用户名: 密码: 验证码:
基于GIS和数据挖掘技术评价江西主要茶区土壤和茶鲜叶重金属状况及其预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在野外采样和室内检测分析的基础上,基于GIS(地理信息系统)技术,利用不同数据挖掘途径,如经典统计学方法、模糊数学方法等,结合地统计学Kriging插值预测,分析了江西省主要茶区土壤和茶鲜叶(新叶和老叶)中的铜(Cu)、铅(Pb)、镉(Cd)、砷(As)、汞(Hg)、铬(Cr)六种重金属的整体污染现状、污染来源影响因素、空间变异特征、空间分布预测和污染发展时间预测,并在此过程中首次提出了茶鲜叶限量值应不同于现行商品茶限量标准,并分析了拟定值建议。茶鲜叶是制茶的直接原料,其重金属现状的评价和预测更有利于反映江西茶产业面临的重金属基础风险状况,为保证安全饮茶和吃茶提供第一手基础数据。从茶叶安全监管的角度,防范风险比事后监测具有更重要的意义。首次在全省主要茶区进行茶鲜叶及土壤的野外采样,以及重金属含量调查和评估,并据此进行预测预警,有利于事前防范重金属污染的发展,及时提出相应的控制对策和解决方案,减少污染治理成本,并有助于更好规划和分级利用宜茶园区,可以为江西茶叶发展、政策研究提供一定实际参考。现将本论文主要研究结果归纳如下:
     (1)采用描述性统计分析、Nemerow综合污染指数(NIPI)法、多变量分析(聚类分析、判别分析、对应分析),分别从原始含量、污染指数、重金属多变量集合特征等方面进行江西省主要茶区土壤和茶鲜叶的重金属污染评价。综合结论表明,江西茶园土壤和茶鲜叶重金属含量,在基于人为划定的5个茶区间有一定差异但自然地域界线不明显,且各区均有污染水平差异显著的各类茶园。显示了茶园管理水平的差异及管理的重要性。从平均值和中值来看,重金属全量、有效态含量、肥力均为上层(0~20cm)土壤大于下层(20-40cm),但有显著差异的只有全氮、有效磷、有效Pb和有效Cd,空间变异也以中等强度为主,说明江西茶园土壤受一定人为活动影响,但目前的污染增加尚并不十分显著和严重。经上层土壤NIPI分析,采样茶区重金属综合污染水平是:分别有47.7%、77.3%和100%的茶园满足有机茶、绿色茶和无公害茶生产环境土壤重金属要求。下层土壤情况更好。各茶区土壤总体污染程度接近,但主要污染元素不同,As污染指数最高,其次为Cr。赣北茶园土壤Cr的高污染可能与肥料等因素有关。赣南以钨矿、稀土、金矿等储存丰富,因此As的高污染更与成土母质关系密切,由于处于中等空间变异,也与人为因素有一定关系。
     (2)探讨并拟定了比商品茶叶更严格的限量值进行鲜叶重金属评价以提高可信度,江西茶新叶综合污染指数NIPI为0.99,总体未污染,但警戒水平高;种植环境比较平均良好,路边组与高山组无显著差异;老叶有轻度污染,在进一步以粗老茶加工茶叶食品、加工全茶粉时应引起重视。老叶与新叶的Cu、Pb、Hg、Cr含量均存在极显著差异,随生长期的累积明显;分别有11.4%和6.8%的茶园新叶Cu和Cr轻度污染(2≥NIPI>1);全省Cu、Cr轻度污染,Pb为警戒水平(0.6     (3)运用模糊数学方法评价了江西省主要茶区土壤综合肥力状况。结果表明,采样区上层土壤肥力IFI均值和中值分别为0.64和0.63,属于中上肥力等级。各主要茶区中,只有A区肥力中下等,而C区肥力高,其余均在中上肥力。其中,赣东北B区肥力差别最大,反映该区域施肥及管理水平差异大。从中值和均值来看,采样茶园的土壤pH值适中偏酸,有机质、全钾、碱解氮含量很高,全氮含量较高,有效钾、全磷含量偏低,有效磷含量很低;据此,建议江西茶园①氮肥充足,不需要增施有机肥;②应整体加强磷肥、钾肥施用量及监测管理;③注意监测并着手改良土壤过酸性发展,投入不足和管理粗放的老茶园,尤其要通过适量施用石灰或灰壳等,以中和土壤酸性,使之适宜茶树的生长。根据模糊数学综合评价指标IFI对江西茶园土壤上层肥力的空间分布进行了普通Kriging插值预测,结果显示,中东部整体肥力高于西部,婺源县为高值中心之一,全省西北部茶区应注意加强施肥管理,提高肥力整体水平。
     (4)结合采样调查和记录,以Pearson相关分析和因子分析为基础,对江西主要茶区土壤和茶鲜叶六种重金属污染的主要来源进行了初步解析,结果表明区内土壤主要污染重金属为Cr、As,来自成土母质以及人为活动的共同作用,如赣北的工业企业排污污灌、废水废气飘尘、农业活动过程中频繁施用的农药、化肥,赣南丰富的矿藏影响等。茶鲜叶以老叶重金属为主要污染物,老叶与土壤重金属有一定显著相关性,新叶虽与土壤重金属相关性微弱,但新叶与老叶同一重金属间均显著正相关,说明茶鲜叶重金属具有随时间积累特性,生长年限越长,积累越多,并且有可能伴随生长代谢从老叶向新叶转移。因此对土壤重金属带来污染的污染源如成土母质、研究区排污、农业活动过程中施用的农药、化肥、以及汽车尾气、煤烟飘尘也间接成为茶新叶重金属的来源。
     (5)相关分析显示土壤pH值可以影响茶树植物的代谢对鲜叶重金属积累产生影响。改善茶园土壤pH,减缓土壤酸化趋势,不仅有助于改善江西茶园有效磷的低含量现状,也对新叶、老叶Pb、Cd、Hg等重金属含量有显著抑制或控制作用。同一种的重金属全量、有效态和肥力指标,土壤上下层数据间均显著正相关,显示上下层土壤之间元素及肥力存在渗透转移可能;因子分析结果进一步表明土壤上下层同种重金属列于同一公因子中,说明土壤上下层污染同源;主动吸收为主的新老叶Cu与Cr等另外五种重金属不同源。
     (6)基于GIS的地统计空间分析,采用普通Kriging方法插值预测了江西茶园土壤和茶新叶重金属的空间变异变异状况,预测误差上ME、MSDE均较小,大多接近0,RMSDE接近1,比较理想。不过RMSE和ASDE虽然接近,但数值偏高,显示该预测精度指标尚不够理想,分析原因,可能与赣北与赣中区域之间采样点距离过大有一定关系。补充赣中泰和县、新余等地采样可以进一步提高预测精度。采用NIPI阂值2(即超过绿色茶环境限量要求)构建土壤上层和下层综合污染水平预测,指示Kriging插值显示,赣西南部分地区,土壤上层综合污染水平有65.6%的概率大于2,达到中度污染,不能满足绿色茶生产环境要求。其余地区均符合绿色茶生产要求。土壤下层综合污染水平明显好于上层,说明江西目前人为活动造成的污染尚停留在表层土壤,及时关注重金属控制为时未晚。采用NIPI阈值0.6(安全水平,即新拟茶新叶限量的60%)构建新叶和老叶综合污染水平预测,指示Kriging插值显示,茶新叶和老叶污染超出安全限的概率较高的地区均在南昌周边呈发散性分布,反映了工业化水平、人为活动对茶鲜叶重金属也产生影响。
     (7)基于时相的污染物含量预测研究。利用情景分析法分别按乐观情景和无突变情景预测了研究区2025年土壤和茶新叶重金属污染情况及全省空间变异分布,同时绘制了相关的Kriging插值预测图。结果表明即使在乐观情景下即所有污染物停止输入,逐步自然净化,到2025年区内上层土壤重金属中值和均值下降也不非常明显,降低率在2.4%~14.5%之间;但茶新叶中值基本无变化。而在无突变情景下即保持现状不变,到2025年区内土壤重金属污染程度更加严重,上层土壤Cr、Hg、As、Cd及茶新叶Cu、Cd、As、Cr超过无公害茶园环境或茶叶最高限量的比例分别增加至2.3%、6.8%、22.7%、2.3%和45.5%、2.3%、4.6%、68.2%。江西茶园急需注意控制重金属发展,重点是As、Cr,不产生恶化,2025年茶新叶才可以保持以绿色茶、有机茶产品为主。
     (8)运用Plackett-Burman设计和响应面法,探讨并首次建立了超声波辅助消解—原子光谱法快速测定茶叶Hg和Pb的方法。茶叶Hg最优提取条件为:浸泡时间6 min、超声时间8.1 min,超声温度70.5℃,HN03:H202(1:1,V/V)4.4 mL,称样量300 mg,超声频率40kHz。茶叶Pb最优提取条件为:200mg样品中加入HN03:H202(1:1,V/V)5mL浸泡6min、78℃超声8.4min,超声频率40kHz。经鲜叶及商品茶测定检验,超声辅助消解法与国标法测定结果无显著差异,但大大缩短消解时间,减少试剂消耗和污染。
     经过几年的摸索研究工作,在下列三个方面有所创新:
     (1)本研究是首次针对江西全省主要茶区野外自然生长的茶鲜叶进行采样调查。不同于盆栽试验,能更直接反映江西商品茶生产的直接原料目前的重金属含量状况。为评价本省茶叶原料质量,反映茶产业管理水平、寻找重金属污染发展控制因素及措施,提供第一手资料和参考。
     (2)通过GIS技术,首次插值计算描绘了江西茶新叶、茶园土壤Cu、Pb、Cd、As、Hg、Cr含量的空间分布特征图,以及基于六种重金属综合污染指数(NIPI)的污染概率图。利用空间预测图和污染概率图联合界定了研究区各污染物的污染范围或程度,为污染修复和补充采样提供了决策信息,在研究手段上具有集成创新。同时,将经典统计分析、多变量分析(如聚类、对应分析、判别分析)和模糊数学等数据挖掘方法应用于茶园重金属和肥力的评价,更有利于从集合角度获取宏观评价结果,在研究思路上有一定集成创新。
     (3)首次提出了茶鲜叶重金属限量评价标准的问题并拟定了新的三级评价指标。提出应在现有有机茶、绿色茶、无公害茶限标的基础上考虑扣除后期加工污染的影响程度,采用更严格的限量值。有利于解决目前茶鲜叶重金属与商品茶重金属评价时标准混用的不严格性。
After sampling in natural tea plantation and chemical analysis indoors, with the support of GIS (Geographic Information System) technology especially like geostatistical Kriging interpolation, several data mining technologies, such as classical statistics and fuzzy mathematics were chosen to research the main sources of pollution, spatial variability characters and their predition and temporal prediction for six types of heavy metals(Cu, Pb, Cd, As, Hg and Cr) in soils and fresh tea leaves in major tea regions of Jiangxi provice. Firstly, more tightening limited values for fresh tea leaves were suggested and discussed in this study other than present national limited values for branded tea. Fresh tea leaves were the first-hand raw materials for branded tea, so we could get the basic risk assessment data we were facing while tea were drinked or eaten by evaluating the pollution stadus and predicting for them. It was more significative to keep watch risk than survey afterwords for monitoring safty of tea. It's the first time to sample outdoors in Jiangxi major tea regions with soils and fresh tea leaves followed by examing, estimating and predicting.
     The main results obtained in this dissertation were summarized as follows:
     1. Descriptive statistics, Nemerow integrated pollution index (NIPI) and multivariate analysis (cluster analysis, discriminant analysis and correspondence analysis) were used to get assessment results for soils and fresh tea leaves in Jiangxi major tea regions with respect to initial concentrations, pollution index and integrated characteristics of multivariance. In conclusion, there was a slight difference among heavy metals in soils and fresh leaves from the five tea producing districts divided artificially in Jiangxi but without clear natural separatrix. However, there were different tea gardens at different pollution level in each district, which indicated their various management levels and the importance for better running. Considering mean and medium value, whole concentrations or avalible concentrations of heavy metals and fertility level value in upper soils (0-20cm) were higher than it in sublayers (20~40cm) but without significant differences except the whole nitrogen, avalible phosphorus, avalible Pb and avalible Cd mainly with middle level of spatial variability. It indicated that soils pollution was just slightly affected by human activities without serious change. Respectively, there were 47.7%,77.3% and 100% of tea gardens which could be suitable for planting organic tea, green tea or nuisanceless tea conformed to its related environmental standard when considering NIPI in upper soil. The pollution level in sublayer was slighter. The pollution level in various districts was close with different main heavy metal. The highest NIPI was for As, then the Cr. The higher polution of Cr in northern district in Jiangxi was assumed to be related to fertilizer, while the higher polution of As in southern district in Jiangxi was assumed to be mainly related to soil parent material combined with humanity.
     2. More tightening limit values for fresh tea leaves other than branded tea are more reliable when used to assess metal contamination in fresh tea leaves. Based on it, NIPI of new tea leaves was caculated to be 0.99 indicating high precautious level while old leaves reach to slightly polluted level which reminded us to be carefull to use it as leaf food or powder additives. It's good and uniform or similar in natural producing condition in Jiangxi and there are no great differences between the mountain group and the road one. The results revealed that concentrations of Cu, Pb, Hg and Cr showed highly significant differences within new leaves and old leaves which indicated obvious accumulation accompanying with years. Respectively, Cu and Cr of new leaves in 11.4% and 6.8% tea garden came to slightly polluted level (2≥NIPI>1). Appraisal results of Jiangxi province were slightly polluted for Cu and Cr, precautious for Pb (0.6     3. A fuzzy mathematics method was adopted to estimate the stadus of soils fertility level in Jiangxi major tea regions. The results reveal that integrated fertility index (IFI) of upper soil sampled was 0.64 for mean while 0.63 for medium which indicated to be better than average expect region of number A in north-western Jiangxi where was worse than average. Among these regions, it's the region of number B which showed the most diversity of IF I related to the most difference on fertilizer management. For mean and medium value of soils, pH was on the little low side with higher for organic matter, whole potassium and alkali-hydrolyzable nitrogen, a little rich for whole nitrogen, and a little low side for avalible potassium and whole phosphorous, while worst for avalible phosphorous. So it was suggested that fertilizer with potassium and phosphorous should be applied more than organic fertilizer in Jiangxi tea regions combined with better or more regular management to prevent the deterioration of pH especially in extensive planting tea gardens. Lime or plant ash was a good choice for neutralization to get proper soil pH for tea plant. Based on IFI, ordinary Kriging interpolation was used to predeterminating the spatial variability of upper soil. It showed that IFIs were higher in middle and east regions with a high value center of Wuyuan county than north-west parts in Jiangxi.
     4. Pearson correlation analysis and factor analysis were executed to analysis the major resources of heavy metals pollution in Jiangxi main tea regions consulting records as sampling. The results indicated that As and Cr were the major pollution matters brought from soil parent material combined with humanity, such as polluted water, sewage, exhaust gas and floating dust arised from industry in northern Jiangxi, rebundant fertilizer in agriculture and rich mineral reserves in southern Jiangxi. It was the old leaves that were mainly polluted for fresh leaves as to show a little significant correlation with soil heavy metals, while new ones were weakly correlated with soil. However, new leaves were significant to old ones considering heavy metals which indicated the possibility of heavy metals thansfer during the leaves of two types. Thus, major resources of heavy metals pollution for soils also were the major resources for new tea leaves.
     5. Correlation analysis revealed that pH of soils could effect accumulation of heavy metals in fresh leaves through influence metabolization of plant. Not only for improving the level of avalible phosphrous, but also for controling the concentrations of Pb、Cd、Hg in old leaves, it was important to prevent deterioration of pH. There were significant correlations for the same heavy metal concentrations whole or avalible between two layers of soils, the same as the fertility level. It indicated a possibility of thansport in heavy metals within them. Furthermore, factor analysis showed the same metal in two layers was caculated into the same factor representing the same pollution resources. However, there were no same resources for Cu and apart from the other five metals of fresh leaves.
     6. With the support of GIS geostatistical ordinary Kriging interpolation, spatial variability characters and their predition were caculated. For prediction error, it was almost satisfied with ME and MSDE almost zero and RMSDE near to one, while RMSE and ASDE was a little higher than zero. Prediction precision could be better after additional sampling in middle region in Jiangxi like Taihe county or Xinyu city to shorten the sampling distance. Threshold value of NIP] of two was used to make a indicator Kriging interpolation for integrated pollution level of soils. The results revealed that probability of 65.6% exsited in south-western Jiangxi when NIPI exceeding the value of two which referred to moderate pollution and not suitable to plant green tea. Other regions were better for producing green tea and the sublayer was better than the upper one, which indicated just upper pollution presented that shoule be modified earlier. Threshold value of NIPI of 0.6 was used to make a indicator Kriging interpolation for integrated pollution level of leaves. The results showed that regions with higher probability of NIPI exceeding 0.6 spreaded around the provincial capital of Nanchang city, which also indicated the effect of industy and humanity activities on leaves pollution.
     7. Temporal prediction divided into optimistic scene and unmutation scene were used to predict the heavy metals concentration of studied area in 2025 as to the Kriging interpolation maps. The results showed that the concentration will just decrease a little in optimistic scene with 2.4%~4.5%, and medium value of new leaves nearly decreased; Furthermore, it will be getting worse in unmutation scene. Cr, Hg, As and Cd in upper soil and Cu, Cd, As, Cr in new leaves will exceed the top threshold value with percentage of 2.3%,6.8%,22.7%,2.3%,45.5%,2.3%,4.6% and 68.2%, respectively. It's necessary to pay attention to heavy metals pollution in tea gardens for we can still produce organic or green tea in future.
     8. Rapid ultrasound-assisted extraction (UAE) procedures were firstly developed for the determination of Hg and Pb in tea leaves followed by atomic spectrometry. A Plackett-Burman design followed by response surface methodology was used to get the optimized results:for Hg, with 6 min of presonication time,8.1 min of sonication time,70.5℃of ultrasonic bath temperature,4.4 mL of HNO3: H2O2(1:1, V/V) and 300 mg of sample mass; for Pb,200mg sample added HNO3: H2O2 (1:1, V/V) 5mL should be treated with UAE for 8.4min at 78.0℃after soaking 6min at 40 kHz of ultrasound frequency. No significant differences were established between the analytical results of UAE method and national standard method.
     Exploring for several years, three fields of innovations or new developments in this study were showed as follows:
     1. It's the first time for us to sample fresh tea leaves in natural tea plantation outdoors of Jiangxi at home and abroad. Other than pot incubation experiment, it's more representative of current situation of heavy metals pollution for it's raw materials for branded tea. Thus the study of fresh tea leaves could be better for assessing the quality of tea in Jiangxi, finding the problem in tea plantation management, drawing up countermeasures and resolving methods in advance to hold back the deterioration of heavy metals pollution in tea. Also, it offered a first-hand practical reference for tea industry development.
     2. Prediction maps, as the same as probability maps of integrated pollution level, were caculated for the first time for spatial variability of heavy metals in fresh tea leaves and soils in Jiangxi province based on GIS Kriging interpolation. The range and the degree of pollution were defined for offering information to make up policy about recovering and additional sapmling. It's an integrated innovation on study methods. Also, there was an integrated innovation on study ideas for classic statistics, multivariate analysis (cluster analysis, discriminant analysis and correspondence analysis) and fuzzy mathmatics were fistly integrated to get more macroscopical assessment results for soils and fresh tea leaves in Jiangxi major tea regions.
     3. A new standard with three degree of limited values was announced and discussed firstly for fresh tea leaves. Processing pollution levels following plucking should be eliminated from the standard values of branded tea to assess the fresh leaves more properly and tightening.
引文
[1]陈潜,杨巍.中国与印度、斯里兰卡、肯尼亚、日本茶叶产销对比分析[J].广东茶叶,2007,1:1-4
    [2]高潮.茶叶出口,继续关注六大市场[J].中国对外贸易,2009,6:76-79
    [3]Elvira Gonzalez de Mejia, Marco Vinicio Ramirez-Mares, Sirima Puangpraphant. Bioactive components of tea:Cancer, inflammation and behavior [J]. Brain, Behavior and Immunity, 2009,23:721-731
    [4]Artali, R., Beretta, G, Morazzoni, P., et al. Green tea catechins in chemoprevention of cancer: a molecular docking investigation into their interaction with glutathione S-transferase (GST P1-1) [J]. J. Enzyme Inhib. Med. Chem.,2009.24 (1):287-295
    [5]Arts, I. C. W. A review of the epidemiological evidence on tea, flavonoids, and lung cancer [J]. J. Nutr.2008,138:1561S-1566S
    [6]K. F. Pirker, J. Ferreira Severino, T. G. Reichenauer, B. A. Goodman. Free radical processes in green tea polyphenols (GTP) investigated by electron paramagnetic resonance (EPR) spectroscopy [J]. Biotechnology Annual Review,2008,14:349-401
    [7]H. Raza, A. John. In vitro protection of reactive oxygen species-induced degradation of lipids, proteins and 2-deoxyribose by tea catechins [J]. Food and Chemical Toxicology,2007, 45(10):1814-1820
    [8]汪庆华,刘新.浅谈我国茶叶质量安全现状及应对措施[J].茶叶,2006,(2):66-69
    [9]张毅,江毅.中国茶叶产量居全球第一,占世界总量的三分之一[EB/OL]. http://www. tech-food.com/news/2009-6-8/n0266946.htm食品科技网,2009,06,08
    [10]徐永成.我国茶产业成绩斐然[J].中国茶叶,2008,5:4-5
    [11]Kumar A, Nair AGC, Reddy AVR, et al. Availability of essential elements in Indian and US tea brands [J]. Food Chem.,2005,89:441-448
    [12]K. F. Fung, H. P. Carr, B. H. T. Poon. A comparison of aluminum levels in tea products from Hong Kong markets and in varieties of tea plants from Hong Kong and India [J]. Chemosphere,2009,75:955-962
    [13]FAO, WHO. Evaluation of the Joint FAO/WHO Food Standards Programme-Final Report [M],2001:101.
    [14]Sait C. Sofuoglu, Pmar Kavcar. An exposure and risk assessment for fluoride and trace metals in black tea [J]. Journal of Hazardous Materials,2008,158:392-400
    [15]Carr, H. P., Lombi, E., Kupper, H., et al. Accumulation and distribution of aluminum and other elements in tea (Camellia sinensis) leaves [J]. Agronomie,2003,23:705-710
    [16]Fung, K. F., Wong, M. H. Effects of soil pH on the uptake of Al, F and other elements by tea plants [J]. J. Sci. Food Agr.,2002,82:146-152
    [17]Li T., Yu L. J., Li M. T., et al. Comparative studies on the qualities of green teas in Karst and non-Karst areas of Yichang, Hubei Province, PR China [J]. Food Chem.,2007,103(1):71-74
    [18]Street, R., Drabek, O., Szakova, J., et al. Total content and speciation of aluminum in tea leaves and tea infusions [J]. Food Chem.,2007,104 (4):1662-1669
    [19]Ferrara, L., Montesanoa, D., Senatore, A. The distribution of minerals and flavonoids in the tea plant (Camellia sinensis).Ⅱ [J]. Farmaco,2001,56:397-401
    [20]Franklin, R. E., Duis, L., Brown, R., et al. Trace element content of selected fertilizers and micronutrient source materials [J]. Communications of Soil Science and Plant Analysis,2005, 36:1591-1609
    [21]Marcos, A., Fisher, G., Ree, G., et al. Preliminary study using trace element concentrations and a chemometrics approach to determine the geological origin of tea [J]. Journal of Analytical Atomic Spectroscopy,1998,113:521-525
    [22]中华人民共和国卫生部.GB 2762-2005,食品中污染物限量[S]
    [23]中华人民共和国农业部.NY 5244-2004,无公害食品茶叶[S]
    [24]中华人民共和国农业部.NY 659-2003,茶叶中铬、镉、汞、砷及氟化物限量[S]
    [25]中华人民共和国农业部.NY/T 853-2004,茶叶产地环境条件[S]
    [26]中华人民共和国农业部.NY 5119-2002,有机茶产地环境条件[S]
    [27]中华人民共和国农业部.NY 5020-2001,无公害食品茶叶产地环境条件[S]
    [28]汪玲平.论述我国新茶叶卫生标准的特点与作用[J].茶叶通报,2006,3:121-122
    [29]Wen-Yan Han, Fang-Jie Zhao, Yuan-Zhi Shi.. Scale and causes of lead contamination in Chinese tea [J]. Environmental Pollution,2006,139:125-132
    [30]石元值,金李孟,祝幼松.第一讲:茶叶重金属元素含量现状及累积特点[J].中国茶叶,2007,12:17-19
    [31]韩文炎,韩国柱,蔡雪雄.茶叶铅含量现状及其控制技术研究进展[J].中国茶叶,2008,3:16-17
    [32]孙丽,濮励杰,朱明等.太湖西山碧螺春茶园重金属含量分布与评价[J].生态与农村环境学报,2008,24(2):88-91
    [33]闵运江,刘吕利,汪永寿等.六安瓜片茶区土壤和茶叶铅和铜含量的调查[J].环境与健康杂志2008,25(7):601-603
    [34]莫建军.丽水市茶叶及茶园土壤中重金属的测定[J].丽水学院学报,2007,29(5):33-35
    [35]李卿,何璐君,谯莉萍等.贵州茶园土壤中重金属元素含量的检测与分析[J].贵州农业科学,2008,36(3):164-166
    [36]康海宁,杨妙峰,陈波等.利用矿质元素的测定数据判别茶叶的产地和品种[J].岩矿测试,2006,25(1):22-26
    [37]郭海彦,周卫军,张杨珠等.长沙“百里茶廊”茶园土壤重金属含量及环境质量特征[J].环境科学,2008,29(8):2320-2326
    [38]王红娟,龚自明,高土伟等.湖北省典型茶园土壤重金属污染状况及评价[J].中国茶叶,2009,2:30-31
    [39]刘小文,高熹,高晓余等.云南主要茶区土壤重金属的监测与污染评价[J].安徽农业科学,2008,36(33):14727-14728
    [40]谢振东.江西主栽茶树品种叶12种微量元素分布特征初步研究[J].蚕桑茶叶通讯,2009,1:32-34
    [41]李云,张进忠,童华.重庆市某茶园土壤和茶叶中重金属的监测与污染评价[J].中国农学通报,2007,23(7):519-524
    [42]Chong Wei Jin, Yun Feng He, Kai Zhang, et al. Lead contamination in tea leaves and non-edaphic factors affecting it [J]. Chemosphere,2005,61:726-732
    [43]王小平,马以瑾,徐元春.原子荧光光谱法测定不同产地茶叶中As, Se, Hg和Bi四种元素含量[J].光谱学与光谱分析,2008,28(7):1653-1657
    [44]Tsushida T., Takeo T. Zinc, copper, lead and cadmium contents in green tea [J]. Journal of the Science of Food and Agriculture,1977,28:255-258
    [45]F. Qin, W. Chen. Lead and Copper Levels in Tea Samples Marketed in Beijing, China [J]. Bull Environ Contam Toxicol,2007,78:128-131
    [46]Narin I, Colak H, Turkoglu O, et al. Heavy metals in black tea samples produced in Turkey [J]. Bull Environ Contam Toxicol,2004,72:844-849
    [47]Subbiah Seenivasan, Natarajan Manikandan, Narayanan Nair Muraleedharan, et al. Heavy metal content of black teas from south India [J]. Food Control,2008,19:746-749
    [48]Natesan, S., Ranganathan, V. Content of various elements in different parts of the tea plant and in infusions of black tea from southern India [J]. Journal of the Science of Food and Agriculture,1990,51:125-139
    [49]Michael Yemane, B. S. Chandravanshi, Taddese Wondimu. Levels of essential and non-essential metals in leaves of the tea plant(Camellia sinensis L.) and soil of Wushwush farms, Ethiopia [J]. Food Chemistry,2008,107:1236-1243
    [50]Ramakrishna, R. S., Palmakumbura, S. Varietal variation and correlation of trace metal levels with 'catechins' and caffeine in Sri Lanka tea [J]. Journal of the Science of Food and Agriculture,1987,38:331-339
    [51]罗苹,刘亚铭,傅绍清.西南地区绿茶产品质量及其污染状况评价[J].西南农业学报.2000,13(2):110-114
    [52]石元值.我国茶叶中铅含量研究及思考[J].中国茶叶.2001,23(4):18-19
    [53]陈宗懋,吴洵.关于茶叶中的铅含量问题[J].中国茶叶.2000,(2):3-5
    [54]汤茶琴,曾小维,陆建良等.茶叶中的铅及其安全性检测[J].茶叶.2003,29(1):20-22
    [55]Wen-Yan Han, Yuan-Zhi Shi, Li-Feng Ma, et al. Effect of liming and seasonal variation on lead concentration of tea plant(Camellia sinensis (L.) O. Kuntze) [J]. Chemosphere,2007, 66:84-90
    [56]王刚.西湖区不同茶园茶叶铅含量及其来源研究[D].杭州:浙江大学硕士学位论文,2010
    [57]韩文炎,杨亚军,梁月荣等.茶树体内铅的吸收累积特性研究[J].茶叶科学,2009,29(3):200-206
    [58]黄功标.GIS支持下茶园土壤适宜性评价的技术[J].福建茶叶,2005,1:20-22
    [59]中国环境监测总站.中国土境元素背景值[M].中国环境科学出版社,1990
    [60]石元值,马立峰,韩文炎等.浙江省茶园中铅元素含量现状研究[J].茶叶科学,2003,23(2):163-166
    [61]张翠香,孙威江.土壤因素对茶叶Pb含量的影响[J].福建茶叶,2005,3:11-12
    [62]陈翠华,倪师军,何彬彬等.基于污染指数法和GIS技术评价江西德兴矿区土壤重金属污染[J].2008,38(1):105-110
    [63]Michie, N. D., Dixon, E. J. Distribution of lead and other metals in tea leaves dust and liquors [J]. Journal of the Science of Food and Agriculture,1977,28:215-224
    [64]王淖.长株潭地区土壤重金属污染评价模型及分析[D],长沙:中南大学硕十学位论文,2005
    [65]王学军,席爽.北京东郊污灌土壤重金属含量的克立格插值及重金属污染评价[J].中国环境科学,1997,17(3):225-228
    [66]刘桂建,杨萍月,王桂梁.煤中微量元素在土壤环境中的迁移[J].地球学报,2000,21(4):423-427
    [67]严加永,吕庆田,赵金花.北京市土壤污染预警系统的设计与开发[J],地球学报,2004,25(3):379-384
    [68]胡永定.冲积型土壤重金属含量与质地和pH的关系及其预测[J].农村生态环境,1989,(3):46-51
    [69]卢子扬,张崇德.土壤污染预测研究的动态模型[J].农业环境保护,1989,3(4):10-11
    [70]王增辉,乔春贵,梁世铭.农药残留定量预测的—种新方法[J],中国环境科学,1992,(12):393-397
    [71]齐淑华,刘宇红,王增辉等.农药降解的GM(],1)模型[J].标准化报道,2000,21(1):36-37
    [72]刘爱国,花日茂.农药降解的非线性动力学模型研究[J],安徽农业大学学报,2002,29(3):311-315
    [73]吴春发.复合污染土壤环境安全预测预警研究[D].杭州:浙江大学博十学位论文,2008,4:80-82
    [74]严加永,吕庆田,葛晓立.GIS支持下的土壤重金属污染预测预警研究[J].吉林大学学报(地球科学版),2007,37,3:592-596
    [75]范迪福,翁志华,金洋等.江苏省溧水县土壤环境污染预警预测方法探讨[J].江苏地质,2005,29(2):88-9
    [76]周脚根,宋变兰,尤冬梅.土壤重金属污染风险预测研究进展[J].安徽农业科学,2009,37(22):10617-10619,10622
    [77]王政权.地统计学及在生态学中的应用[M],北京:科学出版社,1999:1-101
    [78]Arrouays D., Mench M., Amans V, et al. Short-range variability of fallout Pb in a contaminated soil [J]. Can. J Soil Sci,1996,76:73-81
    [79]McGraph D., Zhang C.S., Carton O. Geostatistical analyses and hazard assessment on soil lead in silvermines, area Ireland [J]. Environ. Pollut.,2004,127:239-248
    [80]Jiachun Shi, Haizhen Wang, Jianming Xu, et al. Spatial distribution of heavy metals in soils: a case study of Changxing, China [J]. Environ Geol,2007,52:1-10
    [81]Romic M, Romic D. Heavy metals distribution in agricultural topsoils in urban area [J]. Environ Pollut,2003,43:795-805
    [82]Lin YP, Chang TK, Teng TP. Characterization of soil lead by comparing sequential Gaussian simulation, simulated annealing simulation and kriging methods[J]. Environ Geol,2001, 41:189-199
    [83]White JG, Welch RM, Norvell WA. Soil zinc map of USA using geostatistics and geographic information system [J]. Soil Sci. Soc. Am. J,1997,61:185-194
    [84]Steiger B, Webster R, Schulin R, et al. Mapping heavy metals in polluted soil by disjunctive kriging [J]. Environ Pollut.,1996,94:205-215
    [85]胡克林,张风荣,吕贻忠等.北京市大兴区土壤重金属含量的空间分布特征[J].环境科学学报,2004,24(3):463-46
    [86]Goovaerts P. Geostatistics in soil science:state-of-the-art and perspectives [J]. Geoderma, 1999,89:1-45
    [87]李志斌.基于地统计学方法和Scorpan模型的土壤有机质空间模拟研究—以吉林省舒兰市为例[D].北京:中国农业科学院博十学位论文.2010
    [88]赵玉杰,刘潇威,唐世荣等.土壤镉积累农田水稻安全种植区判别技术研究[J].应用基础与工程科学学报,2011,19(1):1-11
    [89]林艳.基于地统计学与GIS的土壤重金属污染评价与预测[J].长沙:中南大学硕士学位论文,2009
    [90]Hongyan Wang, Shenggao Lu. Spatial distribution, source identification and affecting factors of heavy metals contamination in urban-suburban soils of Lishui city, China [J]. Environ. Earth Sci.,DOI 10.1007/s 12665-011-1005-0, published online:24 March 2011
    [91]杨扬.苏州市茶园重金属现状研究[D].杭州:中国农业科学院硕士学位论文,2009
    [92]Johan Liebens, Carl J. Mohrherr, K. Ranga Rao. Trace metal assessment in soils in a small city and its rural surroundings, Pensacola, FL, USA[J]. Environ Earth Sci, DOI 10.1007/s12665-011-1158-x., published online:08 July 2011
    [93]孔金玲,王文科,翁晓鹏等.基于GIS的地下水及其环境问题分析[J].吉林大学学报(地球科学版),2005,36(5):771-774
    [94]Zheng Y M, Chen T B, He J Z. Multivariate Geostatistical Analysis of Heavy Metal in Topsoils from Beijing, Chinia [J]. J Soils Sediments,2008,8(1):51-58
    [95]杨奇勇,杨劲松.基于GIS和GS+的耕地土壤阳离子交换量的序贯高斯模拟[J].中国农业科学,2010,43(18):3759-3766
    [96]龙兴,熊强.基于GIS组件技术的江西水系信息查询系统的研究与开发[J].江西水利科技,2009,35(3):193-197
    [97]徐敬敬.基于GIS的崇明土壤养分空间变异及肥力综合评价研究[D].上海:上海交通大学硕士学位论文,2010
    [98]丁文峰.基于GIS和BP神经网络模型的长江中上游地区石漠化危险性评价[J].长江科学院院报,2009,26(2):18-22
    [99]百度百科.数据挖掘[EB/OL].http://baike.baidu.com/view/7893.htm,2011-10-20
    [100]成伟.数据挖掘技术支持下的土壤重金属污染评价系统的研究[J].杭州:浙江大学博十 学位论文,2009
    [101]汪玉奇,刘清荣.创新江西茶业发展理念[J].老区建设,2008,4:17-19
    [102]江西省统计局.江西统计年鉴(2006)[M].北京:中国统计出版社
    [103]国家统计局.中华人民共和国年鉴(2006)[M].北京:中国统计出版社
    [104]Gulten Y A, Necati T. Heavy metal contamination of soils and tea plants in the eastern Black Sea region, NE Turkey [J]. Environ Earth Sci.,2009,59:131-144
    [105]Peric G A A, Pocajt V V, Ristic M D. Determination of heavy metal concentrations in tea samples taken from Belgrade market, Serbia [J]. Hemijska Industrija,2009,63(5):433-436
    [106]Cao H, Qiao L, Zhang H, et al. Exposure and risk assessment for aluminium and heavy metals in Puerh tea[J]. The Science of the Total Environment,2010,408:2777-2784
    [107]Shi J C, Wang G, He Y, et al. Lead accumulation in Westlake Longjing tea:non-edaphic genesis as revealed by regional scale estimate [J]. Journal of Soils and Sediments,2010, 10(5):933-942
    [108]王镇.超微绿茶粉及在食品工业中的应用[J].食品科技,2007,12:73-75
    [109]杨晓萍,周立亭,崔建国等.超微绿茶粉蛋糕加工工艺研究[J].食品工业,2006,6:16-18
    [110]于克学,孙建霞,白卫滨.超微茶粉面条的研制[J].食品科技,2008,6:121-123
    [111]樊哲文,刘木生,沈文清等.江西省生态脆弱性现状GIS模型评价[J].地球信息科学学报,2009,11(2):202-208
    [112]王钦德,杨坚.食品试验设计与统计分析[M].北京:中国农业大学出版社,2003,292-300
    [113]姚荣江,杨劲松,邹平等.基于电磁感应仪的田间土壤盐渍度及其空间分布定量评估[J].中国农业科学,2008,41(2):460-469
    [114]樊燕,刘洪斌,武伟.土壤重金属污染现状评价及其合理采样数的研究[J].土壤通报,2008,39(2):369-374
    [115]Cochran W G. Sampling. Techniques(3rd ed.)[M]. New York:John Wiley and Sons, Inc,1977
    [116]励建荣,陆海霞,季静冰.浙江省部分地区绿茶中重金属含量的调查和研究[J],中国食品学报,2004,1:87-92
    [117]李张伟.粤东凤凰山区茶园茶叶重金属含量的调查和污染评价[J].环境科学与技术,2010,33(9):183-186
    [118]国家环境保护总局.HJ/T 166-2004,土壤环境监测技术规范[S]
    [119]石元值,马立锋,韩文炎等.第二讲:茶叶重金属元素检测中样品采集及其前处理[J].中国茶叶,2008,1:6-7
    [120]曾珍英,江艳,刘涛.基于Landsat_TM影像的江西省生态环境质量状况研究[J].安徽农业科学,2010,38(5):2531-2533
    [121]Jalali, M. Multivariate statistical analysis of potassium status in agricultural soils in Hamadan, western Iran [J]. Pedosphere,2010,20(3):293-30
    [122]Amaya F U, Cristina L M, Enrique R, et al. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain [J]. Journal of Hazardous Materials,2009, 165:1008-1015
    [123]Chen Y X, Yu M G, Xu J, et al. Differentiation of eight tea(Camellia sinensis) cultivars in China by elemental fingerprint [J]. Journal of the Science of Food and Agriculture,2009,89: 2350-2355
    [124]Biljana S, Natasa D M. Chemometric interpretation of heavy metal patterns in soils worldwide [J]. Chemosphere,2010,80:1360-1369
    [125]Karak T, Bhagat R M. Trace elements in tea leaves, made tea and tea infusion:A review [J]. Food Research International,2010,43(9):2234-2252
    [126]中华人民共和国农业部.NY/T 391-2000.绿色食品产地环境技术条件[S].
    [127]国家环境保护局,国家技术监督局.GB 15618-1995土壤环境质量标准[S]
    [128]Yang Z P, Lu W X, Long Y Q, et al. Assessment of heavy metals contamination in urban topsoil from Changchun City, China [J]. Journal of Geochemical Exploration,2011,108: 27-38
    [129]中国环境检测总站.中国土壤背景值[M].北京:中国环境科学出版社,1990
    [130]杜加强,滕彦国,王金生.德兴地区土壤重金属人为污染的地球化学评价[J].安全与环境学报,2007,7(5):24-27
    [131]何纪力,徐光炎.江西省土壤环境背景值研究[M].北京:中国环境科学出版社,2006
    [132]张征.环境评价学[M].北京:高等教育出版社,2004:181-185
    [133]Yu, L., Zhang, B., Zhang, S.Q. Heavy metal elements pollution evaluation on the ecological environment of the Sanjiang Plain based on GIS [J]. Chinese Journal of Soil Science,2004, 35(5):529-532
    [134]骆伯胜,钟继洪,陈俊坚.土壤肥力数值化综合评价研究[J].土壤,2004,36(1):104-106
    [135]吕新,寇金梅,李宏伟.模糊评判方法在土壤肥力综合评价中的应用研究[J].干旱地区农业研究,2004,22(3):57-59
    [136]颜雄.洞庭湖区主要茶叶基地土壤养分状况与肥力质量评价[D].长沙:湖南农业大学,2007
    [137]赵伟,谢德体,刘洪斌.精准农业中土壤养分分析的适宜取样数量的确定[J].中国生态农业学报,2008,16(2):318-322
    [138]陈署晃,冯耀祖,许咏梅.土壤养分变异及合理取样数的初步研究[J].新疆农业科学,2003,40(6):328-331
    [139]王子龙,付强,姜秋香.土壤肥力综合评价研究进展[J].农业系统科学与综合研究,2007,23(1):15-18
    [140]钟慕尧,黄树才,杨民胜等.尾巨桉、马占相思和马尾松人工林的土壤肥力比较[J].桉树科技,2006,23(2):34-38
    [141]黄勇,杨忠芳.土壤质量评价国外研究进展[J].地质通报,2009,28(1):130-136
    [142]高瑞凤,王政,孙宁波等.青岛市茶园土壤肥力及环境质量现状分析[J].青岛农业大学学报(自然科学版),2008,25(1):43-47
    [143]李新举,刘宁,王霖林等.日照茶树种植区土壤pH值及养分的变化[J].安全与环境学报,2006,6(2):64-67
    [144]颜雄,张杨珠,周卫军等.长沙县“百里茶廊”6个茶叶基地的土壤肥力质量评价[J].农 业现代化研究,2007,28(3):355-358
    [145]孙波,张桃林,赵其国.我国东南丘陵山区土壤肥力的综合评价[J].土壤学报,1995,32(4):363-370
    [146]武伟,唐明华,刘洪斌.土壤养分的模糊综合评价[J].西南农业大学学报,2000,22(3):270-272
    [147]廖万有.我国茶园土壤的酸化及其防治[J].农业环境保护,1998,17(4):178-180
    [148]毛平生.我省茶园土壤肥力及其分析方法[J].蚕桑茶叶通讯,1995,3:16-18
    [149]朱毅,庄乾梅.鲁东南棕壤区茶园土壤养分演变趋势研究[J].中国茶叶,2008,3:2526
    [150]师进霖,纳玲洁,宋云华等.土壤肥力因子与茶叶品质的关系[J].中国农学通报2005,21(4):97-100
    [151]王效举.土壤条件与茶叶品质关系的研究[J],茶叶通讯,1994,(2):6-9
    [152]王晓萍.中国土地退化防治研究[M].北京:中国科学技术出版社,1990
    [153]张祖光,吴云,谢德体.重庆茶园土壤酸化特征研究[J].西南农业大学学报(自然科学版),2004,26(1):15-17
    [154]浙江农业大学主编.茶树栽培学[M].北京:农业出版社,1989
    [155]Yongjun Jiang, Linli Li, Yuexia Wu, et al. Temporal-spatial variability of soil fertility in karst region:a case study of Xiaojiang watershed Yunnan [J]. Environ Geol,2008,55:875-887
    [156]Meirvenne M Van, Hofman G. Spatial variability of soil nitrate after potatoes and its change during winter [J]. Plant Soil,1989,120:103-110
    [157]Rima FB, Aaron LM. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field [J]. FEMS Microbiol Ecol,2003,44(3): 335-346
    [158]Gerd D, Jozef D, Gerard G, et al. Spatial variability in soilproperties on slow-forming terraces in the Andes region of Ecuador[J]. Soil Tillage Res,2003,72(1):31-41
    [159]Cambardella CA, Moorman TB, Novak JM et al. Field-scale variability of soil properties in central lowa soils [J]. Soil Sci Soc Am J,1994,58:1501-1511
    [160]Fisher E, Thornton B, Hudson G, et al. The variability in total and extractable soil phosphorus under a grazed pasture [J]. Plant and Soil,1998,203:249-255
    [161]Cheng Y-J, Lee D-Y, Guo H-Y. Geostatistical analysis of soil properties of mid-west Taiwan soils [J]. Soil Sci,1997,162:291-298
    [162]Dalal RC. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland:Ⅱ. total organic carbon and its rate of loss from the soil profile [J]. Soil Resour,1986,24:281-292
    [163]Cahn MD, Hummel JW, Brouer BH. Spatial analysis of soil fertility for site-specific crop management [J]. Soil Sci Soc Am J,1994,58:1240-1248
    [164]Islam KR, Weil RR. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh [J]. Agric Ecosyst Env,2000,79:9-16
    [165]杜景龙,陈德超,王兆华.GIS支持下的土壤综合肥力指标的定量计算[J].土壤肥料,2005,(2):17-20
    [166]章明奎,黄昌勇.公路附近茶园土壤中铅和镉的化学形态[J].茶叶科学,2004,24(2):109-114
    [167]潘文杰.基于人工神经网络技术的烤烟重金属积累特征研究[D].重庆:西南大学,2005,3
    [168]庞元明.土壤肥力评价研究进展[J].山西农业科学,2009,37(2):85-87
    [169]邱炳文,池天河,王钦敏等.GIS在土宜评价中的应用与展望[J].地理与地理信息科学,2004,20(5):20-23
    [170]Chen TB, Wong WJC, Zhou HY, et al. Assessment of trace metal distribution and contamination in surface soil of Hong Kong [J]. Environ Pollut,1997,96:61-68
    [171]Belotti E. Assessment of soil quality criterion by means of a field survey [J]. Appl soil Ecol, 1998,10:51-63
    [172]Cattle JA, McBratney AB, Minasny B. Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination [J]. J Environ Qual,2002,31:1576-1588
    [173]Urzelai A, Vegab M, Angulo E. Deriving ecological risk-based soil quality values in the Basque Country [J]. Sci Total Environ,2000,247:279-284
    [174]Wong SC, Li XD, Zhang G, et al. Heavy metals in agricultural soils of the Pearl Rivef Delta, South China [J]. Environ Pollut,2002,119:33-44
    [175]Pichtel J, Sawyerr HT, Czarnowska K. Spatial and temporal distribution of metals in soils in Warsaw, Poland [J]. Environ Pollut,1997,98:169-174
    [176]Qiuming Cheng, Greame Bonham-Carter, Wenlei Wang, et al. A spatially eighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China [J]. Computers & Geosciences,2011, 37:662-669
    [177]邱立民,谢忠雷,包国章.茶园土壤pH值对茶叶从土壤中吸收锰的影响[J].地理科学,2001,21(3):278-281
    [178]黄苹,谭和平,陈能武.茶叶与土壤中铜含量的相关分析[J].西南农业学报,2003,16(1):51-53
    [179]梁远发,田永辉,王家伦等.优化茶叶自然品质的栽培技术研究报告[J].贵州茶叶,2000(3):14-19
    [180]王守生,黄建国,邹连生.“巴山峡川”茶园自然环境与茶叶品质的调查研究[J].中国农学通报,2003,19(5):160-163
    [181]马立锋,石元值,韩文炎.浙江省茶园土壤锰含量状况研究[J].土壤通报,2004,35(2):203-206
    [182]汪智效,龚加顺,郭向华.茶树硒营养的研究进展[J].土壤肥料,2000,(3):3-6
    [183]周勇,张海涛,汀善勤等.江汉平原后湖地区土壤肥力综合评价方法及其应用[J].水土保持学报,2001,15(4):70-74
    [184]刘训,丁雷.土壤施肥对茶叶含硒量的影响[J].茶叶科学,1995,15(2):155-156
    [185]陈婵婵.陕西茶园土壤养分与产叶相应成分关系的研究[D],陕西:西北农林科技大学,2008
    [186]Kumru MN, Bakac M. R-mode factor analysis applied to the distribution of elements in soils from the Aydin basin, Turkey [J]. J Geochem Explor,2003,77:81-91
    [187]范文宏,唐戈,段勇等.运用主成分分析法评价北京市代表性河流的水质与毒性状况[J].生态毒理学报,2007,2(1):70-78
    [188]Boruvka L, Vacek O, Jehlicka J. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils [J]. Geoder,2005,128:289-300
    [189]Imperato M, Adamo P, Naimo D, et al. Spatial distribution of heavy metals in urban soils of Naples city (Italy) [J]. Environ Pollut,2003,124:247-256
    [190]Loska K, Wiechula D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir [J]. Chemosphere,2003,51:723-733
    [191]戴钰婷.支持向量机在多元校正、QSAR及化学模式识别中的应用[D].上海:上海师范大学,2008
    [192]王学松,秦勇.徐州城市表层土壤中重金属环境风险测度与源解析田[J],地球化学,2006,35(1):1-5
    [193]Facchinelli A., Sacchi E., Mallen L., et al. Multivariate statistical and GIS-based approach to identify heavy metals in soils [J]. Environ Pollut,2001,114(3):313-324
    [194]李方敏,艾天成,周治安等.用主成分分析法评价渍害土壤肥力[J].地域研究与开发,2001,20(4):65-67,80
    [195]Turekian KK, Wedepohl KH. Distribution of the elements in some major units of the Earth's crust [J]. Geol Soc Am Bull,1961,72:175-192
    [196]陈怀满著.土壤—植物系统中的重金属污染[M].北京:科学出版社,1996
    [197]张寿宝,包文权.汽车尾气中的铅对茶园污染的研究[J].江苏环境科学,2000,13(3):1-2
    [198]石元值,马立峰.汽车尾气对茶园土壤和茶叶中铅、铜、镉元素含量的影响[J].茶叶,2001,27(4):21-24
    [199]于婿,周勇,周清波等.基于GIS和模糊数学方法的多方案下农用土地多宜性评价[J].农业工程学报,2005,21(增刊):183-187
    [200]俞汝勤.化学计量学导论[M].长沙:湖南教育出版社,1991
    [201]Li X, Lee SL, Wong SC, Shi W, et al. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach [J]. Environ Pollut,2004,129:113-124
    [202]Lee CSL, Li X, Shi W, et al. Metal contamination in urban, suburban, and country park soils of Honk Kong:a study based on GIS and multivariate statistics [J]. Sci Total Environ,2006, 356:45-61
    [203]宁蓬勃,郭抗抗,王晶钰.云南普洱茶铜含量现况研究[J].中国食品卫生杂志,2010,22(1):57-59
    [204]宁蓬勃,龚春梅,郭抗抗等.云南省不同地区普洱茶铅含量的差异性[J].西北农业学报,2010,19(1):116-120
    [205]宁蓬勃,郭抗抗,王晶钰.云南普洱茶砷和汞的含量分析[J].食品科学,2010,31(8):151-157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700