用户名: 密码: 验证码:
高κ栅介质Ge基MOS器件模型及制备工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互补金属氧化物半导体(CMOS)器件特征尺寸的不断缩小,Si基MOS器件的发展达到了其物理极限,新的沟道材料,如应力Si、应力SiGe合金、Ge衬底等,因其较高的载流子迁移率而被采用来提高器件的驱动性能。最近几年,高κ栅介质Ge和SiGe MOSFETs的研究是微电子学领域的热点,主要集中于高κ栅介质的制备工艺及其电特性研究。但对淀积后退火工艺,表面预处理工艺,掺Ti的Hf系氧化物等方面的研究较少。而且,在高κ栅介质Ge MOS器件模型研究方面,如阈值电压模型、栅极漏电流模型等,未见到相关报道。本论文即从理论和实验两方面对上述内容进行了相关研究。主要内容分为三个部分:1) SiGe MOSFET的阈值电压模型;2) Ge MOS器件栅极漏电流模型;3) Hf系高κ栅介质Ge MOS器件的制备及其电特性、界面特性的刻化。
     本文通过考虑量子效应,提出了一种深亚微米SiGe沟道pMOSFET阈值电压模型,分别考虑了有Si盖帽层和无Si盖帽层两种情况,并讨论了高κ栅介质、短沟道效应和漏致势垒降低效应对阈值电压的影响。模拟结果和实验数据符合良好。利用此模型对器件的主要参数进行了优化设计。
     基于WKB近似,在分析高κ栅介质/界面层/Ge衬底能带结构的基础上,提出综合考虑直接隧穿和F-N隧穿的栅极漏电流解析模型,模拟结果与实验数据符合较好,表明该模型对于模拟深亚微米叠层高κ栅介质Ge MOS器件在强反型时的栅极漏电较为准确,但在小栅偏压下(Vg < 0.3 V)存在一定的误差,可能的原因是没有充分考虑空穴密度和陷阱电荷对栅极漏电的影响。实验方面,研究了Ge MOS器件的制备工艺,在Ge衬底上制备出了性能良好的HfTiON、HfTiO以及叠层GeON/HfTiO等高κ栅介质:(1)采用反应磁控溅射方法在Ge衬底上生长HfTiN薄膜,然后利用淀积后退火(PDA)工艺,在湿N2气氛中,利用退火系统中剩余的O2将HfTiN薄膜转化成HfTiON栅介质,制备了性能良好的Ge MOS器件,等效氧化物厚度为2.4nm,等效氧化物电荷密度2. 8×1011 cm-2,界面态密度5.9×1011 eV-1 cm-2,栅极漏电流密度4.7×10-4 Acm-2 (Vg = 1V)。并研究了干湿N2退火对器件性能的影响。结果显示,由于GeOx的易水解特性,湿N2退火有效抑制了低κGeOx界面层的生长,大大降低了界面态和等效氧化物电荷密度,进而降低了栅极漏电流;(2)利用反应磁控溅射方法在Ge衬底上制备超薄HfTiO栅介质,通过调节Ti靶的溅射功率研究了Ti浓度对HfTiO介质性能的影响。实验结果表明,在所研究范围内,随着Ti浓度的增加,HfTiO的介电常数增加到40,但高浓度的Ti引起界面特性的恶化和栅极漏电流密度的增加。为了进一步研究淀积后退火对器件电特性的影响,PDA分别在500°C的湿N2、NH3、NO、N2O气氛中进行300s。实验结果表明,湿N2退火样品呈现出最优的电性能:等效氧化物厚度0.81nm,相对介电常数~35,界面态密度~6.4×1011 eV-1 cm-2,等效氧化物电荷密度~1.96×1011 cm-2,+1V栅压时的栅极漏电流~2.71×10-4 Acm-2;(3)研究了湿NO、N2O、NH3表面预处理工艺对器件性能的影响。采用表面预处理工艺制备了GeOxNy以及GeOxNy/HfTiO叠层栅介质MOS器件。结果表明,湿NO表面预处理对制备亚2nm GeOxNy/HfTiO叠层高κ栅介质,降低其界面态密度和等效氧化物电荷密度,从而减小栅极漏电、增强器件可靠性有着十分重要的作用,其电参数达到:等效氧化物厚度1.88nm,等效氧化物电荷密度9.77×1010cm-2,界面态密度2.41×1011 cm-2eV-1,栅极漏电流4.95×10-5 Acm-2。
As the continual scaling of complementary metal-oxide-semiconductor (CMOS), Si MOS device approaches its fundamental limits, and new channel materials, such as strained Si, strained SiGe alloy and Ge substrate and so on, are explored to improve device performance by enhancing carrier mobility in the channel region. Recently, study on SiGe or Ge MOSFETs with high-κgate dielectric have become hot point, which mainly be focused on fabrication processes and electrical properties of high-κgate dielectric. However, post-deposition anneal, surface pretreatment of substrate, and Hf-based oxides doped Ti, were less involved. Also, the studies on modeling of Ge MOS devices, e.g. threshold voltage model and gate leakage model, were rarely reported too. In this thesis, theoritical and experiment work related to above problems is performed to find relevant solutions. Content of the thesis is devided into three parts: 1) threshold voltage model on SiGe pMOSFET, 2) gate leakage model on Ge MOS, 3) preparations and electrical properties of high-κgate dielectric MOS devices with Hf- and HfTi-based oxide and oxynitride as gate dielectric.
     In this work, analytical models on threshold voltage of deep sub-micron SiGe pMOSFETs with high-κgate-dielectric and Si cap layer or without Si cap layer are respectively proposed by considering short-channel effect (SCE), drain-induced barrier lowing (DIBL) and quantumn effect. The simulated results are in good agreement with experimental data. Based on the model, the main parameters of high-κgate dielectric SiGe pMOSFET can be reasonably determined.
     For gate-leakage current model, based on the Wentzel-Kramer-Brillouin (WKB) approach, a compact analytical model of Ge MOS device has been developed by taking direct and F-N tunnels into account. Simulated results exhibit a good agreement with experimental data, indicating that the model is suitable for simulating gate leakage current in inversion for deep-submicron Ge MOSFET with stack high-κgate dielectric. However, small error occurs for low gate bias below 0.3 V, probably due to deficiently calculating effects of hole density and trap charges.
     MOS devices fabricating process and electric charactristic with HfTi oxidation and oxynitride gate dielectric is investigated as followed. (1) HfTiN gate dielectric films are deposited on n-Ge substrates by the method of reacting magnetron sputtering in N2+Ar ambient, followed by PDA which was carried out at 550°C for 300s in a wet N2 ambient instead of O2 to convert HfTiN into HfTiON by utilizing the residual O2 in PDA system, and super performace for Ge MOS capacitor with HfTiON gate dielectric have been achieved with equivalent oxide thickness of 2.4 nm, equivalent oxide charge density of 2.8×1011 cm-2, interface-state density of 5.9×1011 eV-1 cm-2 and gate leakage current of 4.7×10-4 A cm2 at Vg = 1 V. The effects of dry and wet N2 anneal on dielectrice perporities have been investigated too, results indicate that wet N2 anneal for deposited HfTiN film can induce a great reduction of interface-state/dielectric-charge densities and gate leakage current due to the suppressed growth of the GeOx interlayer in the wet ambient. This should be attributed to the hydrolysable property of GeOx in water-vapor. (2) Ultra-thin HfTiO gate dielectric is deposited by reactive co-sputtering method followed by wet N2 anneal. The effects of Ti content on the performances of HfTiO gate dielectricd are analysed by using different sputtering powers of the Ti target. Experimental results indicate that as the Ti content increases, theκvalue can increase up to 40 for the highest Ti content being studied in this paper. However, while the Ti content is too high, the interface properties and gate leakage properties are deteriorated severely. To inspect the influences of PDA on MOS capacitors, PDA was comparatively carried out in wet N2, NH3, NO and N2O ambiences respectively. Results show that excellent dielectric performance is achieved by wet N2 annealing: equivalent oxide thickness of 0.81 nm, relative permittitivy of 35, interface-state density of 6.4×1011 eV-1 cm-2, equivalent oxide charge density of 1.96×1011 cm-2 and gate leakage current of 2.71×10-4 Acm-2 at Vg = 1 V. (3) GeOxNy and GeOxNy /HfTiO stack gate dielectric has been fabricated on Ge substrate with substrate surface pretreatment.
     Results indicate that surface pretreatment in wet NO ambient is propitious to fabricate sub-2nm high-κGeOxNy/HfTiO gate stack Ge MOSFETs by decreasing density of interface state and equivalent oxide charge, thus reduces gate leakage current and enhances reliability of device.Excellent device performances of GeOxNy/HfTiO Ge MOS capacitor have been achieved with equivalent oxide thickness of 1.88 nm, equivalent oxide charge density of 9.77×1010 cm-2, interface-state density of 2.41×1011 eV-1 cm-2 and gate leakage current of 4.75×10-5 Acm-2 at Vg = 1 V.
引文
[1] International Technology Roadmap for Semiconductors, http://www.itrs.net/ Links /2005ITRS/ExecSum2005.pdf.
    [2] Wong H, Iwai H. On the scaling issues and high-κreplacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectronic Engineering, 2006,83: 1867-1904
    [3] Doris B., Ieong M., Kanarsky T., et al. Extreme Scaling with Ultra-Thin Si Channel MOSFETs. IEDM Tech. Dig. 2002, 267-270
    [4] Muller D. Sorsch A., Moccio T., et al. The electronic structure at the atomic scale of ultrthin gate oxides, Nature, 1999, 399(6738): 758-761
    [5] Wong H., Gritsenko V. A. Defects in Silicon oxynitride gate dielectric films. Microelectronics Reliability, 2002, 42:597-605
    [6] Khairurrijal, Mizubayashi W., Miyazaki S., et al. Analytic model of direct tunnel current through ultrathin gate oxides, J. Appl. Phys. 2000, 87(6): 3000-3005
    [7] Larcher L., Paccagnella A., Ghidini G. Gate Current in Ultrathin MOS Capacitors: A New Model of Tunnel Current. IEEE Transactions on Electron Device, 2001, 48(2): 271-278
    [8] Hansen K., Brandbyge M. Current-voltage relation for thin tunnel barriers: Parabolic barrier model. J. Appl. Phys. 2004, 95(7): 3582-3586
    [9] Liu C. L., Lee M. H., Lee Y. C., et al. Evidence of Si/SiGe heterojunction roughness scattering, Appl. Phys. Lett., 2004, 85(.21:4947- 4949
    [10] Kuo J. B., Tang M. C., and Sim J. H. An Analytical Threshold Voltage Model for SiGe-Channel PMOS Devices. Solid-State Electronics, 1993,36(9):1349-1352
    [11] Iniewski K., Voinigescu S., Atcha J., et al. Analytical Modeling of Threshold Voltage in p-channel Si/SiGe/Si MOS structures. Solid-State Electronics, 1993,36(5): 775-783
    [12] Niu G. F., Ruan G. Threshold voltage and inversion charge modeling of graded SiGe-channel modulation-doped p-MOSFET’s. IEEE Trans. Electron Devices, 1995,42(12):2242-2246
    [13] Niu G. F., Ruan G., Tang T. A., et al. Inversion charge modeling of SiGe pMOS and approaches to increasing the hole density in the SiGe channel, Solid- state Electron,1995, 38(2): 323-329
    [14] Yang K. N., Huang H. T., Chang M. C. A Physical Model for Hole Direct Tunneling Current in P+ Poly-Gate PMOSFETs with Ultrathin Gate Oxides. IEEE Transactions on Electron Device, 2000, 47(11): 2161-2166
    [15] Yeo Y. C., King T. J., Hu C. M. Direct tunneling leakage current and scalability of alternative gate dielectrics. Appl. Phys. Lett. 2002, 81(11): 2091-2093
    [16] Vogel E. M., Ahmed K. Z., Hornumg B., et al. Modeled tunnel currents for high dielectric constant dielectrics. IEEE Transactions on Electron Devices, 1998, 45 :1350-1355
    [17] Mudanai S., Fan Y. Y., Ouyang Q. Q., et al, Modeling of Direct Tunneling Current Through Gate Dielectric Stacks, IEEE Transactions on Electron Devices, 2000, 47 (10):1851-1857
    [18] Mudanai S., Fan Y. Y., Ouyang Q. Q., et al, Modeling of Direct Tunneling Current Through Gate Dielectric Stacks, IEEE Simulation of Semiconductor Processes and Devices, 2000, 200-203
    [19] Hou Y. T., Li M. F., Jin Y. Hole quantization and hole direct tunneling in deep submicron p-MOSFETs. IEEE Solid State and Integrated Circuit Technology International Conference, 2001, 895-900
    [20] Hou Y. T., Li M. F., Yu H. Y., et al. Quantum tunneling and scalability of HfO2 and HfAlO gate. IEDM Technical Digest. 2002, p: 731-734
    [21] Hou Y. T., Li M. F., Jin Y. Direct tunneling hole currents through ultrathin gate oxides in metal-oxide-semiconductor devices. J. Appl. Phys. 2002, 91(1): 258-264
    [22] Clerc R., Spinelli A., Ghibaudo G. Theory of direct tunneling current in metal–oxide–semiconductor structures. J. Appl. Phys. 2002, 91(3): 1400-1409
    [23] Li F., Mudanai P. S., Fan Y. Y., et al. Physically based quantum-mechainical compact model of MOS devices substrate-injected tunneling current through ultrathin(EOT~1nm) SiO2 and high-κgate stacks, IEEE Trans Electron Device, 2006,53(5):1096-1106
    [24] Wu H. X., Zhao Y. J. White M. H., Quantum mechanical modeling of MOSFET gate leakage for high-κgate dielectric, Solid-State Electronics, 2006, 50:1164-1169
    [25] Krishnamohan T., Kim D., Nguyen C. D., et al. High-mobility low band-to- band-tunneling strained-Germanium double-gate heterostructure FETs: simulations, IEEE Trans. Electron Device, 2006, 53(5):1000-1009
    [26] Krishnamohan T., Krivokapic Z., Uchida K., et al. High-mobility ultrathin strained Ge MOSFETs on bulk and SOI with low band-band tunneling leakage: experiments, IEEE Trans. Electron Device, 2006, 53(5):990-999
    [27] Takagi S. I., Yasuda N., Toriumi A. A New I–V Model for Stress-Induced Leakage Current Including Inelastic Tunneling. IEEE Transactions on Electron Devices, 1999, 46(2): 348-354
    [28] Chim W. K., Lim P. S. Improved model for the stress-induced leakage current in thin silicon dioxide based on conduction-band electron and valence-band electron tunneling. J. Appl. Phys. 2002, 91(3): 1577-1588
    [29] Palestri P., Serra A. D., Selmi L., et al. A Comparative Analysis of Substrate Current Generation Mechanisms in Tunneling MOS Capacitors. IEEE Transactions on Electron Devices, 2002, 49(8): 1427-1435
    [30] Alam K., Zaman S., Chowdhury M. M., et al. Effects of inelastic scattering on direct tunneling gate leakage current in deep submicron metal-oxide-semiconductor transistors. J. Appl. Phys. 2002, 92(2): 937-943
    [31] Chang W. J., Houng M. P., Wang Y. H. Simulation of stress-induced leakage current in silicon dioxides: A modified trap-assisted tunneling model considering Gaussian- distributed traps and electron energy loss. J. Appl. Phys. 2001, 89(11): 6285-6293
    [32] Hartmann J. M., Holligera P., Laugiera F., et al., Growth of SiGe/Si superlattices on silicon-on-insulator substrates for multi-bridge channel field effect transistors, Journal of crystal growth, 2005, 283:57-67
    [33] Jack M. D., Lee J. Y. M., and Lefever H. DTLS measurements of a germanium MIS interface, J. Electron. Material, 1981,10(3):571-589
    [34] Lee M. L., Leitz C.W., Cheng Z., et al. Strain Ge channel p-type metal-oxide-semiconductor field-effect transistors grown on Si1-xGex/Si virtual substrates, Appl. Phys. Lett.,1999,79(20):3344-3346
    [35] Park T. J., Kim S. K., and Kim J. H. Electrical properties of high-κHfO2 films on Si1-xGex Substrates. Microelectronic Engineering, 2005, 80:222–225
    [36] Wu N., Zhang Q. C., Zhu C.X., et al. Alternative surface passivation on germanium for metal-oxide-semiconductor applications with high-κgate dielectric, Appl. Phys. Lett., 2004,85(18):4127-4129
    [37] Shang H., Okorn-Schmidt H., Chan K. K., et al. High mobility p-channel germanium MOSFETs with a thin Ge oxynitride gate dielectric, in IEDM Tech. Dig., 2002, 441-444
    [38] Houssa M., Jaeger B. D., Delabie A., et al. Electrical characteristics of Ge/GeOx(N) /HfO2 gate stacks, Journal of Non-Crystalline Solids,2005,351: 1902–1905
    [39] Hymes D. J. and Rosenberg J. J. Growth and materials characterization of natice germanium oxynitride thin films on germanium. J. Electrochem. Soc., 1988, 135(4): 961-965
    [40] Wu N., Zhang Q. C., Zhu C.X., et al. Effect of surface NH3 anneal on the physical and electrical properties of HfO2 films on Ge substrate. Appl. Phys. Lett., 2004, 84(19):3741
    [41] Wu D., Lindgren A. C., Persson S., et al. A Novel Strained Si0.7Ge0.3 Surface- Channel pMOSFET With an ALD TiN/Al2O3/HfAlOx/ Al2O3 Gate Stack. IEEE Electron Device Letters, 2003, 24(3):171-173
    [42] David Chi, Chi On Chui, Krisha C.Saraswat, et al., Zirconia grown by ultraviolet ozone oxidation on germanium(100) substrates, J.Appl.Phys., 2005, 96(1):813-819
    [43] Park T. J., Kim S. K., Kim J. H., et al. Electrical properties of high-κHfO2 films on Si1-xGex Substrates, Microelectronic Engineering,2005,80: 222–225
    [44] Cheng C. C., Chien C. H., Chen C. W., et al. Impact of post-deposition-annealing on the electrical characteristics of HfOxNy gate dielectric on Ge substrate. Microelectronic Engineering, 2005, 80:30-33
    [45] Nayfeh A., Chui C. O., Yonehara T., et al. Fabrication of high-quality p-MOSFET in Ge grown heteroepitaxially on Si. IEEE Electron Device Letters, 2005, 26(5): 311-313
    [46] Wilk G. D., Wallace R. M., and Anthony J. M. High-κgate dielectrics: Current status and materials properties considerations. J. Appl. Phys., 2001, 89(10):5243-5251
    [47] Cheng C. C., Chien C. H., and Chen C. W. Impact of post-deposition-annealing on the electrical characteristics of HfOxNy gate dielectric on Ge substrate. Microelectronic Engineering, 2005, 80:30-33
    [48] Lai P. T., Li C. X., Xu J. P., et al. Suppressed growth of interlayer GeOx in Ge MOS capacitors with gate dielectric prepared in wet NO ambient, Proceedings -2005 IEEE Conference on Electron Devices and Solid-state circuits, EDSSC2005, 2005, 115 -118
    [49] Chui C. O., Ramanathan S., Triplett B. B., et al. Germanium MOS capacitors incorporating ultrathin high-κgate dielectric, IEEE Electron Device Letters, 2002, 23(8):473-475
    [50] Chui C. O., Kim H., McIntyre P. C., et al. Atomic layer deposition of high-κdielectric for Germanium MOS applications- substrate surface preparation. IEEE Electron Device Letters, 2004, 25(5):274-276
    [51] Chui C.O., Ito F., Saraswat K.C. Scalability and electrical properties of Germanium oxyntride MOS dielectrics. IEEE Electron Device Letters, 2004, 25(9): 613-615
    [52] Kim H, Mcintyre Paul C. Interfacial characteristics of HfO2grown grown on nitrided Ge (100) substrates by atomic-layer deposition. App. Phys. Lett., 2004, 58(14):2902-2904
    [53] Ransom C. M., Jackson T. N., Degelormo J. F., Gate-self Aligned n-channel and p-cnannel Germanium MOSFETs. IEEE Trans. Elec. Dev, 1991, 38(12):2695-2703
    [54] Maeda T, Yasuda T, Nishizawa M, et al. Ge metal-insulator-semiconductor structures with Ge3N4 dielectrics by direct nitridation of Ge substrates. Appl. Phys. Lett., 2004, 85(15): 3181-3183
    [55] Gao F., Lee S. J., Pan J. S., et al. Surface passivation using ultrathin AlNx film for Ge-metal-oxide-seniconductor devices with Hafnium oxide gate dielectric. 2005, Appl. Phys. Lett., 86:113501
    [56] Dimoulas A., Mavrou G., Vellianitis G., et al. HfO2 high-κgate dielectrics on Ge(100) by atomic oxygen beam deposition. Appl. Phys. Lett., 2006, 86:032908
    [57] Ritenour A., Khakifirooz A., Antoniadis D. A., et al. Subnanometer-equivalent- oxide-thickness germanium p-metal-oxide-semiconductor field effect transistors fabricated using molecular-beam-deposited high-κ/metal gate stack. Appl. Phys. Lett., 2006, 88:132107
    [58] P. T. Lai, Xu J P, C. X. Li, et al. Preparation of high-quality gate dielectrics for Ge MOSFET’s in wet ambients. 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings,ICSICT2006,132-135
    [59] Xu J. P., Lai P. T., Li C. X., et al. Improved electrical properties of Germanium MOS capacitor with gate dielectric grown in wet-NO ambient. IEEE electron Device Lett., 2006, 27(6):439-441
    [60]刘志龙,贾宏勇,罗广礼,等.HV/CVD系统Si、SiGe低温掺杂外延.半导体学报,2001, 22(3):317-321
    [61]罗广礼,林小峰,刘志龙,等.驰豫SiGe外延层的UHV/CVD生长.半导体学报,2000, 21(7):682-684
    [62]贾宏勇,林惠旺,陈培毅,等.采用高真空/快速热处理/化学汽相淀积外延SiGe HBT结构.半导体学报,2001, 22(3):251-255
    [63] Wu Y. H., Yang M. Y., Chin A., et al. Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 ?. IEEE Electron Device Letters, 2000, 21(7): 341-343
    [64] Chiu F. C., Chou H. W., Lee J. Y. Electrical conduction mechanisms of metal/La2O3/ Si structure. J. Appl. Phys. 2005, 97: 103503
    [65] Busani T., Devine R. A. B. The importance of network structure in high-κdielectrics: LaAlO3, Pr2O3, and Ta2O5. J. Appl. Phys. 2005, 98: 044102
    [66] Kuriyama A., Ohmi S. I., Tsutsui K., et al. Effect of Post-Metallization Annealing on Electrical Characteristics of La2O3 Gate Thin Films. Jpn. J. Appl. Phys. 2005, 44(2): 1045-1051
    [67] Ng J. A., Kuroki Y., Sugii N., et al. Effects of low temperature annealing on the ultrathin La2O3 gate dielectric; comparison of post deposition annealing and post metallization annealing. Microelectronic Engineering, 2005, 80: 206-209
    [68] Hock G., Kohn E., Rosenblad C., et al. High hole mobility in Si0.17Ge0.83 channelmetal-oxide-semiconductor field effect transistors grown by plasma-enhanced chemical vapor deposition.Appl. Phys. Lett. , 2000,76(26):3920-3922
    [69] Balestra F., Benachir M., Brini J., et al. Analytical models of subthreshold swing and threshold voltage for thin- and ultra-thin-film SOI MOSFETs. IEEE Trans. Electron devices, 1990, 37(11): 2303- 2311
    [70] Nayfeh H. M., Hoyt J. L., Antoniadis D. A. A physically based analytical model for the threshold voltage of strained-Si n-MOSFETs. IEEE Trans.Electron Device, 2004. 51(12):2069- 2072
    [71] Sze S. M. Semiconductor Devices-Physics and Technology. 2nd Edition, New York: Wiley, 2002
    [72] Arora N. MOSFET Model for VLSI Circuit Simulation Theory and Practice. USA, Springer-Verlage/wien,1993
    [73] Rong Y., Jinsheng L., Jing T. et al. Simulation and comparison of MOS inversion layer quantum mechanics effects in SiGe PMOSFET and Si PMOSFET. Microelectronics Journal, 2004,35:145-149
    [74] Joo S. Y., Wook L. J., Hoon K. S., et al. Effects of Si_cap layer thinning and Ge segregation on the characteristics of Si/SiGe/Si heterostructure PMOSFETs. Solid-State Electronics, 2002,46: 1983-1989
    [75] Ngai T., Chen X., Chen J., et al. Improving SiO2/SiGe interface of SiGe p-metal-oxide- silicon field-effect transistors using water vapor annealing. Appl Phys. Lett., 2002,.80:1773-1775.
    [76] Janik T., Majkusiak B. Influence of carrier energy quantization on threshold voltage of metal-oxide-semiconductor transistor. J. Appl. Phys. 1994, 75(10): 5168-5190
    [77] Yau L. D. A simple theory to predict the threshold voltage of a short-channel IGFET’s , Solid-state Electron, 1974, 17:1095-1102
    [78] Shi Z. H., Onsongo D., and Banerjee S.K. Mobility and performance enhancement in compressively strained SiGe channel PMOSFETs. Appl. Surf. Sci, 2004, 24:. 248-251
    [79] Stern F. Self-consistent results for n-type Si inversion layers. Phys. Rev. B, 1972, 5: 4891-4889
    [80] Fang F. F. and Howard W. E. Negative Field-Effect Mobility on (100) Si Surfaces. Phys. Rev. Letters, 1966, 16: 797.
    [81] Stern F., and Howard W. E. Properties of semiconductors surface inversion layers in electric quantum limit. Phys. Rev. 1967, 163(3): 816-835
    [82] Samanta P. Calculation of the probability of hole injection from polysilicon gate into silicon dioxide in MOS structures under high-field stress. Solid-State Electron, 1999, 43(9):1677-1687
    [83] Maserjian J. Tunneling in thin MOS structures. J. Vac. Sci. Tech., 1974, 11:996 - 1003
    [84] Weinberg Z. A. On tunneling in metal-oxide-silicon structures. J. Appl. Phys., 1982, 53(7):5052-5056
    [85] Register L. F., Rosenbaum E., Yang K. Analytic model for direct tunneling current in polycrystalline silicon-gate metal-oxide-semiconductor devices. Appl. Phys. Lett., 1999, 74(3):457-459
    [86] Terman L. M. An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron, 1962, 5: 285-299
    [87] Schroder D. K. Semiconductor Material and Device Characterization, John Wiley & Sons, New York, 1998.
    [88] Fleetwood D. M., Winokur, Reber R. A., et al. Effects of oxide traps, interface traps, and“border traps”on metal-oxide-semiconductor devices. Journal of Applied Physics, 1993, 73(10): 5058-5074
    [89] Tanner P., Dimitrijev S., and Harrison H. B. Technique for monitoring slow interface trap characteristics in MOS capacitors. Electronics Letters, 1995, 31(21): 1880-1881
    [90] Fleetwood D. M., Saks N. S. Oxide, interface, and border traps in thermal, N2O, and N2O-nitrided oxides. Journal of Applied Physics, 1996, 79(3): 1583-1594
    [91] Cohen N. L. Paulsen R. E., White M. H., Observation and characterization of near-interface oxide traps with C-V techniques. IEEE Transactions on Electron Devices, 1995, 42(11): 2004-2009
    [92] Bhat N., Saraswat K. C. Characterization of border trap generation in rapid thermally annealed oxides deposited using silane chemistry. Journal of Applied Physics, 1998, 84(5): 2722-2726
    [93] N. Lu, W. Bai, A. Ramirez, et al. Ge diffusion in Ge metal oxide semiconductor with chemical vapor deposition HfO2 dielectric. Appl. Phys. Lett., 2005, 87:051922
    [94] Yano H., Katafuchi F., Kimoto T., et al. Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO2/SiC MOS system and MOSFETs. IEEE Trans. Electron Devices, 1999, 46(3):504-510
    [95] Cho M, Park J, Park H B, et al. Chemical interaction between atomic-layer-deposited HfO2 thin films and the Si substrate. Appl. Phys. Lett., 2002, 81:334-336
    [96] Chen F., Bin X., Hella C., et al. A study of mixtures of HfO2 and TiO2 as high-κgate dielectrics. Microelectron. Eng., 2004, 72:263-266
    [97] Lee C., Ghosez P., and Gonze X. Lattice dynamics and dielectric properties of incipient ferroelectric TiO2 rutile. Phys. Rev. B, 1994, 65:13379-13387
    [98] Mao L. F., Tan C. H. and Xu M. Z. Numerical analysis for root-mean-square roughness of SiO2/Si interface on direct tunneling current in ultrathin MOSFETs. Solid-State Electronics, 2001, 45(3):531-534
    [99] Li M., Zhang Z., Campbell S.A., et al. Electrical and material characterizations of high-permittivity HfxTi1-xO2 gate insulators. J. Appl. Phys., 2005, 98:054506
    [100] Hori T., Iwasaski H., Naito Y., et al. Electrical and physical characteristics of thin nitrided oxides prepared by rapid thermal nitridation. IEEE Trans. Electron Devices, 1987, 34(11):2238-2245
    [101] Afanas’ev V V, Stesmans A. Energy band alignment at the (100) Ge/HfO2 interfaces. Appl. Phys. Lett., 2004, 84(13):2319-2321.
    [102] Bai W. P., Lu N., Liu J., et al. Ge MOS characteristics with CVD HfO2 gate dielectrics and TaN gate electrode. in VLSI Symp. Tech. Dig., 2003, 121-122
    [103] Ritenour A., Yu S., Lee M. L., et al. Epitaxial strained germanium p-MOSFETs with HfO2 gate dielectric and TaN gate electrode,”in IEDM Tech. Dig., 2003, 433-436.
    [104] Chui C. O., Kim H., Mcintyre P. C., et al. A germanium nMOSFET process integrating metal gate and improved hi-κdielectrics. in IEDM Tech. Dig., 2003, 437-440.
    [105] Chen J. J., Bojarczuk N. A., Shang H., et al. Ultrathin Al2O3 and HfO2 gate dielectrics on surface-nitrided Ge. IEEE Trans. Electron Devices, 2004, 51(11): 1441-1447
    [106] Bai W. P., Lu N., and Kwong D.–L. Si interlayer passivation on germanium MOS capacitors with high-κdielectric and metal gate. IEEE Electron Device Lett., 2005, 26 (6)378-380
    [107] Wu N., Zhang Q., Zhu C., et al. A TaN-HfO2-Ge pMOSFET with novel SiH4 surface passivation. IEEE Electron Device Lett., 2004, 25( 9):631-633,.
    [108] Keim E. G. and Silfhout A. V. An investigation of the interaction of N2O with the Si (111)– 7×7surface using AES and optical reflectometry: A comparison with O2. Surface Science, 1989, 216:337
    [109] Bhat M., Kim J., Yan J., et al. MOS characteristics of ultrathin NO- Grown oxynitrides. IEEE Electron Device Lett., 1994, 15(19):421-423
    [110] Dennard R. H., Gaensslen F. H., Yu H. N., et al. Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J. Solid-State Circuits, 1974, 9: 256-268
    [111] Naygeh A., Chui C. O., Saraswat K. C. et al. Effect of hydrogen annealing on heteroepitaxial-Ge layers on Si: surface roughness and electrical quality. Appl. Phys. Lett., 2004, 85:2815-2817

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700