用户名: 密码: 验证码:
自动化细胞注射中微操作与微注射技术及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞注射技术在生物、医疗等领域中扮演越来越重要的角色,但其手工或半自动化操作方式,存在实验效率低、注射量控制难等不足。研究一种自动化程度高、微注射量精确可控的细胞注射技术已成为细胞工程和机械工程的重要课题。
     微流体数字化技术是南京理工大学微系统研究室发明的、拥有自主知识产权的重要研究成果,该技术为建立与信息化、能量传输及固体运动数字化有同等意义的物质传输数字化开辟了道路,对微流体系统的研究和技术进步有重要意义。本论文以微流体数字化技术为起点,研究自动化细胞注射中微操作与微注射技术。从操作机理、实现方法与装置、验证实验等方面,研究了自动化细胞注射的系统结构和自动补给、位姿调节、数字化进退针、数字化微注射这四项关键技术,取得以下成果:
     提出了“多操作手分立式”细胞注射系统结构,简化了单操作手的任务和操作方式,降低了图像处理、伺服控制等单元的性能要求,增强了微小工件位置和姿态调节能力,为研制自动化细胞注射系统奠定基础。
     研制了微流体数字化技术驱动的细胞自动补给仪样机,适合于不同尺寸细胞的定点输送,具有自动计数、自动分离和实时可控等特征。
     提出了基于流场流动和机械运动耦合控制的细胞位姿调节技术。以细胞培养液为控制介质,分析了细胞位姿调节技术操作机理;建立了被操作细胞工程化模型和淹没射流控制模型;以吸持针为末端执行器,发明了细胞位姿调节用单细胞微操作装置。实现了三维位置坐标和三自由度姿态信息的精确控制。
     提出了前后端双支撑结构的冲击式微进给驱动原理,建立了该驱动原理的动力学模型,消除了传统惯性式微进给机构质心前后移动引起的横向摆动,进给步长和运动方向实时可调,运行稳定可靠,行程不受限制。
     研制了具有数字化进退针和数字化微注射双重功能的微注射仪,测试了其进给和喷射性能。具有进给精度高、瞬时速度快、过程实时可控等特征,精度可达纳米量级,刺膜实验效率达149枚/h;实现了注射时间节拍化、微注射量规整化,且脉冲序列人为可控,微注射分辨率达飞升量级。
     以小鼠卵母细胞为实验对象,进行了自动化细胞注射验证实验研究,实验效率达12枚/h。结果表明:基于细胞自动补给、位姿调节、数字化进退针和数字化微注射这四项特征操作的自动化细胞注射是可行的,“多操作手分立式”系统结构提高了细胞注射自动化程度。
In the domain of biology, medical treatment and so on, cell injection plays a more and more important role. But there are many deficiencies of manual or semi-automatic manipulation, including low experimental efficiency, difficulty of injection volume control and so on. It is an important subject of cell engineering and mechanical engineering to research a cell injection technology, with the characters of high automation and precise control of microinjection volume.
     Invented and patented by micro-system lab of Nanjing University of Science and Technology, Digitalization of Micro-Fluids is the most important research production lately. With the equivalent of informationization, digital energy transmission and solid movement, the field of the digital matter transportation is exploited by Micro-Fluidic Digitalization technology, which is greatly significant for the development of microsystem research and technology. Base on the Digitalization of Micro-Fluids, the technologies of micro-manipulation and microinjection is presented for automatic cell injection in this paper. The technologies include cell auto-feeding, position and attitude adjusting, digital piercing and withdrawing micropipette and digital microinjection. Considering the aspects of manipulation mechanism, method and device, confirmed and applied experiment, and so on, a novel system structure and the pivotal technologies of automatic cell injection is presented as follow.
     A novel cell injection system structure with divided manipulators is brought forward. The task and operating method of every single manipulator is simplified. The performance demand of components, including micro image test, servocontrol and so on, is reduce. The manipulating ability of micro part position and attitude is enhanced. The novel cell injection system structure lays a foundation for the automatic cell injection system.
     By the drive of micro-fluidic digital technology, the prototype of cell auto-feeder is developed. With characteristics of auto-count, auto-separation and real time control, the prototype can transport appointed for different size cell.
     Based on coupling control of mechanical motion and flow field, an automatable adjusting technology for cellular position and attitude is proposed. The manipulating mechanism of adjusting technology for cell position and attitude is primarily analyzed with the control of cell culture medium. The engineering model of manipulated cell and control model of submerged jet is founded. With end-actuator of micro-holding pipette, an individual cell manipulation system is developed for cell position and attitude adjusting. Precise control for 3D position and 3 D-O-F attitude is achieved.
     With the structure character of front- and back- end double support, a novel impact micro motion drive principle is proposed. The principle dynamical model is established. Compared with traditional inertial micro motion principle, the transverse vibration, caused by center mass motion, is removed. Step length and motion direction can be adjusted real timely. Working stability is improved and motion travel is unrestricted.
     A novel micro-injector is presented with function of digital piercing and withdrawing micropipette, digital microinjection. Confirmed by performance experiment of motion and injection, the micro-injector motion precision is high, coming to nanometer. Experimenatal efficiency of cell membrane pierces reachs 149 cells per hour. The instantaneous speed is rapid. The working process is real time controllable with characteristics of rhythmic injection time and standardized injection volume, while the drive pulse is controllable artificially. The amount of microinjection may reach an ultra high resolution of the order of femtoliters.
     Taking mouse oocyte as experimental object, automatic cell injection experiment is carried with experimental efficency of 12 cells per hour. By experimental confirmation, the automatic cell injection scheme, which is based on manipulation of cell auto-feeding, position and attitude adjusting, digital piercing and withdrawing micropipette, digital microinjection, is feasible. The automation of cell injection is enhanced by system structure with divided manipulators.
引文
[1]中国科学院生命科学与生物技术局,中国科学院上海生命科学信息中心.生命科学与生物技术发展报告(2006)[R].北京:科学出版社,2006:81-289.
    [2]Robl JM,Wang Z,Kasinathan P,et al.Transgenic animal production and animal biotechnology[J].Theriogenology,2007,67:127-133.
    [3]Chrenek P,Trandzik J,Massanyi P,et al.Effect of transgenesis on reproductive traits of rabbit males[J].Animal Reproduction Science,2007,99:127-134.
    [4]安利国.细胞工程[M].北京:科学出版社,2004:1-7.
    [5]韩贻仁.分子细胞生物学[M].北京:高等教育出版社,2007:1-7.
    [6]Brenin DR,Talamonti MS and Iannaccone PM.Transgenic technology:an overview of approaches useful in surgical research[J].Surgical Oncology,1997,6(2):99-110.
    [7]Pinkert CA and Trounce IA.Production of transmitochondrial mice[J].Methods,2002,26:348-357.
    [8]Yempleton A,Morris JK and Parslow W.Factors that affect outcome of in-vitro fertilisation treatment[J].Lancet,1996,348:1402-1406.
    [9]林莉,胡佐忠.转基因动物技术的研究进展[J].畜禽业,2005(5):20-23.
    [10]Gordon JW,Scangos GA,Plotkin DJ,et al.Genetic transformation of mouse embryos by microinjection of purified DNA[C].Proc.Natl.Acad.Sci.,Genetics,USA,1980,77(12):7380-7384.
    [11](德)A.西德-阿里吉尔,A.加西亚-卡冉卡张玉静,等.微注射和转基因实验指南(第1版)[M].北京:科学出版社,2002.
    [12]Sasaki J,Youoku S,Tamamushi K,et al.Development of microchannel device for automated microinjection[C].Microfluidics,BioMEMS and Medical Microsystems Ⅲ,Proceedings of SPIE,Bellinghan,WA,2005,5718:186-196.
    [13]杜卫华,徐慰倬,李世杰,等.哺乳动物体细胞核移植方法研究进展[J].中国兽医学报,2005,25(4):441-445.
    [14]Lian WN,Chang CH,Chen YJ,et al.Intracellular delivery can be achieved by bombarding cells or tissues with accelerated molecules or bacteria without the need for carrier paticles[J].Experimental cell research,2007,313:53-64.
    [15]Stevenson D,Agate B,Paterson L,et al.Optical transfection of mammalian cells [C].Biophotonics and New Therapy Frontiers,Proc.of SPIE,2006,6191(D):1-8.
    [16]Park KW,Kuhholzer B,Lai LX,et al.Development and expression of the green fluorescent protein in porcine embryos derived from nuclear transfer of transgenic granulosa-derived cells[J].Animal Reproduction Science,2001,68:111-120.
    [17]刘海宁,汤秀明,李强,等.卵母细胞浆内单精子显微注射治疗男性不育的效果[J].齐鲁医学杂志,2005,20(1):31-32.
    [18]Van Der Westerlaken LAJ,Helmerhorst FM,Hemans J,et al.Intracytoplasmic sperm injection:position of the first polar body affects pregnancy rate[J].Human Reproduction,1999,14(10):2565-2569.
    [19]罗亚宁.学位论文:单精子卵母细胞浆内显微注射技术的临床应用研究及相关影响因素分析[D].北京:第四军医大学,2006.
    [20]孙晓波,马鸿翔,王澎.基因工程在能源植物改良中的应用[J].生物技术通报,2007,(6):1-5.
    [21]Kuncova J and Kallio P.Challenges in Pressure Microinjection[C].Proc.of 26~(th)Annual International Conference to IEEE EMBS,San Francisco,USA,2004:1-5.
    [22]Sakai S,Youoku S,Suto Y,et al.Automated high-throughput micro-injection system for floating cells[C].Imaging,Manipultion,and Analysis of Biomoleculer and Cells:Fundamentals and Applications Ⅲ,Proc.of SPIE,Bellinghan,WA,2005,5699:59-66.
    [23]Youoku S,Suto Y,Ando M,et al.Automated microinjection system for adherent cells[C].Biopotonics:Optics in Life Science,SPIE- OSA Biomendical Optics,2007,6633(0S):1-9.
    [24]Wilmut I,Schnieke AE,Mcwhir J,et al.Viable offspring derived from fetal and adult mammalian cells[J].Nature,1997,385:810-813.
    [25]林晓斌,许建衡.胚胎干细胞的特性及其应用[J].汕头大学医学院学报,2004,17(4):248-250.
    [26]Adamson GD and Gvakharia M.Blastocyst development in an extended embryo culture system after intracytoplasmic sperm injection[J].International Vongress Series,2004,1271:155-158.
    [27]Ouyang PR,Zhang WJ,Gupta MM,et al.Overview of the development of a visual based automated bio-micromanipulation system[J].Mechatronics,2007,06:1-11.
    [28]裘娟萍,钱海丰.生命科学概论[M].北京:科学出版社,2004,8:83-97.
    [29]焦炳华,孙树汉.现代生物工程[M].北京:科学出版社,2007,3:191-199.
    [30]钟红梅,刘越华,徐海山.转基因动物研究进展及应用[J].西南民族学院学报(自然科学版),2002,28(3):334-337.
    [31]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2000:42,73-81,385-413.
    [32]Gauthier M,Lopez B and Cleby C.Comparison between micro-objects manipulations in dry and liquid mediums[C].Proc.of IEEE International Symposium on Computational Intelligence in Robotics and Automation,Espoo,Finland,June 27-30,2005:707-712.
    [33]曹西南,熊压隆,纳冬荃.受精卵原核显微穿刺导入DNA制备转基因兔[J].昆明医学院学报,2005,(4):49-54.
    [34]程萱,陈红星,杨晓,等.提高制备转基因小鼠效率的研究[J].中国实验动物学报,2001,9(3):160-163.
    [35]Kallio P,Zhou Q,Lind M,et al.Position Control of A 3 DOF Piezohydraulic Parallel Micromanipulator[C].Proc.Of 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems,Victoria,B.C.,Canada,October,1998:770-775.
    [36]Ammi M and Ferreira A.Robotic Assisted Micromanipulation System using Virtual Fixtures and Metaphors[C].IEEE International Conference on Robotics and Automation,Roma,Italy,April 10-14,2007:454-460.
    [37]Boukhnifer M and Ferrerira A.H_∞ Loop Shaping Bilateral Controller for a Two-Fingered Tele-Micromanipulation System[J].IEEE Transactions on Control Systems Technology,2007,15(5):891-905.
    [38]Guo SX,Zhang HH and Hata AJ.Complex control of a human scale tele-operating system for cell biology[C].Proc.of 4~(th) World Congress on Intelligent Control and Automation,Shanghai,P.R.China,June 1-14,2002:71-76.
    [39]Wang J and Guo SX.Operating characteristic evaluation of a human scale tele-operating system[C].Proc.of 2004 International Conference on Intelligent Mechatronics and Automation,Chengdu,China,August,2004:6-11.
    [40]Yamamoto H,Samo T.Study of micromanipulation using stereoscopic microscope [J].IEEE Transcations on Instrumentation and Measurement,2002,51(2):182-187.
    [41]Yamamoto H,Sano T and Hasebe S.Automatic microinjection system using stereoscopic microscope[C].International Workshop in Intelligent Data Acquisition and Advanced Computing System:Technology and Applications,Foros,Ukraine,July 2001:83-86.
    [42]Sano T and Yamamoto H.Multi agent micromanipulation system[C].IEEE IST 2005:International Workshop on Imaging Systems and Techniques,Niagara Fall,May 13-14,2005:75-78.
    [43]Tanikawa T and Arai T.Development of a Micro-Manipulation System Having a Two-Finger Micro-hand[J].IEEE Transactions on Robotics and Automation,1999,15(1):152-162.
    [44]Suzuki A,Arai T and Tanikawa T.Automated micro handling[C].Proc.of 2003IEEE International Symposium on Computational Intelligence in Robotics and Automation,Kobe,Japan,July16-20,2003:348-353.
    [45]Hoshino K,Triteyaprasert S,Matsumoto K,et al.Electrowetting-based actuation for microinjection[C].The 12~(th) International Confence on Solid State Sensors,Actuators and Microsystems,Boston,June 8-12,2003:1800-1803.
    [46]Hoshino K,Triteyaprasert S,Matsumoto K,et al.Electrowetting-based pico-liter liquid actuation in a glass-tube microinjector[J].Sensors and Actuators A,2004,114:473-477.
    [47]Kim DH,Yun S and Kim B.Mechanical force response of single living cells using a microrobotic system[C].Proc.of 2004 IEEE International Congerence on Robotics and Automation,New Orleans,LA,April,2004:917-922.
    [48]Kim DH,Hwang CN,Sun Y,et al.Mechanical analysis of chorion softening in prehatching stages of zebrafish embryos[J].IEEE Transactions on Nanobioscience,2006,5(2):89-94.
    [49]Shim JH,Cho SY and Cha DH.Vision-guided micromanipulation system for biomedical application[C].Proc.of SPIE:Optomechatronic Micro/Nano Components,Devices,and Systems,Bellinghan,WA,2004,5604:98-107.
    [50]Tan KK and Ng SC.Computer-controlled piezoactuator for cell manipulation[J].IEEE Proc-Nanobiotechnology,2003,150(1):16-21.
    [51]Tan KK,Ng SC and Huang SN.Assisted reproduction system using piezo actuator [C].International Congerence on Communications,Cirruits and Systems,2004:1200-1203.
    [52]Dholakia K and Reece P.Optical micromanipulation takes hold[J].Nanotoday,2006,1(1):18-27.
    [53]Sun Yu.Degree thesis:Microrobotic biomanipulation and MEMS-assisted biomembrane mechanical property characterization[D].Minnesota,USA:University of Minnesota,March,2003.
    [54]Sun Y,Wan KT,Roberts KP,et al.Mechanical property characterization of mouse zona pellucida[J].IEEE Transactions on Nanobioscience,2003,2(4):279-286.
    [55]Mattos L,Grant E and Thresher R.Semi-automated blastocyst microinjection[C].Proc.of 2006 IEEE International Conference on Robotics and Automation,Orlando,Florida,May 2006:1780-1785.
    [56]Mattos L,Grant E and Thresher R.Speeding Up Video Processing for Blastocyst Microinjection[C].Proc.of 2006 IEEE/RSJ International Conference on Robotics and Systems,Beijing,China,October 9-15,2006:5825-5830.
    [57]Mattos L,Grant E,Thresher R,et al.New Developments Towards Automated Blastocyst Microinjections[J].2007 IEEE International Conference on Robotics and Automation,Roma,Italy,10-14April2007:1924-1929.
    [58]毕树生,宗光华.用于生物工程的微操作机器人系统的若干问题[J].仪器仪表学报,2000,21(6):560-565.
    [59]卢桂章,张建勋,赵新.面向生物工程实验的微操作机器人[J].南开大学学报(自然科学),1999,32(3):42-46.
    [60]黄大刚,张建勋,赵新,等.从平面显微图像中提取三维位置反馈信息方法的研究[J].仪器仪表学报,2002,23(Z3):230-231.
    [61]谢少荣,罗均,赵新.微操作显微图像中对象深度信息判据[J].机械科学与技术,2002,21(6):898-900.
    [62]毕树生,宗光华,李旭东,等.面向生物医学工程的微操作机器人系统[P].中国:02155336.X,2003-05-21.
    [63]赵玮,宗光华,李旭东,等.视觉导引的生物细胞自动操作运动规划的研究[J].高技术通讯,2001,(8):93-97.
    [64]孙明磊,宗光华,余志伟,等.基于图像分析的显微视觉自动聚焦系统[J].北京航空航天大学学报,2005,31(2):192-196.
    [65]张灵,章云,杨宜民.基因工程中的微注射机器人系统[J].计算机应用与软件,2004,21(5):12-13.
    [66]姜成山.学位论文:转基因微细作业系统中超微量注射及双目时分立体成像技术的研究[D].长春:中国科学院长春光学精密机械与物理研究所,2002.
    [67]张灵.学位论文:DNA超微注射量精密控制技术的研究[D].广州:广东工业大学,2004:68.
    [68]李银妹,楼立人,操传顺,等.细胞激光微操作系统[J].细胞生物学杂志,1999,21(2):67-71.
    [69]王自强,王浩威,席时权,等.微束激光基因转移仪的研制[J].自动化仪表,2006,27(8):18-21.
    [70]李路明,王立鼎,任延同,等.可用于克隆技术的微操作系统构成原理的研究[J].光学精密工程,1998,6(1):42-46.
    [71]刘冲,徐征,王立鼎,等.微操作系统的实时显微立体成像研究[J].中国机械工程,2002,13(18):1567-1569.
    [72]徐征,刘冲,罗怡,等.基于视觉伺服的3D微定位控制[J].机械工程学报,2005,41(6):153-162.
    [73]荣伟彬,张涛,孙立宁,等.主从式遥微操作机器人系统的研究[J].机器人,2000,22(7):646-649.
    [74]荣伟彬,孙立宁,陈立国,等.面向微小零件装配的微操作机器人的研究[J].控制与决策,2003,18(Z2):489-492.
    [75]孙立宁,陈立国,荣伟彬.微操作机器人显微视觉系统自动调焦的实现[J],仪器仪表学报,2002(Z2):668-669,674.
    [76]章维一,侯丽雅.微流体数字化的科学与技术问题(Ⅰ):概念、方法和效果[J].科技导报,2005,23(8):4-9.
    [77]章维一,侯丽雅.微流体数字化的科学与技术问题(Ⅱ):物质数字化及物质能量信息统一数字化概念研究[J].科技导报,2006,24(3):41-47.
    [78]章维一,侯丽雅.影响流体流动的方法及其装置和应用[P].中国:ZL 03152948.8,2006-5-24.
    [79]Zhang WY,Hou LY,Mu LL,et al.Femtoliter Micro Injector Using Digital Microfluidic Control[C].Microfluidics,BioMEMS and Medical Microsystems Ⅱ,Proc.of SPIE,San Jose,California,USA,2004,5345:220-229.
    [80]刘天军,侯丽雅,章维一,等.水生物种的自动化微注射技术研究[J].机械工程学报,2006,42(12):158-162.
    [81]刘天军.学位论文:数字化细胞微注射技术及其应用研究[D].南京:南京理工大学,2004,12:75-97.
    [82]沙菁洁,侯丽雅,章维一,等.微流体系统驱动技术的研究现状[J].微纳电子技术,2006(12):586-591.
    [83]Woias P.Micropumps-summarizing the first two decades[C].Proc.of SPIE,2001:39-52.
    [84]Cheng YL and Lin JH.Manufacture of three-dimensional valveless micropump[J].Journal of Materials Processing Technology,2007:229-236.
    [85]Yun KS,Cho LJ,Bu JU et al.A surface-tension driven micropump for low-voltage and low-power operations[J].Journal of Microelectromechanical System,2002,11(5):454-461.
    [86]Walker GM and Beebe DJ.Evaporation-driven microfluidic sample concentration [C].2~(nd) Annual International IEEE/EMB Special Topic Conference on Microtechnologies in Medicine & Biology,May 2-4,2002:523-526.
    [87]Bart SF,Yavrow LS,Mehregany M,et al.Microfabricated electrohydrodynamic pumps[J].Sensors and Actuators A,1990:21-23,193-197.
    [88]Richter A and Sandmaier H.An electro-hydrodynamic micropump[C].In:Proc.MEMS'90,Napa Valley,USA,1990:99-104.
    [89]Sabur R and Matin MA.Study of Electro-osmotic flow in microfluidic devices[C].3~(rd) IEEE/EMBS International Summer School on Medical Devices and Biosensors,Sept.4-6,2006:126-129.
    [90]Niu XZ,Lee YK,Liu LY,et al.Micro Valve and Chaotic Mixer Driven by Electrorheological Fluid[C].NEMS'06,1~(st) IEEE International Conference on Nano/Micro Engineered and Molecular Systems,Jan.18-21,2006:1254-1257.
    [91]Homsy A,Linder V,Lucklum F,et al.Magnetohydrodynamic pumping in nuclear magnetic resonance environments[J].Sensors and Actuators B:Chemical,2007,123(1):636-646.
    [92]罗海宁,刘群,朱桂金.第一极体位置对卵母细胞显微注射受精后受精和胚胎发育的影响[J].潍坊医学院学报,2002,24(2):91-93.
    [93]李蓉,庄广伦.显微注射受精的卵母细胞质膜穿破特点对受精和卵裂的影响[J].生殖医学杂志.1998,7(4):204-206.
    [94]田桂中,侯丽雅,章维一,等.细胞注射中数字化进退针装置的实验研究[J].中国机械工程,2007,18(22):2671-2673,2678.
    [95]田桂中,侯丽雅,章维一,等.数字化进退针装置在显微注射中的应用实验[J].中国机械工程,2008,19(7):846-849.
    [96]Ediz K and Olgac N.Microdynamics of the piezo-driven pipettes in ICSI[J].IEEE Transactions on Biomedical Engineering,2004,51(7):1262-1268.
    [97]Ediz K and Olgac N.Effect of Mercury Column on the Microdynamics of the Piezo-Driven Pipettes[J].Journal of Biomechnanical Engineering,2005,127:531-535.
    [98]Saito T,Takahashi M,Muguruma H,et al.Rapid photosensitive cell membrane damage process of novel thiophene for microelectrode[C].Proc.of the 23~(ra)Annual EMBS International Conference,Istanbul,Turkey,October 25-28,2001:2953-2956.
    [99]Saito T,Muguruma H and Mabuchi K.Photodynamic assistance increases the efficiency of the process of microinjection in animal cells[J].Biotechnology Letters,2002,24:309-314.
    [100]刘璋,胡佑伦,沈萍,等.微注射装置[P].中国专利:ZL200420075915.0,2005-08-03.
    [101]何凯,晏磊,赵红颖.机遇人眼视觉分辨力的数字化影像质量评价方法研究[J].北京邮电大学学报(增刊),2005,28(Z):127-131.
    [102]尹听,卢桂章,赵新.大范围多目标微操作的目标视觉跟踪实现策略[J].高技术通讯,2006,16(2):143-148.
    [103]Garello C,Baker H,Rai J,et al.Pronuclear orientation,polar body placement,and embryo quality after intracytoplasmic sperm injection and in-vitro fertilization:further evidence for polarity in human oocytes[J].Human Reproduction,1999,14(10):1588-1595.
    [104]科技导报编辑部.2004年中国重大科学、技术与工程进展[J].科技导报,2005,23(2):58-62.
    [105]Zhao W,Zhang WJ,Gupta MM.A micro visual servo system for biological cell manipulation:overview and new developments[C].Seventh International conference on Control,Automation,Robotics and Vision,Singapore,Dec.2002:429-424.
    [106]刘冲,王跃宗,王立鼎,等.显微图象中目标对象的识别[J].计算机工程与应用,2003,9:98-101.
    [107]陈小麟.动物生物学[M].北京:高等教育出版社,2005.
    [108]李战华,周兴贝,朱善农.非极性小分子有机液体在微管道中的流量特性[J].力学学报,2005,34(3):432-438.
    [109]武东健,贾建援,王卫东.微细管道内的流体阻力分析[J].电子机械工程,2005,21(4):38-40.
    [110]王致清.流体力学基础[M].北京:高等教育出版社,1987.
    [111]景思睿,张鸣远.流体力学[M].西安:西安交通大学出版社,2001.
    [112]刘中春,侯吉瑞,岳湘安.微尺度流动界面现象及其流动边界条件分析[J].水动力学研究与进展,2006,21(3):339-346.
    [113]钟映春,谭湘强,杨宜民.微流体力学几个问题的探讨[J].广东工业大学学报,2001,18(3):46-48.
    [114]凌智勇,丁建宁,杨继昌,等.微流动的研究现状及影响因素[J].江苏大学学报(自然科学版),2002,23(6):1-5.
    [115]刘文华.学位论文:小鼠卵母细胞重组实验研究[D].南京:南京师范大学, 2006.
    [116]刘天军,章维一,侯丽雅.细胞注射玻璃微针拉针器的研制[J].光学精密工程.2003,11(5):15-18.
    [117]王龙,杨桦,徐国珍.显微注射法制备遗传工程小鼠模型的研究[J].中国生物工程杂志,2003,23(11):63-67.
    [118]李蓉,庄广伦.卵浆内单精子显微注射[J].生物医学杂志,1997,6(2):123-125.
    [119]Palermo G,Joris H,Devroey P,et al.Pregnancis after intracytoplasmic injection of a single sperm atozoon into an oocyte[J].Lancet,1992,340:17-18.
    [120]王玉琴,王占彬,祁艳霞,等.胞质内精子注射及其影响因素的研究[J].中国畜牧兽医,2007,34(7):35-37.
    [121]Blake M,Garrisi J,Tomkin G,et al.Sperm deposition site during ICSI affects fertilization and development[J].Fertility and Sterility,2000,73(1):31-37.
    [122]彭戈锋,鲍时华,彭守静.卵胞浆内但精子注射中小鼠卵细胞第一极体位置和形态对受精率和受精卵质量的影响[J].生殖医学杂志,2004,13(2):106-111.
    [123]胡京美,李媛,陈子江,等.第一极体位置对卵胞浆内单精子显微注射结局的影响[J].中国优生与遗传杂志,2007,15(3):90-91.
    [124]崔奎青,石德顺,杨素芳.兔卵母细胞去核方法的研究[J].中国畜牧兽医,2005,32(7):32-34.
    [125]项智锋,谢红兵,张金洲,等.猪卵丘细胞核移植研究[J].动物医学进展,2005,26(7):64-68.
    [126]毕树生,宗光华.微操作机器人机构的运动特性分析[J].机械工程学报,2002,38(Z):227-230.
    [127]Gauthier M and Piat E.Control of a particular micro-macro positioning system applied to cell micromanipulation[J].IEEE Transactions on Automation Science and Engineering,2006,3(3):264-271.
    [128]洪小雅,钟辉,席文明.基于导线阵列的微电磁力驱动细胞运动的研究[J].微纳电子技术,2007(3):146-149.
    [129]Arai F,Kasugai T and Fukuda T.3D position and orientation control method of micro object by dielectrophoresis[C].International Symposium on Mivromechatronics and Human Science,1998:149-154.
    [130]Chartier I,Bory C,Fuchs A,et al.Fabrication of hybrid plastic-silicon microfluidic devices for individual cell manipulation by dielectrophoresis[C].Microfluidics,BioMEMS,and Medical Microsystems Ⅱ,Proc.of SPIE, Beillingham,WA,2004,5345:7-16.
    [131]Arai F,Maruyama H,Sakami T,et al.Pinpoint injection of microtools for minimally invasive micromanipulation of microbe by laser trap[J].IEEE/ASME Transactions on Mechatronics,2003,8(1):3-9.
    [132]李银妹.光镊——光的力学效应的研究及应用[J].江西科学,2005,23(4):343-346.
    [133]Kawaji A,Arai F and Fukuda T.3D attitude control system for biomicromanipulation[C].International Symposium on Mivromechatronics and Human Science,2001:197-202.
    [134]朱亮,陈士岭,邢福祺.纺锤体与人卵母细胞质量的关系[J].中华妇产科杂志,2005,40(4):275-276.
    [135]王立鼎,刘冲.微机电系统科学与技术发展趋势[J].大连理工大学学报,2000,40(5):505-508.
    [136]唐祯安,王立鼎.关于微尺度理论[J].光学精密工程,2001,9(6):493-498.
    [137]薛胜雄.高压水射流技术工程[M].合肥:合肥工业大学出版社,2006.
    [138]朱永波,赵晓路,蔡睿贤.应用不同湍流模型计算叶栅流畅的结果与比较[J].航空动力学报,2001,16(1):71-74.
    [139]华祖林.湍流模型在环境水力学研究中的应用[J].水科学进展,2001,12(3):403-412.
    [140]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998.
    [141]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [142]赵新,孙明竹,刘俊玲,等.基于离焦状态模糊显微图像反馈的微操作方法[J].高技术通讯,2006,16(4):381-386.
    [143]Ermiloy S,Qian F,Murdock D,et al.Measurements of cell wall mechanical properties using optically trapped fluorescent microspheres[C].Optical Trapping and Optical Micromanipulation,Proc.of SPIE,Beillingham,WA,2004,5514:189-196.
    [144]Kan TT and Ng SC.Computer controlled piezo micromanipulation system for biomedical applications[J].Engineering Science and Education Journal,2001,10(6):249-256.
    [145]刘建琴,张策,王玉新,等.微进给机构综述[J].机械传动,1999,23(1):47-50.
    [146]嵇国金,马奎,王磊.微纳定位/进给技术研究现状[J].微纳电子技术,2003, (5):40-44.
    [147]Higuchi T,Watanabe M and Kudouk.Precise positioner utilizing rapid deformations of piezoelectric element[J].Japan Society of Precision Engineering,1988,54(11):75-80.
    [148]Fukui R,Torii A,Ueda A.Micro robot actuated by rapid deformation of piezoelectric elements[C].Proc.of International Symposium on Micromechatronics and Human Science,Sept.9-12,2001:117-122.
    [149]李世才,汤炳新,吴国松.压电陶瓷作动器静、动态特性的实验研究[J].河海大学常州分校学报,2002,16(4):12-16,22.
    [150]王文伟,包文清,胡翘,等.冲击式微位移机构的性能测试与分析[J].电子显微学报,1999,18(1):132-136.
    [151]李建良,蒋勇,汪光先.计算机数值方法[M].南京:东南大学出版社,2000.
    [152]张静.预估-校正方法的整体截断误差[J].甘肃联合大学学报(自然科学版),2007,21(3):18-20
    [153]张福学,王丽坤.现代压电学[M].北京:科学出版社,2001:84-85.
    [154]周严,侯丽雅,章维一.波形和参数在线可编程的功率电源及其应用[J].电测与仪表.2004,41(457):16,17-19.
    [155]李智,俞生,都同功,等.转基因显微注射的剂量控制与效果分析[J].中国实验动物学杂志,1998,8(2):65-69.
    [156]http://www.eppendorf.de
    [157]http://www.narishige.co.jp
    [158]http://www.sutter.com
    [159]http://www.microdatamdi.com
    [160]穆莉莉,章维一,侯丽雅,等.疏水化工艺在数字化超微量微注射中的应用[J].化工学报,2004,55(11):1773-1776.
    [161]房汝建,侯丽雅,章维一,等.微操作玻璃微针磨针仪研究[J].机械设计,2005,21(10):41-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700