用户名: 密码: 验证码:
单桩竖向承载力的贝叶斯估计及可靠度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的快速发展,高层建筑和桥梁大量兴建,可靠性问题在工程中的重要性日益突出。桩基因其承载力高、沉降小、施工方便等优点被广泛地用作为土木工程的基础形式。因此,桩基承载力的可靠性研究具有重要的工程实际意义。但是,目前基桩承载力可靠度研究存在着以下两个问题:(1)基桩承载力的确定没有考虑类似工程的影响,白白浪费了工程经验数据。(2)考虑到工程实际因素,在进行基桩承载力可靠度研究时,收集到的静载荷试验数据的离散性较大,计算出的可靠度指标的误差较大,会给工程造成隐患。本文基于极差理论和贝叶斯统计理论,针对以上两个问题进行了较为系统的研究工作。
     由于经济和工期原因,基桩的静载荷试验数据往往很少,并且数据的离散性很大,大大增加了承载力可靠度分析的难度。本文利用数理统计中的极差理论,根据静载试验结果,计算出总体样本的均值和方差。然后,给出了基桩竖向承载力服从对数正态分布时的可靠度计算方法。通过算例分析表明,该方法的计算精度满足工程需要,并为桩基设计人员根据实测结果确定设计值提供了参考。
     在桩基工程中,基桩承载力的设计值取决于静载荷试验结果。但是由于工期、经济效益等因素的影响,试桩数往往较少,且离散性较大,由此确定的承载力设计值的误差较大。贝叶斯统计将随机变量的总体信息、样本信息和先验信息有机地结合起来,估计出的变量值更加接近实际值。本文基于数理统计中的极差理论和贝叶斯统计原理,给出的基桩承载力均值的先验分布为正态分布,并利用贝叶斯统计推导出承载力的后验分布也服从正态分布;充分利用工程地质资料的丰富信息和静载试验的结果,推导出基桩承载力设计值的贝叶斯估计的计算公式。
     本文的研究成果不仅使基桩承载力的设计取值达到安全可靠、经济合理的目的,而且为设计值的确定提供了理论依据,可供工程设计人员参考。
High-rise buildings and major bridges are increasingly constructed with rapid development of economy. Accordingly, reliability of structures plays a significant role in engineering practice. Pile foundation is widely useed as the foundation of the structures due to its high bear capacity, small settlement and convenient contruction. Therefore, reliability analysis is highly important in engineering practice. However, there are two problems in existing researches, they are:(1) the data from similar projects are discarded, they are not adopted to determine the bearing capacity of pile; (2) the error of reliability index may be relatively large due to the great discreteness of data from the static load tests, which may cause relatively significant loss to the project. Considering the above two problems, following studies have been conducted in this dissertation.
     Due to high cost and long construction period of the project, the data from static load tests of piles are often scarce and their dispersion degree is very large, which brings more difficulties to reliasbility analysis of bearing capacity. In this dissertation, the mean and variance of population sample are calculated based on the concept of range extremity difference and the results from static load tests. Then the calculation formula of reliability is presented on the condition that the vertical bearing capacity of pile follows log-normal distribution. The results from case studies show that the calculation accuracy is satisfactory and it can provide good references to designers to determine the design parameters according to testing piles.
     The design value for bearing capacity of pile is usually determined from the static load tests in pile foundation engineering. However, the error of the design value obtained from static load tests is large due to limited number of testing piles and great discreteness arising from many adverse factors including possible delays and high cost. The value of a random variable can be more accurately evaluated using Bayesian statistic because the general information, sampling information and prior information are systematically associated in Bayesian framework. Based on Range theory and Bayesian statistics principle, the prior distribution of the mean of bearing capacity of pile is presented to be normal distribution, and posterior distribution also follows a normal distribution according to Bayesian statistics. The calculation formula of design value is obtained using the abundant information of soil exploration and the results from the static load tests in the Bayesian framework,
     The achievements in this dissertation not only can meet the requirements of safety and economy for pile foundation, but also provide a theoretical basis to determine the design value and references for designers.
引文
[1]罗书学.桩基概率极限状态法及其工程应用.成都:西南交通大学出版社,2004.
    [2]Poulos H G. Pile Foundation Analysis and Design. New York:Wiley,1980.
    [3]徐志军,郑俊杰,赵冬安.桩式复合地基承载力的随机模糊熵可靠度分析.华中科技大学学报(自然科学版),2010,38(9):104-107.
    [4]Ronold K O, Bjerager P. Model uncertainty representation in geotechnical reliability analysis. Journal of Geotechnical and Geoenvironmental Engineering,1992,118 (3): 363-376.
    [5]Zhang J. Characterizing geotechnical model uncertainty [Ph.D. Dissertation]. Hong Kong:Hong Kong University of Science and Technology,2009.
    [6]Dithinde M, Phoon K K, Wet M D, et al. Characterization of model uncertainty in the static pile design formula. Journal of Geotechnical and Geoenvironemental Engineering, 2011,137 (1):70-85.
    [7]Tang W H. Uncertainties in offshore axial pile capacity. Proceedings of Foundation Engineering:Current Principles and Practices. New York:American Society of Civil Engineering,1989,27 (2):833-847.
    [8]Bea R G, Jin C,et al. Evaluation of reliability of platform pile foundation. Journal of Geotechnical and Geoenvironmental Engineering,1999,125 (8):696-704.
    [9]Melchers R E. Structural reliability analysis and prediction. Chichester:John Wiley, 1999.
    [10]GB 50007-2002《建筑地基基础设计规范》.北京:中国建筑工业出版社,2002.
    [11]GB 50009-2001《建筑结构荷载规范》.北京:中国建筑工业出版社,2002.
    [12]JGJ106-2003《建筑基桩检测技术规范》.北京:中国建筑工业出版社,2002
    [13]AASHTO. LRFD for Bridge Design Specifications.4th edition. American Association of State Highway and Transportation Officials, Washington, D. C.,2007.
    [14]Becker, D. E. Limit states design for foundations. Part Ⅱ:Development for national building code of Canada. Canadian Geotechnical Journal,1996,33 (6):984-1007.
    [15]Honjo, Y.& Kusakabe, O. Proposal of a comprehensive foundation design code: Geo-code 21 ver.2. Proceedings of the international workshop on foundation design codes and soil investigation in view of international harmonization and performance based design, Kamakura,95-103,2002.
    [16]CEN. Eurocode 7 part 1:Geotechnical design:General rules, Final Draft prEN 1997-1. Brussels:European Committee for Standardization (CEN),2001.
    [17]Orr T L L. Eurocode 7:a code for harmonised geotechnical design. Proceedings of the international workshop on foundation design codes and soil investigation in view of international harmonization and performance based design, Kamakura,3-15,2002.
    [18]赵国藩,贡金鑫,赵尚穿.我国土木工程结构可靠性研究的一些进展.大连理工大学学报,2000,40(3):253-258.
    [19]洪毓康,陈士衡,宰金璋.单桩承载力的安全度分析.岩土工程学报,1984,6(1):52-66.
    [20]傅旭东.钻孔灌注桩可靠度理论研究和工程应用[博士学位论文].成都:西南交通大学,1997.
    [21]李同田.单桩承载力的可靠度分析.天津大学学报,1991,7(增):114-119.
    [22]叶军,吴世伟.单桩承载力可靠度分析中试桩信息的应用.工程力学,1993,10(4):62-70.
    [23]熊启东.复合桩基极限承载力的可靠度分析.重庆建筑大学学报,1998,20(5):28-32.
    [24]彭雄志,罗书学,赵善锐.桩极限承载力的统计及其可靠度研究.西南交通大学学报,2001,36(3):332-335.
    [25]李镜培,舒翔.竖向承载桩的模糊随机可靠度计算方法.岩土力学,2002,23(6):754-756.
    [26]马晔.公路桥梁钻孔灌注桩桩侧摩阻力可靠度计算.公路交通科技,2000,17(3):25-28.
    [27]傅旭东,周天想.铁路桥梁钻孔桩的可靠度设计研究.铁道学报,1999,21(3):88-94.
    [28]傅旭东,茜平一,刘祖德.单桩沉降可靠度的随机有限元分析.铁道学报,2002,24(1):70-75.
    [29]邓志勇,陆培毅,王成华.钻孔灌注桩单桩承载力的可靠度研究.岩土力学,2003,24(1):83-87.
    [30]傅旭东,陈晓平,刘祖德.单桩承载力可靠度的非线性摄动随机有限元分析.岩石力学与工程学报,2003,22(1):103-109.
    [31]李镜培,楼晓明,贾付波.复合桩基的承载力安全度与可靠度分析.建筑结构学报,24(2):86-90.
    [32]蒋红英,鲁进步,苗天德.挤密桩消除黄土湿陷性的可靠度研究.岩石力学与工程学报,2003,22(增2):2894-2898.
    [33]宰金珉,陆舟,黄广龙.按单桩极限承载力设计复合桩基方法的可靠度分析.2004,25(9):1483-1486.
    [34]张航,钱德玲.挤扩支盘桩单桩竖向承载力可靠度分析.岩石力学与工程学报,2005,24(22):4197-4201.
    [35]周建方,李典庆.采用不同失效准则的桩基可靠度分析.岩土力学,2007,28(3):540-544.
    [36]陈斌,卓家寿,周力军.嵌岩桩垂直承载力的有限元分析(下)基岩强度和桩底沉渣厚度对承载性状的影响.水运工程,2001,333(10):25-27.
    [37]肖建勇,刘运华.单桩竖向承载力与桩底沉渣土厚度的关系.长沙铁道学院学报,2001,19(2):45-47.
    [38]蒋建平,汪明武,高广运.桩端岩土差异对超长桩影响的对比研究.岩石力学与工程学报,2004,23(18):3190-3195.
    [39]李典庆,嫣丽丽.考虑桩底沉渣的灌注桩可靠度分析方法.岩土力学,2008,29(1):155-160.
    [40]吴鹏.基于刚性承台群桩沉降的可靠度研究.岩土力学,28(8):1744-1748.
    [41]李荣庆,贡金鑫,杨丽民.板桩结构可靠度分析.水利学报,38(10):1265-1270.
    [44]赵新铭,王晓伟,赵春润,黄小娟.南京江北地区PHC桩竖向承载力可靠度分析.岩土力学,29(3):785-789.
    [45]赵明华,曾昭宇,苏永华.改进响应面法及其在倾斜荷载桩可靠度分析中的应用.岩土力学,2007,28(12):2539-2543.
    [46]高大钊,姜安龙,张少钦.桩基础安全度控制的若干问题.岩土工程学报,2005,27(7):808-811.
    [47]李典庆.基桩可靠度分析的统计相关性评价方法.岩土力学,2008,29(3):633-638.
    [48]Conver W J. Practical Nonparametric Statistics. New York:John Wiley and Sons, 1998.
    [49]甘幼琛.当前桩基工程质量合格控制存在问题与随机控制新模式的探讨.土木工程学报,2004,37(1):88-95.
    [50]甘幼琛,李天棉,邹泓荣.桩基工程质量随机抽样检测的新理论及其工程应用.工程质量,2000,1:28-30.
    [51]甘幼琛.桩基不重复随机抽样不合格桩数概率分布研究及其工程应用.土木工程学报,1999,32(2):62-70.
    [52]甘幼琛.桩基工程质量的统计推断.工程质量,1998,5:17-19.
    [53]王军辉.基桩检测中的概率和统计学规律探讨.北京工业大学学报,2007,33(2):178-184.
    [54]郑建国,张苏民,吴世明.桩基承载力概率分析的贝叶斯方法.岩土工程技术,1999,(2):34-38.
    [55]郑建国.桩基承载力概率分析方法的研究[博士学位论文].杭州:浙江大学,1998.
    [56]郑俊杰,刘勇,郭嘉,徐志军.基桩检测合格率的概率分布及可靠度评估.岩土工程学报,2009,31(11):1660-1664.
    [57]张小敏,郑俊杰.CFG桩复合地基承载力可靠度分析.岩土力学,2002,23(6):810-812.
    [58]郑俊杰,刘勇,郭嘉.可靠度指标的等步长求法及其收敛性证明.华中科技大学学报(自然科学版),2008,36(8):129-132.
    [59]贡金鑫,仲伟秋,赵国藩.结构可靠度至指标计算的通用方法.计算力学学报,2003,20(1):12-18.
    [60]郑俊杰,徐志军,刘勇,马强.基于最大熵原理的基桩竖向承载力的可靠度分析.岩土工程学报,2010,32(11):1643-1647.
    [61]郑俊杰,何春,鲁燕儿.武汉地区预应力混凝土管桩模糊随机可靠性分析.岩土工程技术,2006,20(4):240-244.
    [62]Wu T H, Kraft L M. Safety analysis of slopes. Journal of Soil Mechanics and Foundation Engineering, ASCE,1970,96 (SMZ)
    [63]Lumb P. statistical methods on soil investigations//Proceeding of 5th Australia-New Zealand and Conference on soil Mechanics and Foundation Engineering,1967.
    [64]Vanmareke E H, Fuleihsn N F. Probabilistic Predietion of levee settlements// Proceeding of 2nd on Application of Statistic sand Probability in soil and Struetural Engineering,1975.
    [65]Meyerhof G G Safety factors in soil mechanics. Canadian Geotechnical Journal,1970, 7 (4),349-355.
    [66]Feld J. Failures in foundation. Soiltest, Evanston,Ill.1965.
    [67]De Mello V F B. Foundation of buildings on clay//Proceeding of 7th ICSMFE, Vol.1, Mexico City,49-136,1969.
    [68]Kishida H. Ultimate bearing capacity of piles driven into loose sand. Soils and Found, 1967,7 (3):20-29.
    [69]Tomlinson M J. Some effects of pile driving on skin friction//Proceeding of Conference on Behavior of Piles, Institution of Civil Engineers, London,107-114, 1971
    [70]Vijayvergiya V N, Focht J N. A new way to predict capacity of piles in clay// Proceeding of 4th Offshore Technology on Conference Society of Petroleum Engineers, Richardson, Tex,865-874,1972.
    [71]Cornell C A. Structural safety specification based on second-moment reliability// Symposium in Association of Bridge and Structural Engineering, London,1969.
    [72]Hasofer A M, Lind N. An exact and invariant first-order reliability format. Journal of engineering mechanics, ASCE,1974,100 (1):111-121.
    [73]Alonson E E, Krizek R J. Stochastic formulation of soil Properties//Proceeding of 2nd conference on application of statistics and probabilistic to soil and structural engineering,1975.
    [74]Brlaud J L, Tucker L M. Measured and predicted axial response of 98 piles. Journal of Geotechnical and Geoenvironmental Engineering,1988,114 (9):984-1001.
    [75]Ronold K O, Bjerager P. Model uncertainty representation in geotechnical reliability analysis. Journal of Geotechnical and Geoenvironmental Engineering,1992,118 (3): 363-376.
    [76]Phoon K K, Quek S T, Lee S L. Reliability analysis of pile settlement. Journal of Geotechnical and Geoenvironmental Engineering,1990,116 (11):1717-1735.
    [77]Poulos H G, Davis E H. Pile foundation analysis and design. New York:Wiley,1980.
    [78]Phoon K K. Reliability-based Design in Geotechnical Engineering:Computations and Applications. Taylor & Francis,2008.
    [79]Phoon K K. Reliability-based design of foundations for transmission line structures[Ph.D. dissertation]. Cornell University, New York,1995.
    [80]Zhang J. Characterizing Geotechnical Model Uncertainty [Ph.D. dissertation]. The Hong Kong University of Science and Technology, Hong Kong,2009.
    [81]Tang W H. Uncertainties in offshore axial pile capacity. Proceedings of Foundation Engineering:Current Principles and Practices. New York:American Society of Civil Engineering,1989,27 (2):833-847.
    [82]Bea R G, Jin C,et al. Evaluation of reliability of platform pile foundation. Journal of Geotechnical and Geoenvironmental Engineering,1999,125 (8):696-704.
    [83]Melchers R E. Structural reliability analysis and prediction. Chichester:John Wiley, 1999.
    [84]Zhao C Z, Yin J H. Field static load tests on drilled shaft founded on or socketed into rock. Canadian Geotechnical Journal,2000,37 (6):1283-1294.
    [85]Fellenius B H. Analysis of results from routine pile load tests. Ground Engineering, 1980,13 (6):19-29.
    [86]Zhang L M. Reliability verification using proof pile load tests. Journal of Geotechnical and Geoenvironmental Engineering,2004,130 (11):1203-1213.
    [87]Ang A H S, Tang W H. Probability concepts in engineering:emphasis on applications to civil and environmental engineering.2nd edition. New York:John Wiley & Sons, 2006.
    [88]Phoon K K, Kulhawy F H. Characterisation of model uncertainties for laterally loaded rigid drilled shafts. Geotechnique,2005,55 (1):45-54
    [89]Haldar S, Sivakmar B. Effect of soil spatial variability on the response of laterally loaded pile in undrained clay. Computers and Geotechnics,2008,35 (4):537-547.
    [90]Tandjiria V, Teh C I, Low B K. Reliability analysis of laterally loaded piles using response surface methods. Structural Safety,2000,22 (4):335-355.
    [91]Chan C L, Low B K. Reliability analysis of laterally loaded piles involving non-linear soil and pile behavior. Journal of Geotechnical and Geoenvironmental and Engineering,2009,135 (3):431-443.
    [92]Eloseily K H, Ayyub B M, Patev R. Reliability assessment pile groups. Journal of Structural Engineering,2002,128 (8):1346-1353.
    [93]Barakat S A, Malkawi A I H, Tahat R H. Reliability-based optimization of laterally loaded piles. Structural Safety,1999,21 (1):45-64.
    [94]Zhang L M, Twang W H, Ng C W W. Reliability of axially load driven pile groups. Journal of Geotechnical and Geoenvironment Engineering,2001,127(12):1051-1060.
    [95]Wang Y, Kulhawy F H. Reliability index for serviceability limit state of building foundation. Journal of Geotechnical and Geoenvironment Engineering,2001,134 (11):1587-1594.
    [96]Mcvay M C, Birgisson B, Zhang L M., et al. Load and resistance design for driven piles using dynamic methods-A Florida perspective. Geotechnical Testing Journal, 2000,23 (1):55-66.
    [97]Phoon K K, Kulhawy F H, Grigoriu M D. Reliability based design for transmission line structure foundations. Computers and Geotechnics,2000,26 (3):169-185.
    [98]Honjo Y, Suzuki M, Shirato M, et al. Determination of partial factors for a vertically loaded based on reliability analysis. Soils and Foundations,2002,42 (5):91-109.
    [99]NCHRP. Load and resistance factor design (LRFD) for deep foundation. Washington, D. C.,2004.
    [100]Haldar S, Babu G L S. Load and resistance factor design of axially loaded pile based on load test results. Journal of Geotechnical and Geoenvironment Engineering,2008, 134 (8):1106-1117.
    [101]FHWA, Load and resistance factor design (LRFD) for highway bridge substructures. Washington, D. C.,2001.
    [102]ISSMFE. Axial pile loading test. part Ⅱ:Static loading. Geotechnical Testing Journal,1985,8 (2):79-82.
    [103]BSI. BS 8004:British standard code of practice for foundation.1996.
    [104]SAA. Australian standards:piling-design and installation AS 2159. Homebush, NSW, Australia,1995.
    [105]Foye K C, Abou-jaoude G, Prezzi M, et al. Resistance factors for use in load and resistance factor design of driven pipe piles in sands. Journal of Geotechnical and Geoenvironment Engineering,2009,135 (1):1-13.
    [106]Hansen P F, Madsen H O, Tjelta T I. Reliability analysis of a pile design. Marine Structures,1995,8 (2):171-198.
    [107]Niandou H, Breysse D. Reliability analysis of a piled raft accounting for soil horizontal variability. Computer and Geotechnics,2007,34 (2):71-80.
    [108]Haldar S, Babu G L S. Reliability measures for pile foundations based on cone penetration test data. Canadian Geotechnical Journal,2008,45 (12):1699-1714.
    [109]Babu G L S, Basha B M. Optimum design of cantilever sheet pile walls in sandy soils using inverse reliability approach. Computers and Geotechnics,2008,35 (2) 134-143.
    [110]Basha B M, Babu G L S. Target reliability based design optimization of anchored cantilever sheet pile walls. Canadian Geotechnical Journal,2008,45 (3):535-548.
    [111]Laarse J D, Lenven H C E. A rapid method for the simultaneous determination of total carbon and carbon-14 in small samples. Analytica Chimica Aeta,1966,34 (1) 370-371.
    [112]王正欧.小样本动态系统的一种有效的参数估计方法.系统工程学报,1989,4(2):31-40.
    [113]Weiss L. A note on small-sample maximum probability estimation. Statistics and Probability Letters,1986,4 (3):109-111.
    [114]Dufour J M. Estimators of the disturbance variance in econometric models: Small-sample bias and the existence of moments. Journal of Econometrics,1988,37 (2):277-292.
    [115]Ghosh A K. Analysis of the interpretation of yielding and strengthening behavior in small-size samples. Acta Materialia,2008,56 (10):2353-2362.
    [116]Canepa A. Small sample corrections for linear restrictions on co-integrating vectors: A Monte Carlo comparison. Economics, Letters,2006,91 (3):330-336.
    [117]冯健,蒋友宝,孟少平,许玮.小样本下结构系统可靠度分析方法的研究.工程力学,2007,24(9):37-42.
    [118]孙旋,巫世晶,王晓笋.小样本系统可靠度评估模型的可信度验证.武汉大学学报(工科版),2006,39(2):88-90.
    [119]吴文全,察豪.小样本采样数据的预处理.海军工程大学学报,2004,16(3):66-68.
    [120]孟庆山,雷学文.土工参数的统计方法及其工程应用.武汉冶金科技大学学报,1999,22(4):414-417.
    [121]苏永华,伍文国,李志勇,赵明华.极限平衡模式下的边坡稳定概率小样本最优拟合算法.岩石力学与工程学报,2009,28(1):173-180.
    [122]谢楠,刘建坤,马立峰,牛富俊,王勇.小样本条件下多冻土地区斜坡稳定性的可靠性分析方法.工程力学,2008,25(7):166-171.
    [123]Baecher G B. Site exploration:a probabilistic approach[Ph.D. thesis]. Massachusetts Institution of Technology, Cambridge, MA,1972.
    [124]Wu T H, Wong K F. Probabilistic soil exploration:case history. Journal of Geotechnical and Geoenvironmental Engineering,1981,107 (12):1693-711.
    [125]Tang W H. Updating anomaly statistics-single anomaly case. Structural Safety,1987, 4 (2):151-63.
    [126]Tang W H, Halim I S. Updating anomaly statistics-multiple anomaly pieces. Journal of Engineering Mechanics,1988,114 (6):1091-1096.
    [127]Tang WH, Quek ST. Statistical model of boulder size and fraction. Journal of Geotechnical and Geoenvironmental Engineering,1986,112 (1):79-90.
    [128]郑俊杰.地基处理技术(第二版).武汉:华中科技大学出版社,2009.
    [129]Poulos H G. Behavior of laterally loaded piles. I:single piles. Soil Mechanics and Foundations Division, ASCE,1971,97 (5):711-731.
    [130]Matlock H. Correlations for design of laterally loaded piles in sand//Proceedings of the 2nd offshore technology conference, Houston,1970.
    [131]Reese L C, Cox W R, Koop F D. Analysis of laterally loaded piles in sand// Proceeding the 6th offshore technology conference, Houston,1974.
    [132]田平,王惠初.黏土中横向周期性荷载的p-y曲线统一法.河海大学学报,1993,21(1):9-14.
    [133]王惠初,鲁子爱.用p-y曲线法计算横向荷载桩的内力.重庆交通学院学报, 1985,15(2):30-36.
    [134]王惠初,武冬青,田平.黏土中横向静载桩p-y曲线的一种新的统一法.河海大学学报,1991,19(1):9-17.
    [135]章连洋,陈竹昌.黏性土中侧向受载桩的模型试验研究.岩土工程学报,12(5):40-50.
    [136]JGJ 94-2008.建筑桩基技术规范.北京:中国建筑工业出版社,2008.
    [137]American Association of State Highway and Transportation Officials. LRFD bridge design specifications. Washington, D.C.,1997.
    [138]Withiam J L. Load and Resistance Factor Design for Highway Bridge Substructures. Report No. FHWA HI-98-032, Federal Highway Administration, Washington, D.C., 2001.
    [139]Phoon K K. Reliability based design of foundations for transmission line structures. New York:Department of Civil and Environmental Engineering, Cornell University, 1995.
    [140]Phoon K K, Kulhawy F H. Multiple resistance factor design for shallow transmission line structure foundations. Journal of Geotechnical and Geoenvironmental Engineering 2003,129 (11):807-818.
    [141]Zhang L M, Tang W H, Ng C W W. Reliability of axially loaded driven pile groups. Journal of Geotechnical and Geoenvironmental Engineering,2001,127 (12): 1051-1060.
    [142]郑俊杰,刘勇,郭嘉,徐志军.基桩检测合格率的概率分析及可靠度评估.岩土工程学报,2009,31(11):1660-1664.
    [143]刘勇.可靠度性设计在多桩型复合地基中的应用研究[硕士学位论文].武汉:华中科技大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700