用户名: 密码: 验证码:
盾构管片拼装机的设计及动态性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从工程需求、功能要求及机构学原理出发,建立了管片拼装机的选型原则,提出构建位置与姿态解耦的串-并混联构型管片拼装机的机型方案;运用基于李群及微分流形理论的运动综合法,综合出姿态微调机构的基本构型,进而完成六自由度混联构型管片拼装机的概念设计。为尽量避免奇异性并增强整机的稳定性及承载能力,提出在3-SPS-1-S型姿态机构基础上,基于构型衍生法构建4-SPS-1-S型冗余驱动机构,作为管片拼装机的微调姿态机构。运用机器人学、机构学相关理论,建立管片拼装机的运动学与动力学模型,分别引入Jacobian矩阵条件数与可操纵度两种运动学性能评价指标、承载能力和驱动性能两种动力学性能评价指标,对管片拼装机的冗余驱动姿态机构进行了动态性能评价。结合盾构管片拼装机的机构设计,研究在机构构型已定的情况下,引入Jacobian矩阵条件数与最大承载力性能的全域性能指标,根据工程可实现性构造相关约束条件,建立姿态机构的多目标优化设计模型;基于改进蚁群算法确定了尺度参数的最优值,在上述工作基础上完成混联构型管片拼装机的样机设计。针对含恰约束链的4-SPS-1-S型姿态机构,提出一种综合考虑机构驱动及传动部件弹性,并考虑约束链弹性的并联机构末端刚度快速预估方法,对该姿态机构进行了刚度特性评价;并在结构设计阶段,借助Ansys参数化设计语言,提出一种并联构型装备有限元快速建模策略与实施办法。为校验盾构管片拼装机设计理论与实际的吻合性,以及是否达到设计时所规定的技术经济指标,对管片拼装机的性能参数进行试验测试分析。
     本文系统研究了可实现六自由度的混联构型管片拼装机的概念设计、构型综合、运动性能分析、动力性能分析及刚度分析等关键技术,为管片拼装机的设计提供一套较为完整的构型综合、性能分析和样机设计的方法。
The 21st century is the development and utilization of underground space of the century. Shield construction technology has been widely used in railway tunnels, crossing the river tunnels, highway tunnels and urban underground works. Full-face tunnel boring machine is a large-scale underground construction equipment which integrated mechanical, electrical, fluid, light, computer technology, and it is the prerequisite for large-scale development and utilization of underground space.Segment assembly system is the key subsystems of shield machine.As complex structure, high efficient, high-precision for location / detection , complex properties of static and dynamic and large work load, etc, it has yet to be realized to be made all in domestically.
     Closely to meet the demands to develop a new segment automated assembly machine, supported by the "Eleventh Five-Year" national major scientific and technological projects—full-face boring machine project funding,for the objective to develop shield segment automatic assembly machines integrated system with own intellectual property rights, this article has system studied the key technologies of the hybrid configuration segment assembled robot,including the concept of machine design, integrated architecture, kinematic performance analysis, dynamic performance analysis and stiffness analysis,etc. Based on the above results, a heavy segment assembly prototype machinery for medium and large-diameter shield tunnel construction is developed, and conducted simulation and prototype testing. The work will gradually form a shield of their own intellectual property rights related equipment to replace foreign products, improve the shield machine in the design and manufacture of equipment and reduce the cost of construction is important and so on.
     In this paper, the main results of research as follows:
     (1)From the engineering demands, functional requirements and mechanism principles, the selection principle of segment assembling machine is set up, a new machine configuration program of the hybrid construction segment assembled machine whose position and posture are decoupling is proposed. Then the issues of posture mechanism conceptual design boil down to a selection problem for less constrained degree of freedom parallel mechanism with a class of just kinematic chains. Based on Lie groups and differential manifold theory, the basic configuration of posture mechanism is synthesized, and then complete the six-degree-of-freedom hybrid configuration segment assembly machine’s conceptual design.
     (2)Based on Lie group theory, the kinematic model of posture mechanism is build, the inverse postion solution and the speed mapping equations are set up,and Jacobian matrix is obtained. Through the input and output speed law, singularity analysis of posture mechanism is carried, singularity criterion of 3-SPS-1-S mechanism is proposed, and its two singular configuration is gained. To avoid singularity and to enhance the stability of whole machine, a redundant drive 4-SPS-1-S mechanism is derivatived. As kinematics performance evaluation index,the Jacobian condition number and manipulability degree are established. The 3-SPS-1-S and 4-SPS-1-S two parallel mechanism performance analysis is compared, research results show that redundant drive 4-SPS-1-S mechanism has better isotropic and manageability, it is more suitable as profile bodies of segment assembled machine.
     (3)Based on the Newton-Euler and Lagrange equation, dynamics model of posture mechanism is the established,which lay the theoretical foundation for dynamic performance analysis and implementation of control. In accordance with segment assembled machine characteristics, the use of variable structure control method and control strategy to control its implementation is proposed. Two types of dynamic performance index,including bearing capacity and driven capability,are established to evaluate dynamic performance. The results show that the redundant drive 4-SPS-1-S mechanism has good bearing capacity and drive performance.
     (4)The global performance indicators,such as Jacobian matrix condition number and the maximum bearing capacity are introduced, and then dimensional synthesis can be boiled down to as follows: under the premise to meet the design task space and various constraints requirements,take the global condition number and the maximum bearing capacity as the objective function , make the multi-objective optimization design model of posture mechanism and determine the optimal scale parameter value. In the choice of optimization method, through improveing the global search, local search and pheromone update rule of ant colony algorithm, the improved ant clony algorithm for solve the continuous optimization problem is established and used in structure parameter optimization. Digital design prototype of segment assembly robot is developed basing on the determined scale parameter and it provides a detailed design program for the construction of the physical prototype.
     (5)Combination of shield segment assembly robot design, Utilizing virtual work principle and technique of substructure synthesis,simplified analytic model of the segment assembly robots is formulated. The model enables the rigidity distribution of the end-effector within the entire workspace to be quickly estimated in the stage of conceptual design.By means of ANSYS Parametric Design Language (APDL), finite element analysis (FEA) models of this robot are also formulated by taking into account the flexibility of machine frame. Particular attentions are placed upon:①precise FEA formulation of different type of joints, and②the development of an effective modeling strategy for the rapid rigidity estimation associated with different configurations in order to avoid FEA model re-meshing. Compare the stiffness results of analytical model and finite element analysis, the distribution of the two are basically the same,thus verify the analytical model of stiffness has a certain validity of the results expected.
     (6)The experimental investigation and parameters test is carried out on a segment assembly robot prototype machine. It shows that fairly good match can be achieved between the results of design theory and those obtained via experiments.
     This article work of creativity is summarized as follows:
     (1)The selection principle of segment assembly erector has been set up,the hybrid configuration segment assembly erector’configuration program which position and posture are decoupling has been constructed,and the problem of concept design for erector has been come down to the configuration selection problem for a class of less degree of freedom parallel mechanism with a appropriate restricted chain.With kinematic synthesis method based on Lie groups and differential manifold theory, the basic configuration of posture mechanism has been synthesized,and concept design of six degree freedom hybrid configuration segment assembly erector has been completed.
     (2)To avoid singularity and enhance carrying capacity and stability,based on 3-SPS-1-S type parallel mechanism , 4-SPS-1-S type redundancy-driven mechanism which is to be as posture mechanism has been proposed. The mechanism has such good characteristic as balance and stability, carrying capacity , and stiffness-weight ratio, and position accuracy.
     (3)The kinematic and dynamic models of segment assembly erector has been set up.With the introduction of kinematic performance index which includes Jacobian condition number and manipulation,and dynamic performance index which include carrying capacity and driving capacity,kinematics and dynamics performance evaluation have been carried for redundant driven posture mechanism of segment assembly erector.
     (4)Scale synthesis approach considering an integrated kinematics, dynamics performance has been set up.With the objective function such as Jacobian condition number and carrying capacity ,multi-objective optimization design model to determine the optimal value of scale parameter are founded. In the choice of optimization method,the improved ant colony algorithm was used and the optimizaton results more satisfactory.
     ( 5 ) Utilizing virtual work principle and technique of substructure synthesis,simplified analytic model of the 4-SPS-1-S mechanism is formulated. By means of ANSYS Parametric Design Language (APDL), finite element analysis (FEA) models are also formulated by taking into account the flexibility of machine frame,and an effective modeling strategy for the rapid rigidity estimation associated with different configurations in order to avoid FEA model re-meshing.
引文
[1]崔国华,王国强,张英爽,何恩光.盾构掘进机研究现状及发展前景[J].矿山机械,2006,(12):37~42.
    [2] Yukinori Koyama. Present status and technology of shield tunneling method in Japan.Tunneling and Underground Space Technology,2003(18),145—59.
    [3] Lu, Yang; Ma, Ji-Ming. TBM in the future of China[J]. Marine Georesources and Geotechnology,2004,22(3):185~193.
    [4]杨华勇,龚国芳.盾构掘进机发展战略研究[J].《城市交通隧道工程最新技术——2003上海国际隧道工程研讨会论文集》[C],2003:339~345.
    [5] Herrenknecht, Martin; Bappler, Karin. Recent developments in the TBM industry - New and innovative technologies[A]. 17th Rapid Excavation and Tunneling Conference-2005 Proceedings[C]. Proceedings - Rapid Excavation and Tunneling Conference. Seattle, WA, United States:2005.679~688.
    [6] Grandori, Carlo. Tunnelling and Underground Construction in the Twenty-first Century[J]. Tunnelling Underground Space Technol, 1987, 2(2): 143~ 145.
    [7]水利部科技推广中心.全断面岩石掘进机[M].北京:石油工业出版社,2005.
    [8]周文波.盾构法施工技术及应用[M].北京:中国建筑工业出版社,2004.
    [9]刘铁雄译.日本隧道标准规范(盾构篇)及解释[M].成都:西南交通大学出版社,1988.
    [10]张凤祥,朱合华,傅德明.盾构隧道[M].人民交通出版社, 2004.7.
    [11]陈丹,袁大军,张弥.盾构技术的发展与应用[J].《现代城市轨道交通》, 2005(5), 25-29.
    [12] Masahiro Maeda, Kotaro Kushiyama. Use of compact shield tunneling method in urban underground construction[J]. Tunnelling and Underground Space Technology,2005(20),159–166.
    [13] Hiroshi Nakamura, Toshikazu Kubota, Mamoru Furukawa, Tsutomu Nakao. Unified construction of running track tunnel and crossover tunnel for subway by rectangular shape double track cross-section shield machine[J]. Tunnelling and Underground Space Technology,2003(18),253–262.
    [14] K.Mori, Y. Abe. Large rectangular cross-section tunneling by the multi-micro shieldtunneling(MMST) method[J]. Tunnelling and Underground Space Technology,2005(20) 129–141.
    [15] Fu, Bingjun; Xu, Shulin; Grasso, P. Construction of underground hydraulic structures and TBM technology in China[J]. Yanshilixue Yu Gongcheng Xuebao,2003,22(9):1521~1526.
    [16] Jelmer Braaksma, Ben Klaassens, Robert Babuska. (2006) .Hybrid control design for a robot manipulator in a shield tunneling machine[J]. Informatics in Control, Automation and Robotics I, 143~150.
    [17] Kazuhiro Kosuge, Koji Takeo, Daiji Taguchi, Toshio Fukuda. (1996). Assembly of segments for shield tunnel excavation system using task-oriented force control of parallel link mechanism[J]. IEEE:501~506.
    [18] Kazuhiro Kosuge, Koji Takeo, Daiji Taguchi, Toshio Fukuda. Task-oriented force control of parallel link robot for the assembly of segments of a shield tunnel excavation system[J]. IEEE/ASME Transactions on mechatronics, Vol. 1, No. 3, September 1996:250~257.
    [19] Kato Takaaki,Murano Kenichi.Development of segment automatic building intelligent system[J]. Nkk Technical Review,1991,(61):52~58.
    [20] Tanaka Yasuo. Automatic segment assembly robot for shield tunneling machine[J]. Microcomputers in Civil Engineering,1995,10(5):325~337.
    [21] Martin David. Japanese robot can erect tunnel segments[J].Tunnels and Tunnelling, 1990,22(7):54~55
    [22]钱晓刚,盾构掘进设备中的管片拼装机机构设计方法[D].上海:上海交通大学,2007.
    [23]管会生等.盾构管片拼装机设计研究[J].矿山机械,2005,33(03):15~16.
    [24]丁书福.盾构管片拼装机电液控制系统研究[D].杭州:浙江大学,2005.
    [25]石端伟等. GP6500型管片安装机虚拟样机设计与研究[J].中国机械工程,2006,17 (13):1341~1345.
    [26]魏要强. TBM后配套管片自动拼装机设计及研究[D].武汉:武汉大学,2005.
    [27]翟一欣等.复兴东路隧道盾构管片拼装机及拼装辅助设备的研制[J]. 2005上海国际隧道工程研讨会文集[C].大直径隧道与城市轨道交通工程技术——2005上海国际隧道工程研讨会.上海.
    [28]郭希芹.土压平衡式盾构机管片拼装系统故障排除[J].建筑机械,2006,(23) :100~102
    [29]张闵庆,葛道远等.带有压力式全密封油箱的衬砌拼装机[P].中国:CN 1448616A,2003.
    [30]石元奇,王鹤林等.具有六个自由度的盾构管片拼装机[P].中国:CN 1837578A,2006.
    [31] Sugiyama Masahiko;Kamimura Joji.Erector Device and Tunnel Excavator[P].Japan: JP20060138523 20060518,2007.
    [32] Sakuma Yuji. Erector Device for Assembling Segment[P].JAPAN: JP20060017586 20060126 2007.
    [33] Zhang, H., Zhen, Z., Wei, Q., and Chang, W. (2001).The position/ force control with self-adjusting selectmatrix for robot manipulators[J]. In Proceedings of the 2001 IEEE International Conference on Robotics & Automation. Department of Automatic Control, National University of Defense Technology.
    [34]赵志杰,金先龙,曹源.盾构隧道通用管片虚拟拼装系统[J].计算机辅助设计与图形学学报,2007,19(9):1196~1199.
    [35]韩亚丽.南京地铁盾构隧道管片拼装技术[J].隧道建设,2003,23(2):16~17.
    [36]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997.
    [37]杨廷力.机器人机构拓扑结构学[M ].北京:机械工业出版社, 2004.
    [38] Neumann K E,Robot,US Panent No.4732525,Mar.22,1988.
    [39] Neumann K E,System and Method for Controlling a Robot,US Panent No.6301525,Oct.9,2001.
    [40]于靖军,刘辛军等.机器人机构学的数学基础[M ].北京:机械工业出版社, 2007.
    [41] John J.Craig(著);貟超(译).机器人学导论.北京:机械工业出版社,2006.
    [42]孙富春等译.机器人学导沦——分析、系统及应用[M].北京:电子工业出版社,2004.
    [43]马香峰.机器人机构学[M].北京:机械工业出版社,1991.
    [44]李占贤.高速轻型并联机械手关键技术及样机建造[D].天津:天津大学,2004.
    [45] Salisbury J K, Graig J J, Articulated hands: force control and kinematic issues, The International Journal of Robotics Research, 1982, 1(1): 4-17.
    [46] Angeles J, Rojas A, Manipulator kinematic inversion via condition-number minimization and continuation, The International Journal of Robotics and Automation, 1987, 2(2):61-69
    [47] Angeles J, Lopez-Cajun C S, The dexterity index of serial-type robotic manipulators, In: Proceedings of the ASME Mechanisms Conference, Kissimmee, Florida, 1988: 79-84
    [48] Angeles J, Lopez-Cajun C S, Kinematic isotropy and the conditioning index of serialrobotic manipulator, The International Journal of Robotics Research, 1992, 11(6): 560-571.
    [49]赵永杰.高速轻型并联机械手动态设计理论与方法[D].天津:天津大学,2006.
    [50] Dasgupta B, Mruthyunjaya T S. Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach, Mech. Mach. Theory, 1998, 33(7):993-1012
    [51] Yoshikawa T, Dynamic manipulability of robot manipulators, Journal of Robotic Systems, 1985, 2(1): 113-124
    [52] Yoshikawa T, Dynamic manipulability of robotic manipulators, In: Proceedings of the IEEE International Conference on Robotics and Automation, St. Louis,LA, 1985: 1033-1038
    [53] Tadokoro S, Kimura I, Takamori T, A measure for evaluation of dynamic dexterity based on a stochastic interpretation of manipulator motion, In:Proceedings of the IEEE International Conference on Robotics and Automation,Sacramento, California, 1991: 509-514.
    [54] Ma O, Angeles J, The concept of dynamics isotropy and its applications to inverse kinematics and trajectory planning, In: Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, USA, 1990:481-486
    [55]李矇.可重构混联机械手模块TriVariant的设计理论与方法[D].天津:天津大学,2005.
    [56] Gosselin C M, Angeles J, The optimum kinematic design of a spherical three Degree-of-Freedom parallel manipulator, Journal of Mechanisms,Transmissions, and Automations in Design, 1989, 111(2): 202-207
    [57] Huang T, Whitehouse D J, Wang J S. Local dexterity, optimum architecture and design criteria for parallel machine tools, Annals of CIRP, 1997, 47(1):347-351
    [58] Gosselin C M, Angeles J, The optimum kinematic design of a planar three-degree-of-freedom parallel manipulators, Journal of Mechanisms,Transmissions, and Automations in Design, 1988, 110(1): 35-41
    [59] Gosselin C M, Angeles J, A global performance index for the kinematic optimization of robotic manipulators, ASME Journal of Mechanical Design, 1991, 113(3): 220-226
    [60] Huang T,Li M,Zhao X Y,et al.Kinematic design of a reconfigurable miniature parallel kinematic machine,Chinese Journal of Mechanical Engineering(机械工程学报英文版),2003,16(1):79~82.
    [61]王友渔.可重构混联机械手Tricept和TriVariant的静刚度预估技术研究[D].天津:天津大学,2006.
    [62] Clement Gosselin, Stiffness mapping for parallel manipulators, IEEE Transactions On Robotics and Automation, 1990,6(3):377~382
    [63] Lee K M, Aujunan S, A Three-Degrees-of-Freedom micromotion in-parallel actuated manipulator, IEEE Translations On Robotics and Automation,1991,7(5): 634~641
    [64] Stoughton R S, Arai T, A modified Stewart platform with improved dexterity,IEEE Transaction on Robotics and Automation, 1993, 9(2):166~172
    [65] Ferraresi C, Pastorelli S, Sorli M, et al, Static and Dynamic Behavior of a High Stiffness Stewart Platform-Based force/torque Sensor, Journal of Robotic Systems, 1995, 12(12):883~893
    [66]师丽菊.三自由度弹性铰链机器人静刚度与动力学研究[D].秦皇岛:燕山大学,2006.
    [67]敖银辉,陈新,温兆麟.平面并联机构刚度与动力学指标分析[J].中国机械工程,2004,15(9):1607~1610.
    [68]周玉林,高峰.2-RRR+RRS球面并联机构的静刚度分析[J].机械设计与研究,2004,24(4):35~40.
    [69] Li Y W, Wang J S, Wang L P, Stiffness analysis of a Stewart platform-based parallel kinematic machine, In: Proceeding of the IEEE International Conference on Robotics & Automation, 2002: 3672~3677.
    [70]周长城,胡仁喜等.ANSYS11.0基础与典型范例[M].北京:电子工业出版社,2007.
    [71] EI-Khasawneh B S, Ferreira P M, Computation of stiffness and stiffness bounds for parallel link manipulators, International Journal of Machine Tools and Manufacture, 1999, 39: 321~341.
    [72]李育文,张华等,6-UPS并联机床静刚度的有限元分析和实验研究,中国机械工程,2004,15(2):112~117.
    [73] Gursel Alici, Bijan Shirinzadeh. Topology optimisation and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint[J]. Mechanism and Machine Theory, 2004, (39) 215–235.
    [74]余顺年,马履中,陈扼西,郭宗和.三自由度并联机构位置和运动分析及仿真[J].农业机械学报,2005,38(8):97—100.
    [75]陶建峰,朱野,闫述等.重载三自由度旋转并联平台的位置逆解及其分析[J].上海交通大学学报,2007,41(4):546—550.
    [76]戴填国.3-RRR并联机构虚拟样机设计与仿真[D].南京:南京理工大学,2005.
    [77] M.Karouia,J.M.Hervé.A Three-Dof Tripod for Generating Spherical Rotation[J].Advances in Robot Kinematics,Kluwer,2000:395-402.
    [78] M.Karouia,J.M.Hervé.An Orientational 3-DOF Parallel Mechanism[J].Proceedings of PKS,Chemnitz,Germany,2002,April:23-25,
    [79]崔国华,王国强,赵春江等.空间转动三自由度并联微调机构设计与运动学分析[J].农业机械学报,2008,39(9):144-148.
    [80] M.Karouia,J.M.Hervé.A Family of Novel Orientational 3-DOF Parallel Robot[J].Proceedings of RoManSy,Undine,Italy,2002,July:1-4.
    [81] R.Di Gregorio.Closed-Form Solution of the Position Analysis of the Pure Translational 3-RUU Parallel Mechanism[J].the 8th Symposium on Mechanisms and Mechanical Transmissions,2000,Timisoara:119-124
    [82] Kong, X., and Gosselin, C., 2005,“Type Synthesis of 3-DOF PPR-Equivalent Parallel Manipulators Based on Screw Theory and the Concept of Virtual Chain,”ASME J. Mech. Des., 127, pp. 1113–1121.
    [83]佟志忠,从大成,姜洪州,何景峰.三自由度运动平台可视化设计与实现[J].系统仿真学报,2007,19(4):794—798.
    [84]刘辛军,汪劲松,李剑峰等.一种新型空间3自由度并联机构的正反解及工作空间分析[J].机械工程学报,2007,41(4):546—550.
    [85] Tsai L W, Joshi S, Kinematics and optimization of a spatial 3-UPU parallel manipulator, ASME Journal of Mechanical Design, 2000, 122(4): 439-446
    [86] Yangmin Li, Qingsong Xu. Kinematic analysis of a 3-PRS parallel manipulator[J]. Robotics and Computer Integrated Manufacturing 23 (2007) 395–408.
    [87] Miller K, Experimental verification of modeling of DELTA robot dynamics by direct application of Hamilton’s principle, In: Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995:532-537
    [88] Sameer A.Joshi.A comparative study of two classes of 3-dof parallel manipulators[D].University of Maryland,2002.
    [89] Yi Lu,Bo Hu,Ping-Li Liu.Kinematics and dynamics analyses of a parallel manipulator with three active legs and one passive leg by a virtual serial mechanism[J]. Multibody Syst Dyn (2007) 17:229–241
    [90]李盛年.并联调姿机构运动学、动力学分析及虚拟样机技术研究[D].绵阳:中国工程物理研究院,2004.
    [91]郑相周.大洋采矿补偿平台串并联机构的运动学研究[D].武汉:华中科技大学,2003.
    [92] Huang T,Whitehouse D J,Wang J S.Local dexterity,optimum architecture and design criteria of parallel machine tools[J].Annals of the CIRP,1998,47(1):347~351.
    [93] Huang T,Whitehouse D J,Chetwynd D,A unified error modeling for tolerance design,assembly and error compensation of a class of parallel kinematic machines with parallelogram struts[J]. Annals of the CIRP,2002,52(1):297~301
    [94]黄田,唐国宝,李思维等,一类少自由度并联构型装备运动学标定方法研究,中国科学E辑,829~838.
    [95]罗继曼.少自由度并联装备构型及约束链研究[D].沈阳:东北大学,2006。
    [96]吴宇列.并联机构奇异位形的微分几何理论以及冗余并联机构的研究[D].长沙:国防科学技术大学,2001.
    [97]刘莉萍.含有中间约束分支的三自由度并联机构综合与性质研究[D].秦皇岛:燕山大学,2006.
    [98]李秦川.对称少自由度并联机器人型综合理论及新机型综合[D].秦皇岛:燕山大学,2006.
    [99] Jun Wu , Jinsong Wang , Tiemin Li , Liping Wang. Performance Analysis and Application of a Redundantly Actuated Parallel Manipulator for Milling[J]. J Intell Robot Syst (2007) 50:163–180
    [100]Joshi, S. A., and Tsai, L. W., 2001,‘‘A Comparison Study of Two 3-DOF Parallel Manipulators: One with Three and the Other with Four Supporting Limbs,’’Accepted for Publication to the IEEE J. Rob. Autom.
    [101]Karouia, M., and Herve′, J. M., 2000,‘‘A Three-DOF Tripod For Generating Spherical Rotation,’’Advances in Robot Kinematics, J. Lenarcic and M. M.Stanisic(eds.) Kluwer Academic Publishers, pp. 395–402.
    [102]陈红亮,罗玉峰,杨廷力.对称三自由度并联机器人拓扑结构型综合与分类[J].农业机械学报,2008,39(1):138-141.
    [103]罗建国,陆震.冗余驱动串并联机器人运动学联合仿真[J].机械设计,2007,24(3):3~6.
    [104]白志富,韩先国,陈五一.冗余驱动消除并联机构奇异研究[J].航空学报,2006,27(4):733~736.
    [105]张彦斐,宫金良,高峰.冗余驱动消除并联机构位形奇异原理[J ] .中国机械工程,2006 ,17 (5) :445~448.
    [106]熊心元.重载设备冗余驱动关键技术研究[D].天津:河北工业大学,2007.
    [107]高征,高峰.新型并联机器人的奇异位形分析[J].机械工程学报,2008,44(1):133~138
    [108]BHATTACHARYA S, HATWAL H, GHOSH A. Comparison of an exact and an approximate method of singularity avoidance in platform type parallel manipulators[J].Mechanism and Machine Theory, 1998, 33 (7):965-974
    [109]Wang, J., Gosselin, C.M.: Kinematic analysis and design of kinematically redundant parallel mechanisms. ASME J. Mech. Des. 126(1), 109–118 (2004)
    [110]朱大昌.基于并联支撑机构的车载雷达天线自动调平系统研究[D].北京:北京交通大学,2008.6.
    [111]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999.
    [112]杨纲,傅晓云,李宝仁.两自由度冗余驱动并联机器人的研究[J].系统仿真学报,2006,18(2):416~419.
    [113]刘海涛,黄田, CHETWYND D G,李曚,HU S J.5自由度大工作空间/支链行程比混联机械手的概念设计与尺度综合[J].机械工程学报,2007,43(6):14~20.
    [114]ZHANG D, GOSSELIN C M. Kinetostatic analysis and design optimization of the Tricept machine tool family[J].ASME Journal of Manufacturing Science and Engineering,2002, 124(3):725-733.
    [115]杨鹏,梁利华,李国斌.改进蚁群算法在并联六自由度平台优化设计中的应用[J].哈尔滨,2007,28(11):1236~1241.
    [116]孙学勤,刘丽,付萍.一种连续空间优化问题的蚁群算法及应用[J].计算机工程与应用,2005 ,41(34) :217~220.
    [117]邹长武,熊剑秋,李祚泳.改进的蚂蚁算法及其在暴雨强度公式参数优化中的应用[J] .四川大学学报(工程科学版) ,2005 ,37 (5) :9~13.
    [118]吴启迪,汪镭.智能蚁群算法及应用[M] .上海:上海科技教育出版社,2004.
    [119]刘静.挖掘机器人虚拟样机建模技术及其应用研究[D].杭州:浙江大学,2005石博强等.ADAMS基础与工程范例教程[M].北京:中国铁道出版社,2007.
    [120]李启炎主编.SolidWorks2003三维设计教程[M].北京:机械工业出版社,2003.
    [121]吴宗泽主编.机械设计师手册[M].北京:机械工业出版社,2002.
    [122]Dan Zhang, Fengfeng Xi, Chris M. Mechefske, Sherman Y.T. Lang. Analysis of parallel kinematic machine with kinetostatic modelling method[J].Robotics and Computer-Integrated Manufacturing 20 (2004) 151~165.
    [123]Dan Zhang, Zhuming Bi, Beizhi Li. Design and kinetostatic analysis of a new parallel manipulator[J].Robotics and Computer-Integrated Manufacturing, (2009), doi:10.1016/j.rcim.2008.10.002
    [124]Carretero JA, Podhorodeski RP, Nahon MN, Gosselin CM. Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator. ASME J Mech Des 2000;122:17–24.
    [125]Dan Zhang, Clement M. Gosselin. Kinetostatic Analysis and Design Optimization of the Tricept Machine Tool Family[J].Journal of Manufacturing Science and Engineering,2002,124(8):725~733.
    [126]Dan Zhang, Clement M. Gosselin. Kinetostatic Modeling of N-DOF Parallel Mechanisms With a Passive Constraining Leg and Prismatic Actuators[J]. Journal of Mechanical Design,2001,123(9):375~381.
    [127]王友渔,黄田,CHETWYND DG,HU S J.Tricept机械手静刚度解析建模方法[J].机械工程学报,2008,44(8):13~19.
    [128]李育文,张华等,6-UPS并联机床静刚度的有限元分析和实验研究,中国机械工程,2004,15(2):112~115.
    [129]Zhou L H, Huang T, et al, Stiffness analysis of the main module for parallel machine tools by finite element analysis, Transactions of Tianjin University,2001, 7(1): 30~35
    [130]Svinin M M, Hosoe S, Uchiyama M, On the stiffness and stability of Gough-Stewart platforms, In: Proceeding of the IEEE International Conference on Robotics & Automation, 2001: 3268~3273
    [131]Huang C, Hung W H, Kao I, New conservative stiffness mapping for the Stewart-Gough platform, Proceeding of the IEEE International Conference on Robotics & Automation, 2002: 823~828
    [132]Ceccarelli M, Carbone G, A stiffness analysis for CaPaMan (CassinoParallel Manipulator) Mechanism and Machine Theory, 2002, 37: 427~439
    [133]Goldsmith P B, Kinematics and stiffness of a symmetrical 3-UPU translational parallel manipulator, In: Proceeding of the IEEE International Conference on Robotics & Automation, 2002: 4102~4107
    [134]Goldsmith P B, Design and kinematics of a three-legged parallel manipulator,IEEE Transactions of Robotics and Automation, 2003, 19(4): 726~731.
    [135]Kang B, Mills J K, Dynamic modeling of structurally flexible planar parallel manipulator, Robotica, 2002, 20(3):329-339
    [136]Li M, Huang T, Chetwynd D G et al, Dynamic formulation and performance comparison of the 3-DOF modules of two reconfigurable PKMs– the TriVariant and the Tricept, ASME Journal of Mechanical Design, 2005,127(6):1129-1136
    [137]Fattah A, Angeles J, Misra A K, Dynamics of a 3-dof spatial parallel manipulator with flexible links, In: Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995: 627-632
    [138]Kang B, Mills J K, Dynamic modeling and vibration control of high speed planar parallel manipulator, International Conference on Intelligent Robots and Systems, Hawaii, USA, 2001:1287-1292
    [139]赵周礼.非对称缸系统精确建模方法研究[J].机床与液压,2002,14(1):92~94. [140傅德明,李向红等.大型盾构掘进模拟试验平台:中国,CN200410089260.7[P].2004.
    [141]×××—××土压平衡盾构机检测报告[R].吉林大学工程装备试验中心,2007.
    [142]土压平衡盾构掘进机标准(征求意见稿)[M].上海隧道工程股份有限公司,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700