carbide, Inc. Tool Failures and Remedies [Z].
    [94]张树生等.虚拟制造技术[M].西安:西北工业大学出版社,2006.
    [95]曾绍标,熊洪允,毛云英.应用数学基础(下册)[M].天津:天津大学出版社,2003.
    [96] Guillaume J. Polygon_Intersection [EB]. http://www.mathworks.com/matlabcentral/ fileexchange .
    [97] Hicks R A, Perline R K. Blind-spot problem for motor vehicles[J]. Applied optics,2005, 44(19): 3893~3897.
    [98]李圣怡,戴一帆.精密和超精密机床精度建模技术[M],长沙:国防科技大学出版社,2007.
    [99] Rahman M, Heikkala J, Lappalainen K. Modeling Measurement and errorcompensation of multi-axis machine tools Part I: theory [J]. Internationl Journal ofMachine Tools & Manufacture, 2000(40):1535~1546.
    [100]朱秀昌,刘峰,胡栋.数字图像处理与图像通信[M].北京:北京邮电大学出版社,2002.
    [101]高浩军,杜宇人.中值滤波在图像处理中的应用[J].电子工程师,2004,30(8):35-36.
    [102]朱维仲,谈彩平.中值滤波技术及其在图像处理中的应用[J],天津职业技术师范学院学报,2002,13(3):42~44.
    [103]胡广书.数字信号处理(理论、算法与实现)[M].北京:清华大学出版社,2003.
    [104] The MathWorks, Inc. Singal Processing Toolbox. Mathworks Inc, 2004.
    [105] The MathWorks, Inc. Wavelet Toolbox User’s Guide. Mathworks Inc, 2004.
    [106] JAMES C W. Basic Wave front Aberration Theory for Optical Metrology [J].Applied Optics and Optical Engineering, 1992, 6: 28~38.
    [107] Lee K I, Noh S D. Virtual manufacturing system a test-bed of engineeringactivities [J]. Annals of the CIRP, 1997, 46: 347~350.
    [108] Kaldos A, Dagiloke I F, Boyle A. Computer Aided Cutting Process ParameterSelection For High Speed Milling [J]. Journal of Materials Processing Technology,1996, 61: 219~224.
    [109] Masset L, Debongnie J F. Machining processes simulation: specific finite elementaspects [J]. Journal of Computational and Applied Mathematics, 2004, 168:309~320.
    [110] Sun Y W, Wang J, Guo D M, et al. Modeling and numerical simulation for themachining of helical surface profiles on cutting tools [J]. International JournalAdvanced Manufacture Technology, 2008, 36: 525~534.
    [111] Kelly K, Young P, Byrne G. Modeling the influence of machining dynamics onsurface topography in turning [J]. International Journal of Mechanical Sciences,1999, 41: 507~526
    [112] Deiaba I M, Veldhuisb S C, Off line simulation system of machining processes[J],Journal of the Franklin Institute, 2007, 344: 565~576.
    [113] Ceretti E, Lazzaroni C, Menegardo L, et al. Turning simulations using a threedimensional FEM code [J]. Journal of Materials Processing Technology, 2000, 98:99~103.
    [114] Puig A, Vidal L P, Tost D. 3D simulation of tool machining [J]. Computers &Graphics, 2003, 27: 99~106.
    [115]唐志涛,刘战强,周军.虚拟教控加工过程仿真技术[J]l电气技术与自动化,2005,3 4(3):61-64,67.
    [116]李荣彬,张志辉,李建广.超精密加工的三维表面形貌预测[J].中国机械工程,2000,11(8):845-848.
    [117]Chemag C F,Lee W B.A Theoretical and Experimental Investigation of SurthceRouglmess Fomaation in Ultra—precision Diamond Tunfing.Int.J.Mach.Toolsand Manuf,2000.40(7):979~1002.
    [118] Lee W B,Cheung C F.A dyuamic surface topography model for the prediction ofnalaO-surface generation in ultra—precision machining[J]l Intemational Joumal ofMechalljcal Sciences.2001.43:96l~991.
    [119]尹自强,李圣怡.振动影响下金刚石车削表面的形貌仿真[J].国防科技大学学报,2003,25(1):78~83.
    [120] Cheng M N, Cheung C F, Lee W B, To S, Kong L B. Theoretical and experimentalanalysis of nano-surface generation in ultra-precision raster milling [J].International Journal of Machine Tools & Manufacture , 2008, 48: 1090~1102.
    [121] Wu H Y, Lee W B , Cheung C F, To S, Chen Y P. Computer simulation ofsingle-point diamond turning using finite element method [J]. Journal of MaterialsProcessing Technology, 2005, 167: 549~554.
    [122]陈明君等.KDP晶体塑性域超精密切削加工过程仿真[J].光电工程,2005,32(5):69-72.
    [123] Wang W P, Wang K K. Geometric modeling for swept volume of moving solids[C]. IEEE Computer Graphics Application, 1986, 6(12): 8~17.
    [124] Van H T. Real-time shaded NC milling display [J]. SIGGRAPH’86 Proc, 1986,20(4): 15~20.
    [125] Hunt W A, Voelcker H B. An exploratory study of automatic verification ofprograms for numerically controlled machine tools [Z]. New York: University ofRochester Production Automation Project TM-34, 1982.
    [126] Jerard R B, Hussaini S Z, Drysdale R L, Schaudt B. Approximate methods forsimulation and verification of numerically controlled machining programs [J].Visual Computer, 1989, 5: 329~348.
    [127] Huang Y, Oliver J H. Integrated simulation error assessment, and tool pathcorrection for five-axis NC milling [J]. Journal of Manufacture Systems, 1995,14(5): 331~44.
    [128]夏小玲.三维消隐算法研究[J].东华大学学报,2002,28(2):137-142.
    [129] Sebastian H. Polygon Clipper [EB]. http://www.mathworks.com/matlabcentral/fileexchange/.
    [130] Obara B. Inpolygon [EB]. http://www.mathworks.com/matlabcentral/fileexchange.
    [131]杨力,吴时彬,高平起,姜书宗.420mm离轴抛物面反射镜的制造[J].光学技术,1998,3:44~46,52.
    [132]钱煜,潘君骅.离轴抛物面镜的单件加工技术[J].光学技术,1998,3:47-48.
    [133]程灏波.大口径离轴非球面制造技术[J].光机电信息,2003,1:19-23.
    [134] Kim H S, Kim E J, Song B S. Diamond Turning of Large Off-axis AsphericMirrors Using a Fast Tool Servo with On-machine Measurement [J], Journal ofMaterials Processing Technology, 2004, 146: 349~355.
    [135] Gerchman M C, Optical tolerancing for diamond turning ogive error [C],Proceedings of SPIE, 1989, 1113: 224~229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700