用户名: 密码: 验证码:
固定化生物催化剂用于城市污水厂污泥减量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥法是现阶段城市污水处理厂应用最为广泛的污水处理方法,但其最大的缺点是会产生大量的剩余活性污泥。剩余活性污泥含有病原体、有毒有害有机物、重金属等对人和环境有害的物质,若处理处置不当会引起二次污染,给环境带来巨大的危害。污泥处理处置费用极高,已成为困扰城市污水厂和城市发展的难题之一。因此,开发一种经济高效能够实现污泥减量的新技术具有非常重要的现实意义和实用价值。
     本论文采用生物强化技术,在污水处理系统中加入固定化生物催化剂(IBC)来实现污泥源头减量。该催化剂是采用固定化技术,将能分泌出乳糖酶、蔗糖酶、麦芽糖酶、淀粉酶、脂肪酶、蛋白酶、纤维素酶的微生物活性细胞(乳酸菌、酵母菌、芽孢杆菌等)及上述活性酶等物质固定在麦麸上而得到的一种多功能微生物制剂。将固定化生物催化剂(IBC)投加到污水处理系统中,能够优化原系统微生物菌落构成,促进污水处理系统中有机物的快速降解,使其转化为CO2、N2、H2O等无害物质,由于有机物浓度低,系统中的污泥大部分处于内源呼吸状态,自身氧化率高,剩余污泥产生量少,由此达到从源头实现减少污泥产生量的目的。
     本论文采用固定化生物催化剂(IBC)作为研究材料,开展了小试和中试试验研究,具体内容及结论如下:
     (1)固定化生物催化剂(IBC)用于SBR处理模拟污水污泥减量的实验研究,结果表明,投药后,加药组比对照组污泥减产55.28%。同时,加药组出水COD、NH3-N、TP稍优于对照组,TP平均去除率比对照组提高了7.21%。第31~80天,加药组MLVSS/MLSS比对照组降低了8.50%。
     (2)将固定化生物催化剂(IBC)用于中山某城市污水处理厂进行为期142天的污泥减量中试研究,结果表明,加药池比对照池减产污泥76.79%,少排放剩余污泥63.58%。投加IBC约1个月后污泥浓度逐渐降低,约第75天后污泥浓度稳定在1600mg/L左右,与对照池稳定运行的3000mg/L比大约降低了50%。从投药第2个月开始,排泥量逐渐减少,第3、4个月未排泥。第31~142天,加药池MLVSS/MLSS平均值比对照池低6.74%。加药池出水水质优于对照池,TP平均去除率提高了11.73%。加药池污泥中磷含量比对照池提高了0.76%,电耗节省了11.44%。
     (3)将固定化生物催化剂应用于广州某城市污水厂连续进行106天的中试研究,试验结果表明,加药池比对照池减产污泥21.04%,且加药池污泥沉降性能得到了明显改善。试验期间加药池MLVSS/MLSS比对照池低6.24%,第40~106天,加药池MLVSS/MLSS比对照池低8.33%。加药池出水水质pH、SS、COD、NH3-N均与对照池相差不大,TP平均去除率比对照池提高了6.30%。加药池污泥中磷含量比对照池提高了0.31%,电耗节省了13.24%,污泥比阻比对照池低了47.14%。
     (4)通过对污泥进行镜检实验,结果表明加药池污泥形态明显发生了变化,加药池污泥比对照池紧密,污泥絮凝体较大。分析结果说明IBC影响了原生化系统中优势菌群种类和数量,强化了原活性污泥的功能,促使有机物快速分解成CO2和H2O,从而降低了污泥产生量。
     (5)通过进行效益分析,表明投加固定化生物催化剂(IBC)是一种经济、有效的从源头实现污泥减量的新工艺技术,有良好的经济、环境、社会效益。
The activated sludge process is the most popular method in wastewater treatment plant,which will be resulted with a large number of by-products_excess sludge. Excess sludgecontains pathogens, heavy metals and residual organisms, being harmful to people and theenvironment. What’s more, it could cause secondary pollution if not being treated properly.The extremely high disposal expense of sludge also becomes one difficult problem for themunicipal wastewater treatment plant and the city development. Thus, developing aneconomic and efficient technology for sludge reduction is of very important practicalsignificance.
     In this thesis, bioaugmentation is used in the sewage treatment system with immobilizedbiocatalysts to achieve sludge reduction from the sources. The catalyst through theimmobilization technology will be able to make a multi-functional microbial agents by fixingon wheat bran by the amylase, lipase, protease, cellulose enzyme, lactose enzyme and lacticacid bacteria and yeast, bacillus, etc. Adding IBC to the sewage treatment system couldoptimize the microbial colonies structure, promote the rapid mineralization and degradation oforganic matter in the sewage treatment as well as make it into harmless substance as CO2,H2O, and N2. Because of the low concentration of organic matter, most of the sludge in thesystem is in the endogenous respiration state with high oxidation rate, producing less excesssludge, achieving the sludge reduction of sludge from the sources.
     This paper using immobilized biocatalysts(IBC) as research materials to carry out smallscale and pilot test. The contents and conclusions are below:
     (1) Immobilized biocatalysts used in Sequencing Batch Reactor (SBR) to study thesludge reduction. The results showed that sludge reduction of dosing group is55.28%lessthan contrast group. At the same time, the treatment effects of COD, NH3-N, TP of dosinggroup were better than the contrast group. The average removal rate of TP is7.21%higherthan the contrast group. From The31th to the80th days, MLVSS/MLSS of dosing group was8.50%lower than the control group.
     (2)Immobilized biocatalysts was applied in a municipal wastewater treatment plant ofzhongshan tested for142days. The outcomes showed that sludge production of the dosing pool was76.79%less than the contrast pool and discharged63.58%less sludge. After dosingIBC for a month,sludge concentration reduced gradually. About75days later, sludgeconcentration was about1600mg/L and50%lower than the contrast pool. From the secondmonth, the sludge emission reduced gradually. There is no discharge sludge in the3rd and4thmonths. From the31th to142th days, the average value of MLVSS/MLSS of dosing pool was6.74%lower than the contrast pool. Moreover, the effluent quanlity of dosing pool was betterthan the control pool. The mean removal ratio of TP increase by11.73%.The amount of TP insludge of dosing pool is0.76%higer than contrast pool, saving11.44%electricityconsumption.
     (3)Pilot study of adding immobilized biological catalyst (IBC) in a municipal wastewatertreatment plant of Guangzhou. The results showed that the sludge production of the dosingpool is21.04%less than the contrast pool. And the sludge sedimentation of dosing pool wasimproved. After40days of the experiment, the sludge concentration reduced gradually. Thevalue of MLVSS/MLSS of dosing pool was6.24%less than contrast pool. From the40th daysto the106th days, dosing tank was8.33%lower than the control pool. What’s more, waterqualitys, such as pH, SS, COD, NH3-N, TP of dosing pool were superior than control pool.Average removal rate of TP was6.30%higer than the contrast. Dosing pool consume13.24%less electricity and the sludge resistance was47.14%lower than the contrast pool.
     (4)By the sludge microscopic experiment, the results showed that the morphology ofactivated sludge in dosing pool was significantly changed. The sludge flocculation was tighterand bigger than contrast pool. Results also showed that the immobilized biological catalysthas an effect on the type and quantity of dominant species of the biochemical system. Itstrengthened the function of the activated sludge, promoting the organic decomposing intoCO2and H2O, which reduced the excess sludge.
     (5) The benefit analysis indicated that adding immobilized biological catalyst was a kindof economic and efficient technology that realized the sludge reduction from the source.What’s more, it also produces economic, social and environmental values.
引文
[1]刘金玲.城镇污水处理厂污泥堆肥的风险解析[J].舰船防化,2011,(5):50-53
    [2]安红莹.低温条件下SBR处理城市污水污泥的影响因素[J].成都纺织高等专科学校学报,2005,(3):5-8
    [3]王月红,杨雪丽,章嫣.城市污水厂污泥减量化、稳定化及资源化研究进展[J].江苏环境科技,2007,(S2):118-120
    [4]裴晓梅,余志亚,朱洪光.我国厌氧发酵处理城市污水剩余污泥研究进展[J].中国沼气,2008,26(1):25-29
    [5]城市污水处理及污染防治技术政策[J].环境污染治理技术与设备.2001,(1):1-2
    [6]郝桂珍,马立山,代学民.论城市污泥特征及其处理处置状况[J].河北建筑工程学院学报,2011,(2):22-24
    [7]李俊.微生物菌剂对污水处理厂污泥减量的影响研究[D].重庆:西南大学,2008
    [8]施善彬.城市污泥干化、焚烧特性及粘融排渣技术研究[D].上海:上海交通大学,2009
    [9]吴静.城市污水污泥干燥特性及转筒干燥过程研究[D].山东:山东大学,2010
    [10]吴大付,李东方,任秀娟,等.污水处理厂污泥的处置方法及其土地利用[J].广西轻工业,2008,(2):67-68
    [11]张贺飞,徐燕,曾正中,等.国外城市污泥处理处置方式研究及对我国的启示[J].环境工程,2010,(S1):434-438
    [12]邹闽蜀.重庆市城市污水厂污泥管理体系研究[D].重庆:重庆大学,2008
    [13]胡玖坤,许景钢,张丹,等.污泥的处理方法和农用资源化展望[J].东北农业大学学报,2005,(6):820-824
    [14]王涛.污泥焚烧技术现状,存在问题与发展趋势[J].西南给排水,2007,29(1):7-10
    [15] GERHARDT T, SPLIETHOFF H, HEIN K. Thermische Nutzung von Kl rschl mmen inKraftwerksfeuerungsanlagen [J]. Entsorgungspraxis,1997,3:50-58
    [16]孟玉,李光.污泥处置专项规划编制的必要性[J].中国资源综合利用,2011,(7):45-46
    [17]张辰,王国,华孙晓,等.污泥处理处置技术与工程实例[M].北京:化学工业出版社,2006:5
    [18]杭世珺,陈吉宁,郑光灿,等.污泥处理处置的认识误区与控制对策[J].中国建设信息(水工业市场),2006,(4):41-43
    [19] Chudoba P, Morel A, Capdeville B. The case of both energetic uncoupling and metabolic selection ofmicroorganisms in the OSA activated sludge system[J]. Environmental technology,1992,13(8):761-770
    [20]王琳,王宝贞.污泥减量技术[J].给水排水,2000,26(10):28-31
    [21]王少坡,孙力平,于静洁,等.原位剩余污泥减量技术的研究进展[J].天津城市建设学院学报,2009,(2):99-106
    [22] Pérez-Elvira S I, Nieto Diez P, Fdz-Polanco F. Sludge minimisation technologies[J]. Reviews inEnvironmental Science and Biotechnology,2006,5(4):375-398
    [23] Wei Y, Van Houten R T, Borger A R, et al. Minimization of excess sludge production for biologicalwastewater treatment[J]. Water Research,2003,37(18):4453-4467
    [24] Russell J B, Cook G M. Energetics of bacterial growth: balance of anabolic and catabolic reactions.[J].Microbiological Reviews,1995,59(1):48-62
    [25] Yang X F, Xie M L, Liu Y. Metabolic uncouplers reduce excess sludge production in an activatedsludge process[J]. Process Biochemistry,2003,38(9):1373-1377
    [26]王涛,叶成全,李伟民,等.三氯苯酚对A2/O工艺污泥产率的影响[J].环境科学与管理,2010,(9):38-41
    [27] Chen G H, Mo H K, Liu Y. Utilization of a metabolic uncoupler,3,3',4',5-tetrachlorosalicylanilide(TCS) to reduce sludge growth in activated sludge culture[J]. Water Research,2002,36(8):2077-2083
    [28] Low E W, Chase H A, Milner M G, et al. Uncoupling of metabolism to reduce biomass production inthe activated sludge process[J]. Water Research,2000,34(12):3204-3212
    [29] Strand S E, Harem G N, Stensel H D. Activated-sludge yield reduction using chemical uncouplers[J].Water Environment Research,1999:454-458
    [30]顿咪娜,裴海燕,胡文容.氨基苯酚和四氯水杨酰苯胺对活性污泥产率的影响[J].环境科学,2009,(5):1481-1486
    [31]韩万玉.化学解偶联对污泥减量和脱氮除磷效果的影响研究[D].重庆:重庆大学,2008
    [32]陈志英,王磊,周琪.高效代谢解偶联剂的筛选及对SBR系统综合运行效能的影响[J].环境污染与防治,2006,28(8):575-579
    [33]王涛,叶成全,李伟民,等.化学解偶联剂对A2/O工艺污泥产率的影响[J].中国给水排水,2011,(3):102-105
    [34] Goglia F, Skulachev V P. A function for novel uncoupling proteins: antioxidant defense ofmitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membraneleaflet[J]. The FASEB journal,2003,17(12):1585-1591
    [35]叶芬霞,陈英旭.能量解偶联代谢对剩余污泥的减量化研究[J].环境科学与技术,2005,28(4):4-5
    [36] Liu Y, Chen G H, Rols J L. A kinetic model incorporating energy spilling for substrate removal insubstrate-sufficient batch culture of activated sludge[J]. Applied microbiology and biotechnology,1999,52(5):647-651
    [37] Buys B R, Mosquera-Corral A, Sánchez M, et al. Development and application of a denitrification testbased on gas production[J]. Water Science and Technology,2000,41(12):113-120
    [38] Liu Y. Bioenergetic interpretation on the So/Xo ratio in substrate-sufficient batch culture[J]. WaterResearch,1996,30(11):2766-2770
    [39]刘雨,陈光浩.富底物条件下活性污泥微生物合成—能量代谢理论[J].北京轻工业学院学报,1998,16(003):26-31
    [40] Copp J B, Dold P L. Comparing sludge production under aerobic and anoxic conditions[J]. Waterscience and technology,1998,38(1):285-294
    [41] Chudoba P, Chudoba J, Capdeville B. The aspect of energetic uncoupling of microbial growth in theactivated sludge process-OSA system[J]. Water Science&Technology,1992,26(9-11):2477-2480
    [42] Saby S, Djafer M, Chen G H. Effect of low ORP in anoxic sludge zone on excess sludge production inoxic-settling-anoxic activated sludge process[J]. Water research,2003,37(1):11-20
    [43] Chen G H, An K J, Saby S, et al. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process)[J]. Water research,2003,37(16):3855-3866
    [44] Wang J F, Zhao Q L, Jin W B, et al. Mechanism on minimization of excess sludge inoxic-settlinganaerobic(OSA)process[J]. Frontiers of Environmental Science&Engineering in China,2008,1(2):36-43
    [45]郭志宏.优化污水处理工艺实现剩余活性污泥减排[J].石油化工技术与经济,2008,(2):19-22
    [46]梁立伟,陈福霞,赵兴龙,等.好氧-沉淀-厌氧过程在污泥减量化应用中的研究[J].石油化工安全环保技术,2010,(1):61-64
    [47] Cabrero A, Etal. Effeets of copper and zinc on the activated sludge bacteria growth kineties[J].Wat.Res,1998,(32):1355-1362
    [48] Canales A, Pareilleux A, Rols J, et al. Decreased sludge production strategy for domestic wastewatertreatment[J]. Water Science and Technology,1994,30(8):97-106
    [49]薛涛,黄霞,郝王娟.剩余污泥热处理过程中磷,氮和有机碳的释放特性[J].中国给水排水,2006,22(023):22-25
    [50]王大伟,韩爱荣,苏朋,等.污泥减量化研究进展[J].广州化工,2010,(5):65-67
    [51]刘春红,杨顺生,戴本林.我国超声波处理污泥技术的研究进展[J].安徽化工,2007,(2):20-22
    [52]曹秀芹,陈珺,王洪臣,等.超声处理对活性污泥系统污泥减量效果的研究[J].环境污染治理技术与设备,2006,7(6):85-88
    [53] Cao X Q, Chen J, Cao Y L, et al. Experimental study on sludge reduction by ultrasound.[J]. Waterscience and technology: a journal of the International Association on Water Pollution Research,2006,54(9):87
    [54]邓金川,冯新,雷恒毅,等.活性污泥超声波预处理的降解特性与减量研究[J].环境工程学报,2010,(7):1619-1623
    [55]赵文喜,张萌.污泥前置物化减量技术的研究与进展[J].安全与环境工程,2008,(2):75-80
    [56] Baier U, Schmidheiny P. Enhanced anaerobic degradation of mechanically disintegrated sludge[J].Water science and technology,1997,36(11):137-143
    [57] Campos J L, Otero L, Franco A, et al. Ozonation strategies to reduce sludge production of a seafoodindustry WWTP[J]. Bioresource technology,2009,100(3):1069-1073
    [58] Dytczak M A, Oleszkiewicz J A. Performance change during long-term ozonation aimed ataugmenting denitrification and decreasing waste activated sludge[J]. Chemosphere,2008,73(9):1529-1532
    [59] Saby S, Djafer M, Chen G H. Feasibility of using a chlorination step to reduce excess sludge inactivated sludge process[J]. Water Research,2002,36(3):656-666
    [60] Tokumura M, Katoh H, Katoh T, et al. Solubilization of excess sludge in activated sludge processusing the solar photo-Fenton reaction[J]. Journal of hazardous materials,2009,162(2-3):1390-1396
    [61] Stendahl K, J fverstr m S. Recycling of sludge with the Aqua Reci process.[J]. Water science andtechnology: a journal of the International Association on Water Pollution Research,2004,49(10):233
    [62]何圣兵,薛罡,王宝贞.影响臭氧化污泥减量工艺的因子[J].化学工程,2006,34(4):51-54
    [63]金瑞洪.臭氧应用于SBR剩余污泥减量的研究[J].西安建筑科技大学学报:自然科学版,2004,36(002):239-242
    [64] Song K G, Choung Y K, Ahn K H, et al. Performance of membrane bioreactor system with sludgeozonation process for minimization of excess sludge production[J]. Desalination,2003,157(1-3):353-359
    [65]王嵘,万金保,吴声东.利用同步臭氧氧化实现SBR污泥减量的研究[J].中国给水排水,2008,(7):1-3
    [66]傅金祥,裴丽花,许海良,等.二氧化氯氧化污泥减量试验研究[J].工业安全与环保,2008,(4):11-13
    [67]周煜,张爱菊,张盼月,等.光-Fenton氧化破解剩余污泥和改善污泥脱水性能[J].环境工程学报,2011,(11):2600-2604
    [68] Griffith J W, Raymond D H. The first commercial supercritical water oxidation sludge processingplant[J]. Waste Management,2002,22(4):453-459
    [69]昝元峰,王树众,张钦明,等.城市污泥超临界水氧化及反应热的实验研究[J].高校化学工程学报,2006,20(3):379-384
    [70] Shanableh A. Production of useful organic matter from sludge using hydrothermal treatment[J]. WaterResearch,2000,34(3):945-951
    [71] Khan Y, Anderson G K, Elliott D J. Wet oxidation of activated sludge[J]. Water Research,1999,33(7):1681-1687
    [72] Lendorml T, Prevot C, Doppenberg F, et al. Wet oxidation of domestic sludge and process integration:the Mineralis process[J]. Water science and technology,2001:163-169
    [73] Rocher M, Goma G B, Pilas Begue A, et al. Towards reduction in excess sludge production inactivated sludge process: Biomass physicochemical treatment and biodegradation[J]. AppliedMicrobiology and Biotechnology,1999,51:883-890
    [74]王晓霞.剩余污泥减量化处理中细胞物质的释放特性与磷回收研究[D].上海:华东理工大学,2010
    [75]林志高,张守中.废弃活性污泥加碱预处理后厌氧消化的试验研究[J].给水排水,1997,23(1):10-15
    [76]孙德栋,王一娜,宋晶,等.微波诱导活性炭纤维催化氧化实现污泥减量的研究[J].环境污染与防治,2010,(4):53-57
    [77]刘佳,孙德栋,薛文平,等.微波辐照与碱联合处理污泥的试验研究[J].环境污染与防治,2008,(12):63-66
    [78]孙德栋,刘佳,马春,等.微波辐照与碱联合应用实现剩余污泥减量的实验研究[J].大连工业大学学报,2009,(3):195-199
    [79]徐静阳,大浦宏隆,刘德华,等.剩余污泥热碱解及其用于微生物油脂生产的探索[J].生物工程学报,2011,(3):482-488
    [80] Ohsaka F. Activity to reduce sludge generated from septic tanks to zero using bacterial method[J].Fujitsu scientific and technical journal,2005,41(2):259-268
    [81]王敏,王里奥,包亮,等.多功能微生物制剂用于污泥减量的研究[J].中国给水排水,2007,(7):16-19
    [82]黄小兰,陈建耀.微生物应用于污水污泥处理的研究[J].亚热带资源与环境学报,2010,(1):48-55
    [83]史彦伟,钟琼,李小明,等. S-TE污泥好氧减量技术的研究与应用[J].中国给水排水,2006,22(18):16-20
    [84] Ichinari T, Ohtsubo A, Ozawa T, et al. Wastewater treatment performance and sludge reductionproperties of a household wastewater treatment system combined with an aerobic sludge digestionunit[J]. Process Biochemistry,2008,43(7):722-728
    [85] Lee N M, Welander T. Use of protozoa and metazoa for decreasing sludge production in aerobicwastewater treatment[J]. Biotechnology letters,1996,18(4):429-434
    [86]李洪枚.微型动物捕食污泥减量工艺研究现状[J].环境科技,2010,(6):61-65
    [87]梁鹏,黄霞,钱易,等.3种生物处理方式对污泥减量效果的比较及优化[J].环境科学,2006,27(011):2339-2343
    [88]张万友,杨海滔,于金山,等.用BF生物填料处理化工综合废水的应用研究[J].工业水处理,2008,(12):59-61
    [89] Song B, Chen X. Effect of Aeolosoma hemprichi on excess activated sludge reduction[J]. Journal ofhazardous materials,2009,162(1):300-304
    [90]杨宏,杨佳丽,张岩,等.泳动床技术处理高浓度废水特性研究[J].环境科学,2009,(2):445-450
    [91]黄伟飞,舒英钢,斯昇亮,等.水蚯蚓原位消解技术用于污泥减量的研究[J].中国给水排水,2010,(17):1-4
    [92]楼菊青,郭茂新,孙培德,等.水蚯蚓微生物共生系统处理城镇污水工程规模试验研究[J].环境科学,2009,(12):3602-3608
    [93] Talat Mahmood P E, Elliott A. Activated sludge process modification for sludge yield reduction usingpulp and paper wastewater[J]. Journal of Environmental Engineering,2006,132(9):1019-1027
    [94]张岩,王永胜,白玉华,等.泳动床/好氧颗粒污泥新技术处理生活污水的特性研究[J].环境科学,2007,(10):2249-2254
    [95] Wei Y, Liu J. Sludge reduction with a novel combined worm-reactor[J]. Hydrobiologia,2006,564(1):213-222
    [96]张恒.微型后生动物污泥减量效果试验研究[D].重庆:重庆大学,2008
    [97] Liu Y, Tay J H. Interaction between catabolism and anabolism in the oxidative assimilation ofdissolved organic carbon[J]. Biotechnology letters,2000,22(19):1521-1525
    [98] Low E W, Chase H A. The effect of maintenance energy requirements on biomass production duringwastewater treatment[J]. Water Research,1999,33(3):847-853
    [99] Miyanaga K, Funada S, Ichi-Nohe R, et al. Reduction of excess sludge and simultaneous removal oforganic carbon and nitrogen by the porous carrier and membrane hybrid system[J]. Journal ofchemical engineering of Japan,2003,36(10):1156-1162
    [100]左宁,吉芳英,万小军,等.污泥龄对LSP&PNR污泥减量新工艺运行效能的影响[J].环境工程学报,2008,(1):105-109
    [101]张景丽.医院污水膜生物反应器(MBR)污泥消毒处理的研究[D].天津:天津大学,2010
    [102]刘巍,张春燕,闫光绪,等.污泥龄对剩余污泥减量化的影响[J].油气田环境保护,2007,(2):13-16
    [103]黄川,王里奥,宋珍霞,等.有效微生物和多功能复合微生物制剂生物强化提高化粪池粪便污泥减量效率研究[J].环境工程学报,2010,(7):1636-1642
    [104]张少强,李小明,杨麒,等.污泥嗜热菌好氧消化与传统高温好氧消化的效果对比[J].中国给水排水,2007,(13):91-93
    [105]罗琨.厌氧条件下外加酶强化剩余污泥水解的研究[D].湖南:湖南大学,2010
    [106]李俊,朱臻,朱国政,等.利用MCMP微生物制剂减少剩余污泥产量的研究[J].环境工程学报,2007,(12):92-95
    [107]赵维纳,李小明,杨麒,等.嗜热酶溶解法促进剩余污泥减量行为研究[J].中国给水排水,2007,(23):29-33
    [108]苏胜男,马燕,杨悦新.生物制剂-LLMO在污水处理工艺中的作用分析[J].大连民族学院学报,2009,11(5):476
    [109]张忠智,钟为章,穆红岩.功能微生物对炼厂剩余污泥减量化效果的研究[J].石油化工高等学校学报,2010,(1):23-26
    [110]王艳红,田永淑,孙俊芹.复配优势菌用于污水处理及污泥减量的研究[J].工业水处理,2007,(4):75-77
    [111]宋珍霞,王里奥,黄川,等.复合微生物制剂对化粪池污泥厌氧消化效果的影响[J].中国给水排水,2009,(19):20-23
    [112]香杰新,蔡勋江,范洪波,等.复合菌剂用于膜生物反应器的污泥减量试验研究[J].水处理技术,2009,(12):98-101
    [113] Bruce E. Rittmann Perry L. Mccarty.环境生物技术原理与应用(译本)[M].文湘华,王建龙,等译.北京:清华大学出版社,2004:264
    [114]何新慧.双SBR脱氮除磷工艺的启动、特性试验与动力学分析[D].西安:西安建筑科技大学,2006:11-12
    [115]国家环境保护总局.水和废水分析监测方法[M].第四版.北京:中国环境科学出版社,2002
    [116]张肖静,高健磊,刘航航,等.城市污水厂剩余污泥中总磷的测定[J].环境监测管理与技术,2010,22(5):39-41
    [117]章非娟.水污染控制工程实验[M].第2版.北京:高等教育出版社,1989:176-186
    [118]张光明,杨金美,王伟. SBR反应器污泥减量化研究[J].给水排水,2006,32(10),36-41
    [119]唐受印,戴友芝,汪大翚,等.废水处理工程[M].第2版.北京:化学工业出版社,2004:252
    [120]李俊,庞子山,朱臻,等.利用微生物制剂进行污泥减量的生产性试验研究[J].中国给水排水,2008,(3):1-4
    [121]綦峥.水滑石型污泥脱水剂的制备及污泥脱水性能[D].哈尔滨:哈尔滨工业大学,2010
    [122]中国环境监测总站.土壤元素的近代分析方法[M].北京:中国环境科学出版社,1992,74-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700