用户名: 密码: 验证码:
填海区淤泥重金属释放迁移规律及其环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
历史悠久的填海造地活动给陆地资源紧缺的区域缓解了土地供求的矛盾,提供了新的经济发展机遇,但是这种人类大型工程活动不可避免带来了诸多环境问题,比如海岸生态系统破坏、海水自净能力下降,海湾重金属污染加剧等。粗放型的、以牺牲自然环境为代价的发展已经成为历史,环境与经济发展并重的可持续发展需要人们更为全面地认识填海与环境的关系,尤其是在淤泥层深厚、重金属富集的海湾地带,重金属有什么样的迁移释放规律?将会产生什么样的环境效应?如何选择合适措施进行处理?本文以深港西部通道填海区为例,对该领域进行了有益探讨,取得了以下主要成果:
     (1)针对大规模填海工程这一类特殊环境工程地质问题,通过对填筑体、淤泥、地下水相互作用与过程的分析与研究,对与填海工程相关的环境工程地质问题进行了较为系统的研究,建立了与填海工程有关的重金属释放迁移及相关环境地质问题的测试技术、分析理论及评价方法。
     (2)通过分析填海工程的施工步骤对填海区地下水、淤泥环境的扰动,结合野外观测数据,总结了填海区地下水主要理化参数的变化趋势,并分析了地下水淡化的原因;详细分析了施工过程中淤泥氧化还原环境变化的过程,及淤泥的矿物结构和重金属含量。在考虑以上变化因素基础上,结合重金属在水体与沉积物之间迁移的一般特点,做出填海活动使淤泥重金属发生释放迁移进入地下水的推论。
     (3)实验室采用国内外常用的Tessier顺序提取法,分析了填海区淤泥重金属元素结合形态,揭示了填海区重金属迁移的内部控制因素。假设残留态重金属在自然条件下不会释放,用有效相态含量之和来表征填海区淤泥中重金属的潜在迁移能力,其顺序为:Pb>Cu>Zn>Cd>Ni。
     (4)实验室模拟填海区条件,使用解吸实验方法,揭示影响填海区地下水重金属含量的关键环境因素。实验中发现填海区地下水淡化和淤泥氧化还原条件的变化是影响某些重金属迁移进入水体的重要因素,另外填料风化也会对地下水中重金属含量有所贡献。地下水逐步淡化会使淤泥中的Zn、V、W和Cr进入地下水的量增大;淤泥的氧化过程会使淤泥中的Zn、V、w、Cu释放量增大多;淤泥的还原状态会使Mn的释放量增大。
     (5)野外监测填海区地下水重金属含量变化,使用指数法和模糊数学评价法对填海区地下水重金属变化做出评价,发现重金属含量确实增高,环境质量向恶化方向发展,排出其他污染源的情况下,证明预测的成立。
     (6)根据实验和野外监测结果,总结填海区地下水重金属迁移的规律。填海区地下水中,锰、钒、铜、镍、钴含量的增加受淤泥氧化还原条件变化的影响;地下水淡化过程还控制钒、铜、镍、铬的释放。花岗岩填料也会释放一定量的锌、钴、锰、铜进入地下水。填海区淤泥中铅、镉、锌基本趋于稳定,不随填海活动的影响增加释放量。
     (7)对于重金属污染严重的填海区,可选择工程—化学—植物三联用的方法进行修复,对于污染轻微的填海区建议采用化学—植物联用方法。目前已建成的深港西部通道填海区发生重金属污染,则适合采用植物修复法。建议在填海区的景观设计中,考虑种植重金属超累积植物。除通常采用的芦苇、香蒲外,还可以根据填海区重金属污染源的特点和地下水以锰等为主的污染特征,选择针对性的植物,比如:商陆、美州商陆、东南景天、圆锥南芥、海州香薷和鸭趾草等。
Over the last 20 years, land reclamation has gained much popularity along coastal areas of China due to rapid development of industry and urbanization. While reclamation provides valuable land, it also creates various engineering, environmental and ecological problems in coastal areas. For continuable development, it need to understand more about the relationship between reclamation activities and environments, especially when the reclamation areas locate at estuary where had a thick layer marine mud at the sea bed. Mud is a kind of sediments. As kown, estuarine sediments are recognized as an important sink for a wide range of contaminants and nutrients. They can provide a record of the natural and anthropogenic inputs of contaminants into the aquatic environment. Heavy metals have a high affinity for fine-grained marine mud and are the key contaminants in estuarine sediments. The accumulation of heavy metals in mud can cause significant environmental risks in the surrounding areas. When the reclamation actives begin, usually the area to be reclaimed is drained first and some of the mud is air-dried for a few weeks before it is buried by fill. After reclamation, the terrestrial groundwater, which is relatively acidic and with high dissolved oxygen, will gradually displace the seawater, which is alkaline with high salinity. How dose the reclamation actives impact on the coastal environment. How dose the mobility of the heavy metals present? What are the right methods to prevention and cure the contaminated groundwater? Using land reclamation areas in Shenzhen as a case study, this paper aims to investigate how the reclamation actives impact on mobility of heavy metals between the mud and groundwater. Sequential extraction and desorption experiments were used in this study. Concentrations and speciation of heavy metals in the coastal areas were determined to examine the potential mobility of metals within mud-groundwater system inside the reclamation areas. Major creative outcome has been obtained as follows in this paper:
     (1) Aim at understanding the special environmental geology engineering problems such as that of large-scale reclamation, the interactional processes of fill material, mud and groundwater were studied in this dissertation. The environmental geology problems of reclamation were system analyzed, and test techniques, analysis theories and estimate methods were built up which were related to reclamation.
     (2)It were discussed that the disturbances to the groundwater and mud brought by reclamation engineering processes. The trend of the main physics and chemistry parameter of groundwater was concluded. Field survey confirms that the pH and EC of the groundwater in the reclamation site are much lower than the seawater. The reasons of the groundwater freshed were well illuminated. At the same time, the redox environments of marine mud were also changed during reclamation. Mineral structures of the marine mud were tested by scan electron microscope, and the concentrations of heavy metals in the mud were analyzed by atomic absorption spectrum. Considering all above factors including the general characteristics of heavy metals mobility, a forecast were deduced that the changes in the burial conditions of mud and the physical and chemical properties of the pore water in the mud may induce the release of some heavy metals in the mud.
     (3)To find out the ingenerate factor controlling the mobility of heavy metals, sequential extraction method was used to study the operationally determined chemical forms of five heavy metals(Cu, Ni, Pb, Zn and Cd) in the mud s-amples. If the residual fraction can be considered as an inert phase of the metal that cannot be mobilized, it is the other four forms of heavy metal that cause the noticeable changes in the concentration of heavy metals in mud. On the basis of the speciation of heavy metals, the mobility of metals have the following order: Pb>Cu>Zn>Ni>Cd.
     (4)In order to find out the key environmental factors that influence the mobility of heavy metal in the mud during reclamation, desorption experiments were carried out in the lab under the simulating conditions. It was found in the experiments that release of Cu, Mn, Ni, Co, Cr and V from the mud increased when changing the redox conditional of mud and levels of pH and EC in the overlying water.
     (5)Chemical analyses of groundwater samples collected from the reclamation sites reclaimed indicate that most of the heavy metals in groundwater are increased gradually with time. Fuzzy mathematics method and index number methods were used to evaluate the quality of groundwater in the reclamation area, and the result indicated the groundwater quality was worse. These results confirmed the forecast that heavy metals released from mud to the groundwater in the reclamation area, after other pollution sources were foreclosed by field survey in the study area.
     (6)The disciplinarians of heavy metal mobility were concluded according to the results of lab experiments and field survey. The relevant prevention and cure measures were selected to provide a reference. Botanical restoration was suggested to apply in the Shenzhen-Hongkong West Corridor reclamation area. Some kinds of plant were recommended, such as, PhytolaccaocinosaRoxb, Phytolacca americana L., Sedumalfredii Hance, Arabis Paniculata L. which have special capacity to absorb heavy metals.
引文
[1] Pernetta J. Elder D. Cross—etoral, Integrated Coastal Area Planning (CICAP): Guidelines and Principle for Coastal Area Development[M]. Gland, Switzerland: IUCN, 1993.
    [2] World Resources Institute Pilot Analysis of Globe Ecosystems: Coastal Eosystems[M]. Washington DC: WRI Publication, 2001.
    [3] 彭本荣,洪华生,陈伟琪,薛雄志,曹秀丽,彭晋平.填海造地生态损害评估:理论、方法及应用研究[J].自然资源学报:2005,20(5):714—725.
    [4] 陈吉余.开发浅海滩涂资源拓展我国的生存空间[J].中国工程科学:2000,2(3):27—31.
    [5] 徐皎.日本人造陆地利用方向的演化[J].世界地理研究:2000,9(3):43-46.
    [6] 尹鸿伟.日本填海的教训[J].中国社会导刊:维普资讯:http://www.cqvip.com
    [7] Jiao J J, C Leung, KP Chen, JM Huang, and RQ Huang, Physical and chemical processes in the subsurface system in the land reclaimed from the sea, in Collections of Coastal Geo-Environment and Urban Development, China Dadi Publishing House, Beijing, China. 2005, P399-407.
    [8] Guo Haipeng, Jiu J Jiao, Impact of Coastal Land Reclamation on Ground Water Level and the Sea Water Interface, Ground Water(in press), 2006.
    [9] Kouping Chen, Jiu J. Jiao, Jianmin Huang and Huang Runqiu.. Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environmental Pollution(in press), 2006.
    [10] 周洪涛.填海工程地基处理[J].地基处理:2002,13(4):29—43.
    [11] 陈杏明.爆炸排淤填石法在填海围地工程中的应用[J].爆破:2001,18(4):78—81.
    [12] 魏中秀.吹砂填海地质人工挖孔桩施工[J].山西建筑:2005,31(19):81—82.
    [13] 邱式中,袁芬.块石填海地区深基坑围护工程的设计与施工技术[J].建筑施工:2001,2:71—74.
    [14] 邓维刚,谢华裕.抛石填海夹杂淤泥质土地基高能级强夯处理[J].四川建筑科学研究:2000,26(2):39—41.
    [15] 邹维列,吴国高,安骏勇,肖海斌.强夯加固软土上覆填海砂层的试验研究[J].岩土力学,2003,24(6):983—986.
    [16] 张长生,江辉煌.深港西部通道填海及地基处理效果分析[J].地基处理:2006,17(62):16—22.
    [17] 朱伟,冯志超,张春雷,谢健.疏浚泥固化处理进行填海工程的现场试验研究[J].中国港湾建设:2005,5(139):27—30.
    [18] Yip, S. Y.. The Ecology of Coastal Reclamation in Hong Kong[D]: HongKong, University of Hong Kong, 1978.
    [19] Poon, S. M. Dredging and reclamation impact on marine environment in Deep Bay[D]: University of Hong Kong. 1997.
    [20] Gowda, K. Land Reclamation and Its Impact on Environment: A Case Study of Victoria Harbour[D]: HongKong, University of HongKong. 1996.
    [21] 倪晋仁,秦华鹏.填海工程对潮间带湿地生境损失的影响评估环[J].环境科学学报:2003,23(3):345—349.
    [22] 秦华鹏,倪晋仁.确定海湾填海优化岸线的综合方法[J].水利学报:2002,8:35—41.
    [23] 孙长青,王学昌,孙英兰,娄安刚.填海造地对胶洲湾污染物输运影响的数值研究[J],海洋科学:2002,26(10):47—50.
    [24] 刘建,黄明华,娄鹏.深圳湾填海工程对出海河流泄洪能力影响的研究[J],水利水电技术:2006,37(2).
    [25] Healy M G. European coastal management: An introduction[A]. In: Healy M G, Dody J P. Directions in European Coastal Management[C]. Tresaith, Cardigan, U. K: Samara Publishing, 1995: 1-6.
    [26] Smith K, Ward R. Floods—Physical Processes and Human Impacts[M]. Chichester, England: Wiley, 1998. P382
    [27] Jiao, J. J.. Modification of regional groundwater regimes by land reclamation[J], Hong Kong Geologist, 2000, 6: 29-36
    [28] Jiao, J. J. and Malone, A.. An hypothesis concerning a confined groundwater zone in slopes of weathered igneous rocks, in Symposium on Slope Harzards and Their Prevention, 8-10 May, 2000, Hong Kong, P. R. China, 2000, p165-170
    [29] Mahmood, H. R. and Twigg, D. R., Statistical analysis of water table variations in Bharain[J], Quarterly Journal of Engineering Geology, 1995, 28: 63-64.
    [30] Jiao, J. J. and Nandy, S., Preliminary discussion on the impact of extensive urbanization on groundwater regimes in coastal areas, The 3rd Two Coasts—Three regions & World Chinese Conference on Geological Sciences, December 19-22, 2001, Geological Society of Hong Kong, 2001: 526-528.
    [31] Jiao, J. J. and Nandy, S.. Confined groundwater zone and slope instability in hillsides of weathered igneous rock in Hong Kong[J]. Hong Kong Geologist: 2001, 7: 31-37.
    [32] Jiao, J. J., Nandy, S. and Li, H., Analytical studies on the impact of reclamation on groundwater flow[J]. Ground Water, 2001, 39(6): 912-920.
    [33] Yim, W. W. S., 1991, Relative sea-level change and long term groundwater settlement in coastal land reclamation—their assessment and future monitoring, Reclamation—Important current issues, Proceedings of the seminar organized by the Geotechnical divisions of Hong Kong Institute of Engineers, on 14th May 1991, edited by Philip Blacker.
    [34] George, D. J.. Rising groundwater: a problem of development in some areas of the Middle East, In McCall, G. J. H., et al.(eds), Geohazards: Natural and Man-Made, Chapman and Hall, London, 1992: 171-182.
    [35] 刘育,龚凤梅,夏北成.关注填海造陆的生态危害[J].环境科学动态:2003,4:25-27
    [36] 袁旭音,刘红樱,许乃政,郑荣华,王爱华.苏北沿海沉积物的化学组成和重金属特征资[J],资源调查与环境:2003,24(3):204—210.
    [37] 廉雪琼.广西近岸海域沉积物中重金属污染评价[J].海洋环境科学:2002,21(313):39—42.
    [38] 刘芳文,颜文,王文质,古森昌,等.珠江口沉积物重金属污染及其潜在生态危害评价[J].海洋环境科学:2002,21(3):34-38.
    [39] 张宇峰,武正华,王宁,王晓蓉.海南南岸港湾海水和沉积物重金属污染研究[J].南京大学学报:自然科学版,2003,39(1):81—90.
    [40] 胡恭任,于瑞莲.泉州安海湾海域沉积污染物及其防治措施初探[J].福建师范大学学报:自然科学版,2005,21(3):43—47.
    [41] 秦延文,孟伟,郑丙辉,张雷,苏一兵.渤海湾天津段潮间带沉积物柱状样重金属污染特征[J].环境科学:2007,27(2):268—273
    [42] Shellingberg K, Leuenberg C, Schwarzebach R P. Sorption of chlorinated phenols by natural sediments and agrifer materials[J]. Environ Sci Technol, 1984, 18: 652~657
    [43] Cohen Y, Pollutants in a multimedial[M]. Plenum Press, 1986.
    [44] U.弗斯特纳,G.T.W.维特曼.水环境的金属污染[M].北京:海洋出版社,1988.
    [45] 廖自基.微量元素的环境化学和生物效应[M].北京:中国环境科学出版社,1992.
    [46] 金相灿等.沉积物污染化学[M].北京:中国环境科学出版社,1992.
    [47] 宋金明.中国近海沉积物—海水界面化学[M],北京:海洋出版社,1997.
    [48] Kabata-Pendias A, Pendias H.. Trace Elements in Soils and Plants[M]. Boca Raton, Ann Arbor, London: CRC Press, 1992.
    [49] Tessier, A., Campbell, P. G. C., Bisson, M., Sequential extraction procedure for the speciation of trace metals. Analytical Chemistry: 1979, 51(7): 844-851.
    [50] Rauret Gemma. Extraction procedures for the determination of heavy metals in contaminated soil and sediment[J]. Talanta, 1998, 46: 449~455.
    [51] 王贵,张丽洁.海湾河口沉积物重金属分布特征及形态研究[J].海洋地质动态:2002,18(12):1~5.
    [52] 王亚平,潘小菲,岑况,等.汞和镉在土壤中的吸附和运移研究进展[J].岩矿测试:2003,22(4):277~283.
    [53] 廖敏,黄昌勇,谢正苗.pH对镉在土水系统中迁移和形态的影响[J].环境科学学报:,1999,19(1):81~86.
    [54] 廖敏,黄昌勇,谢正苗.施加石灰降低不同母质土壤中镉毒性机理研究[J].农业环境保护:1998,17(3):101~103.
    [55] 丁疆华,温琰茂,舒强.土壤环境中镉、锌态转化的探讨[J].城市环境与城市生态:2001,14(2):47~49.
    [56] Andersson A. Mercury in Soils[A]. In; The Biogeochemistry of Mercury in the Environment[M]. Amsterdam: Elsevier. 1979: 79~112.
    [57] Lion L W, A ltmann R S, Leckle J O. Trace Metal Adsorption Characteristics of Estuarine Particulate Matter: Evaluation of Comtributions of Fe/Mn Oxide and Organic Surface Coatings[J]. Environmental Science & Technology: 1982, 16: 660~666.
    [58] Shenzhen Research and Design Institute, China Academy of Railway Sciences, Report of Monitoring Programme(North Section) of Reclamation and Foundation Engineering of the Hong Kong Shenzhen Western Corridor. 2004.
    [59] Wood, J. M.. Biological cycles for toxic elements in the environment. Science: 1974, 183: 1049-1052.
    [60] Schubel, J. R. and Kennedy, V. S., 1984. The estuary as a filter: an introduction. In: Kennedy, V. S.(Ed.), The Estuary as a filter. Academic, Orlando, FL, USA, pp.1-11.
    [61] Morillo, J., Usero, J. and Gracia, I.. Heavy Metal distribution in marine sediments from Southwest coast of Spain[J]. Chemosphere. 2004. 55: 431-442.
    [62] Cox, M. E. and Preda, M.. Trace metal distribution within marine and estuarine sediments of Western Moreton Bay, Queensland, Australia: Relation to Land Use and Setting[J].. Geographical Research: 2005, 43(2): 173-193.
    [63] Tam, N. F. Y and Wong, Y. S.. Spatial variation of metals in surface sediments of Hong Kong mangrove swamps[J]. Environmental Pollution: 2000, 110: 195-205.
    [64] 杨忠芳,朱立,陈岳龙.现代环境地球化学[M].北京:地质出版社,1999.
    [65] 戴树桂.环境化学[M],北京:高等教育出版社,1997.
    [66] 郑喜坤,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境:2002,11(1):79~84.
    [67] 袁敬,傅立新,余学春,等.北京市控制大气污染四期紧急措施环境有效性分析[J].环境科学:2002,23(3):9~13.
    [68] 黄健敏、王应红、龙柄清.城市机动车尾气污染与控制[J],甘肃环境研究与检测:2002,15(2):131—135.
    [69] 刘芬,刘文华,娄涛,等.土壤镉污染与治炼烟气的相关性研究[J].湘潭矿业学院学报:2003,3..
    [70] 杨水秀,高师昀.贵阳市大气铅镉镍污染现状初探[J].地质地球化学:2002,30(2):79~82.
    [71] 张辉.南京地区土壤沉积物中重金属形态研究[J].环境科学学报:1997,17(3):346~351.
    [72] 周国华,马生明,喻劲松,等.土壤剖面元素分布及其地质、环境意义[J].地质与勘探:2002,38(6):70~75.
    [73] 郑武.广西桂东北地区农业土壤环境若干重金属元素背景值的调查[J].农村生态环境:1993,(4):42.
    [74] 唐诵六.南京地区土壤中重金属元素的概率分布[A].见:刘卓澄编,环境中若干元素的自然背景值及其研究方法[C].北京:科学出版社,1982,9~15.
    [75] 杨学义.南京地区土壤背景值与母质的关系[A].见:刘卓澄编,环境中若干元素的自然背景值及其研究方法[C],北京:科学出版社,1982,16~20.
    [76] 王祖伟,徐利淼,张文具.土壤微量元素与人类活动强度的对应关系[J].土壤通报:2002,33(4):303~305.
    [77] 丛艳国,魏立华.土壤环境重金属污染物来源的现状分析[J].现代化农业:2002,(1):18~20.
    [78] Wang M. J.. Land application of sewage sludge in China[J], The Science of Total Environment,: 1997, 197: 149~160.
    [79] 袁一傲,张玉福,孙艳秋,等.沈阳张士灌区镉的环境污染与人群健康影响的研究[J].中国公共卫生学报:1992,11(4):225~228.
    [80] 吴燕玉,陈涛,张学询.沈阳张士灌区镉污染生态的研究[J].生态学报,1989,9(1):21~26.
    [81] 成杰民,郑绍建.近矿区农田镉污染的调查与评价[J].南京农业大学学报:1997,20(1):43~47.
    [82] 方满,刘洪海.武汉市垃圾堆放场重金属污染调查及控制途径[J].中国环境科学:1998,8(4):54~59
    [83] 潘海峰.铬渣堆存区土壤重金属污染评价[J].环境与开发,1994:9(2):268~270.
    [84] 张辉,马东升.城市生活垃圾向土壤释放重金属研究[J].环境化学:2001,20(1):43~47.
    [85] MARTIN A C. Contamination by heavy metals in soils in the neighbourhood of a discarded vehic[J]. Sci. Total Environ, 1998, 212(2/3): 145~152.
    [86] 郑喜坤,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境:2002,11(1):79~84.
    [87] 吴双桃,吴晓芙,胡曰利,等.铅锌冶炼厂土壤污染及重金属富集植物的研究[J].生态环:2004,13(2).156~157,160.
    [88] 王新,周启新,任丽萍.矿区农产品质量及土壤—岩石界面重金属行为特性的研究[J].农业环境科学学报:2004,23(3):459~463.
    [89] 陈华勇,欧阳建平,等.大冶有色冶炼厂附近农田镉污染的现状于治理对策[J].土壤:2003,35(1):76-79,82.
    [90] Chen, K. P., Jiao, J., 2006. Heavy metal concentrations and mobility in sediment and groundwater in coastal reclamation areas: a case study in Shenzhen, under review.
    [91] 沈照理、朱宛华、钟左燊.水文地球化学基础[M].北京:地质出版社,1993.
    [92] 深圳市环境保护检测站官方网站http://www.szems.gov.cn/
    [93] http://www.googlemap.com
    [94] 利锋,韦献革,黄雁云,任露陆,温琰茂,余光辉,何树悠,张磊,骆海萍.佛山水道疏浚底泥处置方案选择[J].安徽农业科学:2006,34(8):160—1662.
    [95] 朱敏,王国祥,王建,陈灿.南京玄武湖清淤前后底泥主要污染指标的变化[J].南京师范大学学报:工程技术版,2004,4(2):66—69.
    [96] 李玉娜,邵秘华.邱春霞锦州港疏浚沉积物中重金属的吸附和解吸[J].大连海事大学学报:2005,31(2):64—67.
    [97] Salomons, W., Pooij, N. M. de, Kerdijk, H., Briil, J.. Sediments as a source for contaminants?[J]. Hydrobiologia: 1987, 149: 13-30.
    [98] EPD. Marine Water Quality in Hong Kong. Environmental Protection Department, Hong Kong: Hong Kong Government Printer, 1992.
    [99] Lo, C. K., and Fung, Y. S., Heavy metal pollution profiles of dated sediment cores from Heben Haven, Hong Kong[J], Water Research, 1992, Vol. 26: 1605-1619.
    [100] 中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [101] 滕彦国,倪师军,庹先国等.攀枝花地区河流沉积物的重金属污染研究[J].长江流域资源与环境:2003,12(6):569—573.
    [102] 刘文新,栾兆坤,汤鸿霄.乐安江沉积物中金属污染的潜在生态风险评价[J].生态学报:1999,19(2):206—211.
    [103] Allen H E, Hansen D J. The importance of trace metal speciation to water quality criteria[J]. Water Environment Research, 1996, 68(1): 42—54.
    [104] 张鑫,周涛发,袁峰,等.铜陵矿区水系沉积物中重金属存在形态特征研究[J].地球科学进展,2004,19(Sup):461—466.
    [105] 张鑫,周涛发,杨西飞,殷汉琴,肖正辉.河流沉积物重金属污染评价方法比较研究[J].合肥工业大学学报:自然科学,2005,28(11):1419—1423.
    [106] 柴世伟,温琰茂,韦献革,张云霓,董汉英,陈玉娟.珠江三角洲主要城市郊区农业土壤的重金属含量特征[J].中山大学学报:自然科学版2004,43(4):90-94.
    [107] 柴世伟,温琰茂,张亚雷,赵建夫.广州市郊区农业土壤重金属污染评价分析环境[J]科学研究:2006,19(4):138-142.
    [108] 陈怀满等.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002.
    [109] Tessier, A., Campbell, P. G. C. 1987. Partitioning of trace metals in sediments: Relationships with bioavailality. Hydrobilogia. 149, 43-52.
    [110] 黄健敏,黄润秋.深港西部通道填海区淤泥重金属化学形态分析[J].矿物学报:2007,27(1):83-89.
    [111] Lau S S S, Chu L M. Contamination release from sediments in a coastal wetland[J]. Water Research: 1999, 33(4): 909-918.
    [112] Presley BJ. Trefry JH. 1980. Heavy metal inputs to Mississippi delta sediments. A historical view[J]. Water Air Soil Poll.. 13: 481-494
    [113] Agata Kot, Jacek. The role of speciation in analytical chemistry[J]. Trends in Anal. Chem: 2000, 19(2-3): 69-79.
    [114] Templeton D. M., Ariese F., Cornelis R, et al., IUPIC guidelines for terms related to speciation of trace elements[J]. Pure Appl, Chem, 2000, 71(8): 1453-1470
    [115] 邵孝侯,刑光熹.连续提取法区分土壤重金属元素形态的研究及应用[J].土壤学进展,1994,22(3):1-2.
    [116] 王学锋,杨艳琴.土壤-植物系统重金属形态分析和生物有效性研究进展[J].化工环保,2004,24(1):1-5.
    [117] Li, X. D., Coles, Barry J., Ramsey, Michael H., Thornton, Iain, 1995. Sequential extraction of soil for multi element analysis by ICP-AES. Chemical Geology 124, 109-123.
    [118] 陈世俭.土壤铜形态及有机质的影响[J].长江流域资源与环境,1995,4(4):367-369.
    [119] 李域庆,陈玲.上海化学工业土壤重金属元素形态分析[J].生态环境:2004,13(2):154-155.
    [120] 魏俊峰,大清等.广州城市水体沉积物中重金属形态分布研究[J].土壤与环境:1999,2(1):10-14.
    [121] 杨宏伟,徐爱菊等.黄河(清水河段)沉积物中锰、钴、镍的化学形态研究[J].环境科学研究:2001,14(5):20-22.
    [122] Tretry J. H., Metz S. 1985. A decline in lead transport by the Mississippi[J], Rir. Sci.. 230: 439-441
    [123] Presley BJ. Trefry JH. 1980. Heavy metal inputs to Mississippi delta sediments. A historical view[J]. Water Air Soil Poll.. 13: 481-494
    [124] Hacanson L. An ecological risk index for aquatic pollution control—A sedimentological approach[J]. Water Research: 1980, 14: 975—1001.
    [125] Stumm, W., Morgan, J. J., Aquatic chemistry: An introduction emphasizing chemical equilibria in natural water. 2nd ed. John Wiley & Sons, New York. 1981.
    [126] Ahumada, I., Mendoza, J., Navarrete, E., Ascar, L., Sequential extraction of heavy metals in soils irrigated with wastewater[J]. Communications in Soil Science and Plant Analysis 1999. 30, 1507-1519.
    [127] Howari, F. M., Banat, K. M.. Assessment of Fe, Zn, Cd, Hg, and Pb in the Jordan and Yarmouk River sediments in relation to their physicochemical properties and sequential extraction characterization[J]. Water Air Soil Pollution: 2001. 132 (1-2)., 43-59.
    [128] Banat, K. M., Howari, F. M., Al-Hamad, A. A.. Heavy metals in urban soils of central Jordan: Should we worry about their environmental risks?[J]. Environmental Research, 2005: 97,: 258-273.
    [129] 翁焕新,沈忠悦,陈建裕,张兴茂,钟国林.沿海表层沉积物中重金属的有效结合态[J].地质科学,2002,37(2):243-252.
    [130] 刘英俊,曹励明,李兆麟,王鹤年,储同庆,张景荣.元素地球化学[M].北京:科学出版社,1984:376—377.
    [131] 鲁安怀.矿物学研究从资源属性到环境属性的发展[J].高校地质学报:2000.6(2):245—251.
    [132] Liang, Y., Wong, M. H.. Spatial and temporal organic and heavy metal pollution at Mai Po Marshes Nature Reserve[J]. Hong Kong Chemosphere: 2003. 52, 1647-1658.
    [133] Meyer J S, Davidson W, Sundby B, Otis J T, Lauren DJ, Forstner U, Hong J, Crosby D G.. The effects of variable redox potentials, pH, and light on bioavailability in dynamic water-sediment environments[A]. Landrum P F, Bergman H L, Benson W H Bioavailability—Physical, Chemical, and Biological Interactions[C]. Boca Raton: Lewis Publ, 1994: 155-170.
    [134] Jianmin Huang, Runqiu Huang, Jiu J. Jiao, Kouping Chen Speciation and Mobility of Heavy Metals in Mud in Coastal Reclamation Areas in Shenzhen, China[J]. Environmental Geology (.in press): 2007.
    [135] Markiewicz-Patkowska, J., Hursthouse, A. and Przybyla-Kij, H., The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit[J]. Environment International: 2005, 31: 513-521.
    [136] Salomons, W., Forstner, U., Metals in the Hydrocycle[M]. Springer, Berlin. 1984.
    [137] Kharkar, D. P., Turekian, K. K., Bertine, K. K.: Stream supply of dissolved silver, molybdenum, antimony, selenium, chromium, cobalt, rybidium, and cesium to the oceans[J]. geochim. Cosmochim. 1968Acta32: 285-298.
    [138] Rohatzi, N. K., Chen, K. Y.: Fate of metals in wastewater discharge to ocean[J]. Environ. Eng. Div. ASCE: 11976, 102: 627-685
    [139] 陈静生,周家义主编.中国水环境重金属研究[M].北京:中国环境科学出版社,1992。
    [140] 齐文启,陈亚蕾.水中Cu~(2+),Zn~(2+)的Mn2~+-APDC共沉淀原子吸收光谱仪的测定[J].上海环境科学:1991,10(11):25—27.
    [141] 苏耀东,李静,黄燕,陈龙武.应用内标的APDC-Cu(ⅱ)快速共沉淀分离富集和原子吸收光谱测定食盐中的铅[J].光谱学与光谱分析,2006,26(3):564—566.
    [142] 刘英俊,曹励明.元素地球化学导论[M].北京:地质出版社,1987:154.
    [143] 秦樊鑫,傅文军,张松.超声波溶样、APDC-MIBK萃取石墨炉原子吸收法测定土壤中有效钼的研究[J].土壤通报:2006,37(2):343—345.
    [144] 肖红玺,程详圣等.共沉淀分析富集原子吸收光谱法测定氯化物中痕量镉[J].理化检验:化学分册,2003,39(1):18—19,25。
    [145] 廖自基.微量元素化学与生物效应[M].北京:中国环境科学出版社,1992.
    [146] 丁桑岚等.环境评价概论[M],北京:化学工业出版社教材出版中心,2002.
    [147] 杨海燕,夏正楷.模糊数学在地下水资源污染评价中的应用[J],水土保持研究.200512(4).
    [148] 潘乃礼.水文地质常用数理统计方法[M].北京:原子能出版社.1989.
    [149] 万新南.确定型模糊联立水质评判法[J].成都地质学院学报:1991,18(4):127-134.
    [150] Matthess. G.. The Properitie of Groundwmer[M]. John Wiley and Sons, N. Y., 1982
    [151] 王开章.城市地下水水源地的防护与治理措施地下水[J].地下水,2000,3
    [152] 李纯纪.平定县地下水污染现状分析及防治对策[J].山西水利科技,2003,3
    [153] 齐水冰,罗建中.固定化微生物技术处理废水[J].上海环境科学,2002,21(3):185.
    [154] 杨正亮,冯贵颖,呼世斌,郑雪斌.水体重金属污染研究现状及治理技术[J].干旱地区农业研究:2005,23(1):219—222.
    [155] 王华,冯启言,郝莉莉我国底泥重金属污染防治[J].污染防治技术:2004,17(1)
    [156] 薛晓菲,崔建国,地下水环境修复技术进展[J]科技情报开发与经济:2006,16(6):148—149
    [157] 金海玲,胡恭任.海洋沉积物中重金属污染防治研究进展[J].地球与环境:2004,32(3—4):7-13.
    [158] Soo—Sam Kim. Application of the electmkinetie-Fenton process for the remediation of Kaolinite contaminated with phenanthrene[J]. Journal of Hazardous Materials, 2005, B118: 121—131.
    [159] J Richard E Saichek. Krishra R Reddy. Elect of pH control at the anode for eleetrokinetic removal of phenanthrene from Kaolin soil[J]. Chemosphere. 2003. 51: 273—287.
    [160] 周东美,仓龙,邓昌芬.络合剂和酸度控制对土壤铬电动过程的影响[J].中国环境科学:2005,25(1):10-14.
    [161] J Suer P. Speciation and transport of heavy metals and maeroelement during electroremediation[J]. Environ Sci Technol. 2003. 37(1): 177—181.
    [162] 罗启仕,王慧,张锡辉,等.土壤无机离子在非均匀电场作用下的迁移[J].中国环境科学:2004,24(5):519—523.
    [163] 王业耀,孟凡生:铬(Ⅵ)污染高岭土电动修复实验研究[J].生态环境:2005,14(6):855-859.
    [164] BAKER A J M, BROOKS R R. Terrestrial higher plants which hyperaccumulate metallic elements——a review of their distribution, ecology and phytochemist y[J]. Biorecovcry, 1989, (1): 81—126.
    [165] KUMAR PBAN, DUSHENKOV V, MOTTO H, et al. Phyto—extraction: the use of plants to remove heavy metals from soils[J]. Environ Sei Technol: 1995, 29: 1232—1238.
    [166] 蒋先军,骆永明,赵其国.重金属污染土壤的植物修复研究[J].土壤:2000,32(2):71—79.
    [167] PICKERING I J, PRINCE R C, GEORGE M J, et al. Reduction and coordination of arsenic in Indian mustard[J]. PlantPhysiol, 2000, 122(4): 1171—1178.
    [168] Say H, Christopher J. 1nterrated in situ soil remediation technology: The Lasaglla Process[J]. Environ. Sci. TechnoL: 1995, 29: 2528—2534.
    [169] 顾继光,林秋奇,胡韧,诸葛玉平,周启星.土壤一植物系统中重金属污染的治理途径及其研究展望[J].土壤通报:2005,36(1):128—132
    [170] 薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物—商陆[J]._生态学报,2003,23(5):935—937.
    [171] 聂发辉.镉超富集植物商陆及其富集效应[J].生态环境:2006,15(2):303-306.
    [172] 铁柏清,袁敏,唐关珍.美洲商陆(Phytolacca americana L.)一种新的Mn积累植物[J].农业环境科学学报:2005,24(2):340—343
    [173] Yang X, Long X X, Ni W Z, et al. Sedum alfredii H: A new Zn hyperaccumulating plant first found in China[J]. Chirwse Sci Bull: 2002, 47(19): 1634-1637.
    [174] 汤叶涛,仇荣亮,曾晓雯,方晓航.一种新的多金属超富集植物—圆锥南芥(Arabis paniculata L.)[J]中山大学学报:自然科学版,2005,44(4):135-136.
    [175] 韩怀芬,蒲凤莲,裘娟萍.生物法修复铬污染土壤的研究[J].能源环境保护:2003:17(2):7-9.
    [176] 南京大学植物资源网 http://www.nju.edu.cn/njuc/plantsweb/images
    [177] 植物通 http://www.plants.ac.cn/latin/Crassulaceae/Sedum-alfredii-Hance.htm
    [178] 中草药大典 http://www.yn.edu.cn/yd/quancao/cao62.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700