用户名: 密码: 验证码:
采用多种策略提高长春花萜类吲哚生物碱含量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
夹竹桃科药用和观赏植物长春花(Catharanthus roseus (L.) G. Don)体内含有长春质碱(Catharanthine)、文多灵(Vindoline)、阿玛碱(Ajmalicine)、长春碱(Vinblastine)和长春新碱(Vincristine)等130种以上具有抗各类肿瘤活性的萜类吲哚生物碱(TIAs, Terpenoid indole alkaloids)。野生长春花中由于这些生物碱含量普遍较低,长春花的毛状根和悬浮细胞中由于无文多灵合成的相关酶,导致不能合成最重要的具有抗肿瘤活性的二萜类吲哚生物碱长春碱和长春新碱。目前国内外大多通过化学半合成法合成长春碱和长春新碱这两种二萜类生物碱,但由于这些生物碱具有复杂的化学结构,导致人工合成方法难度大、成本高、产量低,使得长春碱等活性价值高的生物碱大规模商业化受到了极大的限制,为此获得高含量的TIAs的长春花株系显得十分迫切。
     本文从多方面研究提高长春花体内TIAs的含量,包括利用代谢工程策略和染色体加倍技术获得生物碱高产量的长春花植株。同时研究了花期对长春花叶片施用植物生长调节剂,以获得提高长春花生物碱含量的最佳生长调节剂组合,用于指导长春花的产业化生产。研究取得的结果如下:
     1)构建了含长春花TIAs生物合成途径关键酶基因CrSTR和CrPRX1的单基因过量表达载体(pCAMBIA2300-STR,pCAMBIA2300-PRX1),采用课题组建立的长春花遗传转化方法转化长春花下胚轴,获得了11株转CrPRX1基因的长春花植株、23株转CrSTR基因的长春花植株;Southernblot分析表明这些过量表达的内源基因整合到转基因长春花植株基因组中;Real-time PCR分析表明这些内源基因在转基因长春花植株中表达量有所增加;生物碱含量的HPLC分析显示,这些转目的基因长春花植株中文多灵、长春质碱以及长春碱等重要生物碱含量得到了显著提高。其中,转CrSTR基因的长春花植株中文多灵和长春质碱含量最高分别较对照(非转基因植株)提高了1.94、1.56倍。单转CrPRX1基因的长春花植株中长春碱含量最高为对照的2.88倍。
     2)通过秋水仙素诱导长春花种子获得的植株,经流式细胞仪检测7.66%为四倍体植株,秋水仙素诱导长春花四倍体的最佳方案是0.2%的秋水仙素处理长春花种子24小时,该处理四倍体诱导率达到30%;四倍体长春花植株的气孔等形态指标较野生长春花有一定的差异;Real-time PCR分析结果表明,长春花四倍体植株的TIAs代谢途径的部分基因表达量较对照(同样经秋水仙素处理的植株)有显著提高;HPLC分析表明四倍体植株的文多灵、长春质碱和长春碱含量较对照植株分别提高了1.31倍、1.89倍和1.23倍。
     3)花期用植物生长调节剂组合处理长春花叶片,结果表明:水杨酸(0.1mM)+乙烯利(0.1mM)、乙烯利(0.1mM)+矮壮素(0.1mM)、水杨酸(0.1mM)+矮壮素(0.1mM)和水杨酸(0.1mM)+乙烯利(0.1mM)+矮壮素(0.1mM)处理导致文多灵、长春质碱和长春碱三种生物碱含量有一定的提高;水杨酸(0.1mM)+乙烯利(0.1mM)+矮壮素(0.01mM)和水杨酸(0.1mM)+乙烯利(0.1mM)+矮壮素(1.0mM)的使用文多灵和长春质碱的含量得到了显著的提高,对长春碱含量却没有影响;水杨酸(0.1mM)+乙烯利(0.1mM)、乙烯利(0.1mM)+矮壮素(0.1mM)和水杨酸(0.1mM)+乙烯利(0.1mM)+矮壮素(0.1mM)能显著提高长春花植株中长春碱的含量,分别达到对照处理的209%(处理后48h)、246%(处理后48h)和213%(处理后24h);与单个生长调节物质处理相比,组合处理可更大幅度地提高长春花TIAs的含量。
The Apocynaceae Vinca plant Catharanthus roseus (L.) G. Don is amedicinal and ornamental plant. More than130kinds of terpenoid indolealkaloids with anti-tumor activity have been isolated and identified in it,such as catharanthine, vindoline, ajmalicine, vinblasitne and vincristine.However, the contents of most alkaloids are low and the most valuabledimeric indole alkaloids in C. roseus, vinblastine and vincristine areimpossible to be yielded by hairy root culture and suspend cell culturesystems, because of lacking some enzymes related to vindoline biosynthsisin them. At present, the chemical semi-synthetic method is normallyemployed to produce more vinblastine and vincristine based on theextraction of relatively higher abundance of vindoline and catharanthine innatural C. roseus. Commercial production of important TIAs is very difficult such as vinblastine and vincristine by chemical synthesis due to thecomplexity of their chemical structures, high-cost and low-output forsynthesis. Therefore, it is necessary and urgent to find more efficient waysto improve the contents of important TIAs in C. roseus.
     In this study, many ways on how to improve the contents of TIAs in C.roseus had been studied. They included over-expressing the key enzymegenes which involved in the TIAs biosynthetic pathway, CrPRX1andCrSTR in C. roseus plants by Agrobacterium tumefaciens-mediatedtransformation system, inducing tetraploid plants which have high contentsof TIAs by colchicine, and the plant growth regulator combinations applyingon the leaves of C. roseus during flower period had also been studied. Theresults are as follows:
     1) Monovalent expression vectors (pCAMBIA2300-STR, pCAMBIA2300--PRX1) containing the rate-limiting enzyme genes in the TIAs biosyntheticpathway in C. roseus, STR and PRX1, were constructed. Through sonicationassisted Agrobacterium tumefaciens-mediated genetic transformationsystem,11independent transgenic C. roseus plants containing PRX1geneand23independent transgenic C. roseus plants containing STR gene wereobtained. The genes which were integrated in the genomes of transgenic C.roseus plants were verified by southern blot. The tranformants were further analyzed by real-time PCR, and the results indicated that the genes wereover-expressed in transgenic C. roseus plants. The contents of three TIAs asvindoline, catharanthine and vinblastine in transgenic C. roseus plants weredetermined by HPLC, and high TIAs-yielding plants were screened out fromthese transgenic plants. Compared to the control (non-transgenic plants), thecontents of the TIAs such as vindoline, catharanthine and vinblastine intransgenic C. roseus plants were significantly enhanced, with the highestover-expressing STR gene containing more1.94-fold of vindoline,1.56-foldof catharanthine and the highest over-expressing PRX1gene containing2.88-fold of vinblastine as the control.
     2) The tetraploid plants of Catharanthus roseus (L.) G. Don was obtained bycolchicine induction from seeds explants, and the ploidy of the plants wasidentified by flow cytometry. The optimal treatment is0.2%colchicinesolution treated for24hours and the induction rate reaches up to30%.Compared with morphological characteristics and growth habits betweentetraploids and the control, we found that tetraploids of C. roseus had largerstoma and more branches and leaves. Real-time PCR results showed that theexpression of enzymes involved in terpenoid indole alkaloids biosynthesispathway had increased in the tetraploid plants. HPLC analysis showedtetraploidization could increase the contents of terpenoid indole alkaloids in C. roseus. Compared to the control (diploid plants which also treated withcolchicine), the contents of the TIAs such as vindoline, catharanthine andvinblastine in tetraploid C. roseus plants were significantly enhanced. Theywere increased1.31-fold,1.89-fold and1.23-fold respectively.
     3) The effects of plant growth regulator combinations on the contents ofvindoline, catharanthine and vinblastine were investigated by short-termspray on an ornamental and medicinal plant Catharanthus roseus during theblooming period for commercial use. The results showed the combinationgroups such as ethylene (0.1mM)+chlormequat chloride (0.1mM),salicylic acid (0.1mM)+chlormequat chloride (0.1mM) and salicylic acid(0.1mM)+ethylene (0.1mM)+chlormequat chloride (0.1mM) resulted ina significant increase of the three alkaloids contents. The combinationgroups salicylic acid (0.1mM)+ethylene (0.1mM)+chlormequat chloride(0.01mM) and salicylic acid (0.1mM)+ethylene (0.1mM)+chlormequatchloride (1.0mM), affected vindoline and catharanthine contents but had noeffect on vinblastine. Among the combination treatments, salicylic acid (0.1mM)+ethylene (0.1mM), ethylene (0.1mM)+chlormequat chloride (0.1mM) and salicylic acid (0.1mM)+ethylene (0.1mM)+chlormequatchloride (0.1mM) could significantly increase the vinblastine content by209%at48h,246%at48h and213%at24h respectively. Thus compared to the single PGRs treatments, the combination treatments increase alkaloidaccumulations more effectively.
引文
[1]唐中华,于景华,杨逢建,等.植物生物碱代谢生物学研究进展.植物学报,2003,20(6):696-702.
    [2]肖春桥,张华香,高洪,等.促进植物细胞培养生产次生代谢物的几种途径.武汉化工学院学报,2005,27:28-31.
    [3]李永丽,周洲,李科友.细胞培养生产药用次生代谢物研究进展.安徽农业科学,2006,34:219-221.
    [4]赵淑娟,刘涤,胡之壁.植物次生代谢基因工程.中国生物工程杂志,2003,23:52-56.
    [5]陈晓亚,刘培.植物次生代谢的分子生物学及基因工程.生命科学,1996,8:8-11.
    [6]王莉,史玲玲,张艳霞,等.植物次生代谢物途径及其研究进展.武汉植物学研究,2007,25:500-508.
    [7]刘素彦.中药中生物碱类化合物的药代动力学研究进展.河北医药,2006,28:124-125.
    [8]黄振钨,董杰,曾晶,等.不同ER-β基因型绝经妇女补充大豆异黄酮和钙后血脂的变化.卫生研究,2011,40:280-282.
    [9]佟铁光.黄酮类化合物的构效关系研究纂要.中医药学刊,2005,23:357-358.
    [10] Rao SR, Ravishankar GA. Plant cell cultures: chemical factories of secondarymetabolites. Biotechnology Advances,2002,20:101-153.
    [11]王丹,王振月,王宗权,等.药用植物次生代谢产物生产途径的研究概述.中国医药信息,2008,25:29-32.
    [12]陈晓亚.植物次生代谢研究.世界科技研究与发展,2006,28:1-4.
    [13] Hashimoto T, Yamada Y. New genes in alkaloid metabolism and transport. Curr.Opin. Biotechnol.,2003,14(2):163-168.
    [14] Wink M. Annual plant reviews, functions and biotechnology of plant secondarymetabolites,2nd edition. Sheffield Academic Press, USA,2011:1-16.
    [15]刘天伟,屈凌波,相秉仁.青蒿素类抗疟药的进展.中国医药导刊,2003,5:399-401.
    [16]王实强,首弟武.高效毛细管电泳法测定罂粟壳中生物碱的含量.色谱,1997,15:438-439.
    [17] Su Z, Lee HW, Kim CK. Theoretical investigation on mechanism of asymmetricmichael addition of malononitrile to chalcones catalyzed by cinchona alkaloidaluminium(iii) complex. Org. Biomol. Chem.,2011, Jul28.
    [18] Cuong NV, Hsieh MF, Huang CM. Recent development in nano-sized dosage formsof plant alkaloid camptothecin-derived drugs. Recent Pat Anticancer,2009,4:254-61.
    [19] Verpoorte R, van der Heijden R, Van Gulik WM. Alkaloids. San Diego7AcademicPress, California,1991.
    [20]祖元刚,罗猛,牟瑶松,等.长春花生物碱成分及其药理作用研究进展.天然产物研究与开发,2006,18(2):325-329.
    [21] Cone NJ, Miller R, Neuss N. Alkaloids of Vinca rosea Linn.(Catharanthus roseus G.Don). XV. Analysis of vinca alkaloids by thin-layer chromatography. J. Pharm. Sci..1963,52:688-692.
    [22] Samuelsson G. Drugs of natural origin. A textbook of pharmacognosy,4th edn.Swedish Pharmaceutical Press, Sweden,1999:484-487.
    [23] Verpoorte R, van der Heijden R, Moreno PRH. Biosynthesis of terpenoid indolealkaloids in Catharanthus roseus cells. The Alkaloids.1997,49:221-299.
    [24] St-Pierre B, Vazquez-Flota FA, De Luca V. Multicellular compartmentation ofCatharanthus roseus alkaloid biosynthesis predicts intercellular translocation of apathway intermediate.The Plant Cell,1999,11:887-900.
    [25] Jossang A, Fodor P, Bodo B. A new structural class of bisindole alkaloids from theseeds of Catharanthus roseus: vingramine and methylvingramine. J. Org. Chem.,1998,63:7162-7167.
    [26]赵剑,朱蔚华,王文科.长春花生物碱生物合成途径和相关酶及其基因调控的研究进展.植物生理学通讯,1999,35(1):60-68.
    [27] Johnson DA, Laguzza BC. Antitumor xenograft activity with a conjugate of a Vincaderivative and the squamous carcinoma-reactive monoclonal antibody PF1/D.Cancer Res.,1987,47(12):3118-3122.
    [28] Johnson JS, Wright HF, Svoboda GH. Experimental basis of clinical evaluation ofantitumor principles derived from Vinca rosea L. Lab. Clin. Med.,1959,54:380.
    [29] Van Der Heijden R, Jacobs DI, Snoeijer W, et al. The Catharanthus alkaloids:pharmacognosy and biotechnology. Curr. Med. Chem.,2004,11(5):607-628.
    [30] Zárate R, Verpoorte R. Strategies for the genetic modification of the medicinal plantCatharanthus roseus (L.) G. Don. Phytochem. Rev.,2007,6(2-3):475-491.
    [31] De Carolis E, De Luca V. Purification, characterization, and kinetic analysis of a2-oxoglutarate-dependent deoxygenate involved in vindoline biosynthesis fromCatharanthus roseus. J. Biol. Chem.,1993,268:5504-5551.
    [32] De Carolis E, De Luca V. A novel20-oxoglutarate-dependent dioxygenese involvedin vindole biosynthesis: characterization, purification, and kinetic properties. PlantCell Tiss. and Org. Cult.,1994,38:281-287.
    [33] De Luca V, Balsevich J, Tyler RT, et al. Biosynthesis of indole alkaloids:developmental regulation of the biosynthetic pathway from tabersonine to vindolinein Catharanthus roseus. J. Plant Physiol.,1986,125:147-156.
    [34] Blom TJM, Sierra MI, Van Vliet TB, et al. Uptake and accumulation of ajmalicineinto isolated vacules of cultures cells of Catharabthus roseus (L.) G. don and itsconversion into serpentine. Planta,1991,183:170-177.
    [35] Endo T, Goodbody A, Vikovic J, et al. Enzymes from Catharanthus roseus cellcultures that couple vindoline and catharanthine to from3’,4’-anhydro vinblastine.Phytochem.,1988,27:2147-2149.
    [36] Kutney JP, Botta B, Boulet GA, et al. Alkaloid production in Catharanthus roseus(L.) G. don cell cultures. XVI. Biotransformation of3,4-anhydrovinblastine withCatharanthus roseus cell cultures and enzyme systems. Heterocycles,1988,27:629-637.
    [37] Liu Y, Wang H, Ye H C, et al. Advances in the plant isoprenoid biosynthesispathway and its metabolic engineering. J. Integr. Plant Biol.,2005,47(7):769-782.
    [38] El-Sayed M, Verpoorte R. Catharanthus terpenoid indole alkaloids: biosynthesis andregulation. Phytochem. Rev.2007,6(2-3):277-305.
    [39]崔红,宋志红.类萜代谢工程研究进展及在烟草品种改良中的应用前景.中国烟草学报,2003,9(2):35-38,42.
    [40] Madyastha KAN, Ridgway JE, Dwyer JG, et al. Subcellular localization of acytochrome P-450monooxygenase in vesicles of the higher plant Catharanthusroseus. J. Cell Biol.,1977,72(2):302-313.
    [41] Meijer AH, De Wall A, Verpoorte R, et al. Purification of the cytochrome P-450enzyme geraniol-10-hydroxylase from cell cultures of Catharanthus roseus. J.Chromatogr.,1993,653:237-249.
    [42] Collu G, Unver N, Peltenburg-Looman AMG, et al. Geraniol10-hydroxylase1,acytochrome P450enzyme involved in terpenoid indole alkaloid biosynthesis.FEBS Lett.,2001,508:215-220.
    [43] Yamamoto H, Katano N, Ooi A, et al. Secologanin synthase which catalyzes theoxidative cleavage of loganin into secologanin is a cytochrome P450.Phytochemistry,2000,53:7-12.
    [44] Poulsen C, Verpoorte R. Roles of chorismate mutase, isochorismate synthase andanthranilate synthase in plants. Phytochemistry,1991,30:377-386.
    [45] Bongaerts RJM. The chorismate branching point in Catharanthus roseus: aspects ofanthranilate synthase regulation in relation to indole alkaloid biosynthesis. PhDthesis, The Netherlands: Leiden University,1998.
    [46] Whitmer S. Aspects of terpenoid indole alkaloid formation by transgenic cell lines ofCatharanthus roseus over-expressing tryptophan decarboxylase and strictosidinesynthase. PhD thesis, The Netherlands: Leiden University,1999.
    [47] Noe W, Berlin J. Tryptophan decarboxylase from Catharanthus roseus cellsuspension cultures: purification, molecular and kinetic data of the homogenousprotein. Plant Mol. Biol.,1984,3(5):281-288.
    [48] De Luca V, Cutler AJ. Subcellular localization of enzymes involved in indolealkaloid biosynthesis in Catharanthus roseus. Plant Physiol.,1987,85:1099-1102.
    [49] Vasquez-Flota FA, St-Pierre B, De Luca V. Light activation of vindolinebiosynthesis does not require cytomorphogenesis in Catharanthus roseus seedlings.Phytochemistry,2000,55(6):531-536.
    [50] Yamazaki Y, Sudo H, Yamazaki M, et al. Camptothecin biosynthetic genes in hairyroots of Ophiorrhiza pumila: cloning, characterization and differential expression intissues and by stress compounds. Plant Cell Physiol.,2003,44(4):395-403.
    [51] Mizukami H, Nordl v H, Lee SL, et al. Purification and characterization ofstrictosidine synthase (an enzyme condensing tryptamine and secologanin) fromCatharanthus roseus cultured cells. Biochemistry,1979,18:3760-3763.
    [52] Canel C, Lopes-Cardoso MI, Whitmer S, et al. Effects of over-expression ofstrictosidine synthase and tryptophan decarboxylase on alkaloid production by cellcultures of Catharanthus roseus. Planta,1998,205(3):414-419.
    [53] Magnotta M, Murata J, Chen J, et al. Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry,2007,68:1922-1931.
    [54] Balsevich J, De Luca V, Kurz WGW. Altered alkaloid pattern in dark grownseedlings of Catharanthus roseus. The isolation and characterization of4-desacetoxy-vindoline: a novel indole alkaloid and proposed precursor ofvindoline. Heterocycles,1986,24:2415-2421.
    [55] De Luca V, Balsevich J, Tyler RT, et al. Biosynthesis of indole alkaloids:development regulation of the biosynthetic pathway from tabersonine to vindolinein Catharanthus roseus. Plant Physiol.,1986,125:147-156.
    [56] St-Pierre B, De Luca V. A cytochrome P-450monooxygenase catalyzes the first stepin the conversion of tabersonine to vindoline in Catharanthus roseus. Plant Physiol.,1995,109(1):131-139.
    [57] Murata J, De Luca V. Localization of tabersonine16-hydroxylase and16-OH-tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as amajor site of precursor biosynthesis in the vindoline pathway in Catharanthusroseus. Plant J.,2005,44(11):581-594.
    [58] Vasquez-Flota FA, De Carolis ED, Alarco AM, et al. Molecular cloning andcharacterization of desacetoxyvindoline-4-hydroxylase, a2-oxoglutarate depenentdioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.)G. Don. Plant Mol. Biol.,1997,34:935-948.
    [59] St-Pierre B, Laflamme P, Alarco AM, et al. The terminal O-acetyltransferaseinvolved in vindoline biosynthesis defines a new class of proteins responsible forcoenzyme A-dependent acyl transfer. Plant J.,1998,14(6):703-713.
    [60] Shanks J.V, Bhadra R, Morgan J, et al. Quantification of metabolites in the indolealkaloid pathways of Catharanthus roseus: implications for metabolic engineering.Biotechnol. Bioeng.,1998,58:333-338.
    [61] Langlois N, Gueritte F, Langlois Y, et al. Application of a modification of thePolonovski reaction to the synthesis of vinblastine-type alkaloids. J. Am. Chem. Soc.,1976,98(22):7017-7024.
    [62] Vaszquez-Flota F, De Luca V, Carrillo-Pech M.R, et al. Vindoline biosynthesis istranscriptionally blocked in Catharanthus roseus cell suspension cultures. Mol.Biotechnol.,2002,22(1):1-8.
    [63] Magnotta M, Murata J, Chen J, et al. Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry,2007,68(14):1922-1931.
    [64] Geerlings A, Memelink J, van der Heijden R, et al. Molecular cloning and analysis ofstrictosidine β-D-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesisin Catharanthus roseus. J. Biol. Chem.,2000,275:3051-3056.
    [65] Zárate R, Bonavia M, Geerlings A, et al. Expression of strictosidine β-D-glucosidasecDNA from Catharanthus roseus, involved in the monoterpene indole alkaloidpathway, in a transgenic suspension culture of Nicotiana tabacum. Plant Physiol.Biochem.,2001,39:763-769.
    [66] Hemscheidt T, Zenk MH. Glucosidases involved in indole alkaloid biosynthesis ofCatharanthus roseus cell cultures. FEBS Lett.,1980,110:187-191.
    [67] Sierra M. Aspects of indole alkaloid accumulation in Tabernaemontana tissuecultures: differentiation, peroxidases and stability. PhD thesis, Leiden University,The Netherlands,1991.
    [68] El-Sayed M, Choi YH, Frédérich M, et al. Alkaloid accumulation in Catharanthusroseus cell suspension cultures fed with stemmadenine. Biotechnol. Lett.,2004,26(10):793-798.
    [69] Costa MM, Hilliou F, Duarte P, et al. Molecular cloning and characterization of avacuolar class III peroxidase involved in the metabolism of anticancer alkaloids inCatharanthus roseus. Plant Physiol.,2008,146(2):403-417.
    [70] Kutney PJ, Hibino T, Jahngen E, et al. Total synthesis of indole and dihydroindolealkaloids. IX. Studies on the synthesis of bisindole alkaloids in thevinblastine-vincristine series. Helv. Chim. Acta,1976,59(8):2858-2882.
    [71] Oksman-Caldentey KM, Inze D. Plant cell factories in the post-genomic era: newways to produce designer secondary metabolism. Trends in Plant Sci.,2004,9:433-440.
    [72] Whitmer S, Canel C, van der Heijden R, et al. Long-term instability of alkaloidproduction by stably transformed cell lines of Catharanthus roseus. Plant Cell Tiss.and Org. Cult.,2003,74:73-80.
    [73] Whitmer S, van der Heijden R, Verpoorte R. Effect of precursor feeding on alkaloidaccumulation by a tryptophan decarboxylase overexpressing transgenic cell line T22of Catharanthus roseus. J. Biotechnol.,2002,96:193-203.
    [74] Van der Fits, Deakin EA, Hoge JHC, et al. The ternary transformation system:constitutive virG on a compatible plasmid dramatically increases Agrobacterium-midiated plant transformation. Plant Mol. Biol.,2000,43:495-502.
    [75] Alam P, Abdin MZ. Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence onartemisinin content. Plant Cell Rep.,2011, Jun8.
    [76] Kumar S, Jaggi M, Sinha AK. Ectopic over-expression of vacuolar and apoplasticCatharanthus roseus peroxidases confers differential tolerance to salt anddehydration stress in transgenic tobacco. Protoplasma,2011, Jun4.
    [77] Verma P, Mathur AK. Agrobacterium tumefaciens-mediated transgenic plantproduction via direct shoot bud organogenesis from pre-plasmolyzed leaf explants ofCatharanthus roseus. Biotechnol Lett.,2011,33:1053-60.
    [78] Ayora-Talavera T, Chappell J, Lozoya-Gloria E, et al. Overexpression ofCatharanthus roseus hairy roots of a truncated hamster3-hydroxy-3-methylglutaryl-CoA reductase gene. Appl. Biochem. Biotechnol.,2002,97:135-145.
    [79] Hughes EH, Hong SB, Shanks JV, et al. Characterization of an inducible promotersystem in Catharanthus roseus hairy roots. Biotechnol. Prog.,2002,18:1183-1186.
    [80] Hughes EH, Hong SB, Gibson SI, et al. Expression of a feedback-resistantanthranilate synthase in Catharanthus roseus hairy roots provides evidence for tightregulation of terpenoid indole alkaloid levels. Biotechnol. Bioeng.,2004,86:718-727.
    [81] Hughes EH, Hong SB, Gibson SI, et al. Metabolic engineering of the indole pathwayin Catharanthus roseus hairy roots and increased accumulation of tryptamine andserpentine. Metabolic Eng.,2004,6:268-276.
    [82] Peebles CA, Hughes EH, Shanks JV, et al. Transcriptional response of the terpenoidindole alkaloid pathway to the over-expression of ORCA3along with jasmonic acidelicitation of Catharanthus roseus hairy roots over time. Metabolic Eng.,2009,11:76-86.
    [83] Wang CT, Liu H, Gao XS, et al. Over-expression of G10H and ORCA3in the hairyroots of Catharanthus roseus improves catharanthine production. Plant Cell Rep.,2010,29(8):887-94.
    [84] Zhou ML, Hou HL, Zhu XM, et al. Soybean transcription factor GmMYBZ2represses catharanthine biosynthesis in hairy roots of Catharanthus roseus. Appl.Microbiol. Biotechnol.,2011,91:1095-1105.
    [85] Jaggi M, Kumar S, Sinha AK. Overexpression of an apoplastic peroxidase geneCrPrx in transgenic hairy root lines of Catharanthus roseus. Appl. Microbiol.Biotechnol.,2011,90:1005-1016.
    [86] Peebles CA, Sander GW, Hughes EH, et al. The expression of1-deoxy-D-xylulosesynthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoidindole alkaloid accumulation in Catharanthus roseus hairy roots. Metabolic Eng.,2011,13:234-240.
    [87] Van der Fits L, Memelink J. Comparison of the activities of CaMV35S and FMV34S promoter derivatives in Catharanthus roseus cells transiently and stablytransformed by particle bombardment. Plant Mol. Biol.,1997,33:943-946.
    [88] Leech MJ, May K, Hallard D, et al. Expression of two consecutive genes of asecondary metabolic pathway in transgenic tobacco: molecular diversity influenceslevels of expression and product accumulation. Plant Mol. Biol.,1998,38:765-774.
    [89] Zárate R. Tropane alkaloid production by Agrobacterium rhizogenes transformedhairy cultures of Atropa baetica Willk.(Solanaceae). Plant Cell Rep.,1999,18:418-423.
    [90] Hilliou F, Christou P, Leech MJ. Development of an efficient transformation systemfor Catharanthus roseus cell cultures using particle bombardment. Plant Sci.,1999,140:179-188.
    [91] Van der Fits L, Memelink J. ORCA3, a jasmonateresponsive transcriptionalregulator of plant primary and secondary metabolism. Science,2000,289:295-297.
    [92] Guirimand G, Burlat V, Oudin A, et al. Optimization of the transient transformationof Catharanthus roseus cells by particle bombardment and its application to thesubcellular localization of hydroxymethylbutenyl4-diphosphate synthase andgeraniol10-hydroxylase. Plant Cell Rep.,2009,28:1215-1234.
    [93] Flores HE, Vivanco JM, Loyola-Vargas VM.‘Radicle’ biochemistry: the biology ofroot-specific metabolism. Trends Plant Sci.,1999,4:220-226.
    [94] Menke FLH, Champion A, Kijne JW, et al. A novel jasmonate-andelicitor-responsive element in the periwinkle secondary metabolite biosyntheticgene str interacts with a jasmonate and elicitorinducible AP2-domain transcriptionfactor, ORCA2. EMBO J.,1999,18:4455-4463.
    [95] Lessard PA, Kulaveerasingam H, York GM, et al. Manipulating gene expression forthe metabolic engineering of plants. Metabolic Eng.,2002,4:67-79.
    [96] Waterhouse PM, Wang M, Lough T. Gene silencing as an adaptive defence againstviruses. Nature,2001,411:834-842.
    [97] Rodriguez-Talou J, Verberne MC, Budi Muljono RA, et al. Isochorismate synthasetransgenic expression in Catharanthus roseus cell suspensions. Plant Physiol.Biochem.,2001,39:595-602.
    [98] Broun P. Transcription factors as tools for metabolic engineering in plants. Curr.Opin. Plant Biol.,2004,7:202-209.
    [99] Gantet P, Memelink J. Transcription factors: tools to engineer the production ofpharmacologically active plant metabolites. Trends Pharma. Sci.,2002,23:563-569.
    [100] Ouwerkerk PBF, Memelink J. A G-box element from the Catharanthus roseusstrictosidine synthase (str) gene promoter confers seed-specific expression intransgenic tobacco plants. Mol. Gen. Genet.,1999,261:635-643.
    [101] Ouwerkerk PBF, Memelink J. Elicitor-responsive promoter regions in the tryptophandecarboxylase gene from Catharanthus roseus. Plant Mol. Biol.,1999,39:129-136.
    [102] Pasquali G, Erven ASW, Ouwerkerk PBF, et al. The promoter of the strictosidinesynthase gene from periwinkle confers elicitorinducible expression in transgenictobacco and binds nuclear factors GT-1and GBF. Plant Mol. Biol.,1999,39:1299-1310.
    [103] Menke FLH, Parchmann S, Mueller MJ, et al. Involvement of the octadecanoidpathway and protein phosphorylation in fungal elicitor-induced expression ofterpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol.,1999,119:1289-1296.
    [104] Suttipanta N, Pattanaik S, Gunjan S, et al. Promoter analysis of the Catharanthusroseus geraniol10-hydroxylase gene involved in terpenoid indole alkaloidbiosynthesis. J. Exp. Bot.,2009,60:1387-1398.
    [105] Van der Fits L, Zhang H, Menke FLH, et al. A Catharanthus roseus BPF-1homologue interacts with an elicitor-responsive region of the secondary metabolitebiosynthetic gene Str and is induced by elicitor via a jasmonate-independent signaltransduction pathway. Plant Mol. Biol.,2000,44:675-685.
    [106] Rushton PJ, Somssich IE. Transcriptional control of plant genes responsive topathogenes. Curr. Opin. Plant Biol.,1998,1:311-315.
    [107] Eilert U, Constable F, Kurz WGW. Elicitor-stimulation of monoterpene indolealkaloid formation in suspension culture of Catharanthus roseus. Arch Biochem.Biophy.,1987,254:491-497.
    [108] Pré M, Sibéril Y, Memelink J, et al. Isolation by the yeast one-hybrid system ofcDNAs encoding transcription factors that bind to the G-box element of thestrictosidine synthase gene promoter from Catharanthus roseus. Int. J. Bio-Chrom.,2000,5:229-244.
    [109] Sibéril Y, Benhamron S, Memelink J, et al. Catharanthus roseus G-box bindingactors1and2act as repressors of strictosidine synthase gene expression in cellcultures. Plant Mol. Biol.,2001,45:477-488.
    [110] Chatel G, Montiel G, Pre M, et al. CrMYC1, a Catharanthus roseus elicitor-andjasmonate-responsive bHLH transcription factor that binds the G-box element of thestrictosidine synthase gene promoter. J. Exp. Bot.,2003,54:2587-2588.
    [111] Pauw B, Hilliou FAO, Martin VS, et al. Zinc finger proteins act as transcriptionalrepressors of alkaloid biosynthesis genes in Catharanthus roseus. J. Biol. Chem.,2004,279:52940-52948.
    [112] Hisiger S, Jolicoeur M. Analysis of Catharanthus roseus alkaloids by HPLC.Phytochem. Rev.,2007,6:207-234.
    [113] Tam MN, Nikolova Damyanora B, et al. Quantitative thin layer chromatography ofindole alkaloids II: Catharanthine and vindoline. Chromatogr.,1995,18:849-858.
    [114] Arens H, Stockigt J, Weiler EW, et al. Radioimmu noassays for the determination ofthe indoalkaloids ajmalicine and serpentine in plants. Planta Med.,1978,34-37.
    [115] Tikhomiroff C, Jolicoeur M. Screening of Catharanthus roseus secondarymetabolites by high-performance liquid chromatography. J. Chromatogr. A.,2002,26:87-93.
    [116]罗猛,付玉杰.反相高效液相色谱法快速测定长春花中4中生物碱.分析化学研究简报,2005,33:87-89.
    [117]闫家福,仝燕.不同产地长春花中3种生物碱的含量测定.中国中药杂志,2007,3:1717-1718.
    [118]王非,李雷鸿.人为采收后长春花中长春碱含量的动态变化.东北林业大学学报,2005,33:42-44.
    [119]唐东芹,钱虹妹,唐克轩,等.根癌农杆菌介导半夏凝集素基因pBIXPTA对百合的转化.上海交通大学学报,2004,22:135-137.
    [120] Guillaume B, Kenneth HW. Functional divergence of duplicated genes formed bypolyploidy during Arabidopsis evolution. The Plant Cell,2004,16:1679-1691.
    [121] Ainouche ML, Jenczewski E. Focus on polyploidy. New Phytol.,2010,186:1-4.
    [122] Van de Peer Y, Maere S, Meyer A. Opinion the evolutionary significance of ancientgenome duplications. Nat. Rev. Genet.,2009,10:725-732.
    [123]王同坤,张京政,齐永顺,等.我国果树多倍体育种研究进展.果树学报,2004,21:592-597.
    [124] Ramsey J, Schemske DW. Neopolyploidy in flowering plants. Annual Rev. Ecol.Syst.,2002,33:589-639.
    [125] Comai L. The advantages and disavantages of being polyploidy. Nat. Rev. Genet.,2005,6:836-846.
    [126] Osborn TC, Pires JC, Birchler JA, et al. Understanding mechanisms of novel geneexpression in polyploids. Trends in Genetics,2003,19:141-147.
    [127] Zhang XY, Hu CG, Yao JL. Tetraploidization of diploid Dioscorea results inactivation of the antioxidant defense system and increased heat tolerance. J. PlantPhysiol.,2010,167:88-94.
    [128]王娜,刘孟军,代丽,等.秋水仙素离体诱导冬枣和酸枣四倍体.园艺学报,2005,32:1008-1012.
    [129] Yang XM, Cao ZY, An LZ, et al. In vitro tetraploid induction via colchicinetreatment from diploid somatic embryos in grapevine (Vitis vinifera L.). Euphytica,2006,152:217-224.
    [130] Eeckhaut TGR, Werbrouck SPO, Leus LWH, et al. Chemicaly inducedpolyploidization in Spathiphyllumwallisii Regel through somatic embryo genesis.Plant Cell Tissue and Organ Culture,2004,78:241-246.
    [131] Proscevicius J, Sliesaravicius Z, RancelieneV. Selection of stock polyploid forms forbreeding of lilies. Sodininkysteir Darzininkyste,2003,22:553-559.
    [132]尹翠翠,张燕,张景华,等.秋水仙素诱导杂交兰四倍体及倍性鉴定.核农学报,2010,24:518-521.
    [133] Dunn BL, Lindstrom JT. Oryzalin induced chromosome doubling in Buddleja tofacilitate interspecific hybridization. HortScience,2007,42:1326-1328.
    [134]阎志红,刘文革,赵胜杰,等.利用二硝基苯胺类除草剂离体诱导西瓜四倍体.园艺学报,2008,35:1621-1626.
    [135]张志胜,黎扬辉,姜蕾,等.红掌四倍体的离体诱导及其鉴定.园艺学报,2007,34:729-734.
    [136]欧春青,李林光,何平.寒富苹果叶片离体再生及四倍体诱导.果树学报,2008,25:293~297.
    [137] Levêque D, Wihlm J, Jehl F. Pharmacology of Catharanthus alkaloids. Bull. Cancer,1996,83:176-186.
    [138] Kulkarni RN, Ravindra NS. Resistance to Pythium aphanidermatum in Diploids andInduced Autotetraploids of Catharanthus roseus. Planta Med.,1988,54:356-359.
    [139]翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社,2000:65.
    [140]左连富主编.流式细胞术与生物医学.沈阳:辽宁科学冀术出版社出版.1996,129-422.
    [141]耿慧霞,王来,王强.流式细胞仪在生物学中的应用.生物学杂志,2005,22:44-45,51.
    [142]马爱红,范培格,孙建设,等.四倍体葡萄诱导技术的研究.中国农业科学,2005,38:1645-1651.
    [143] Hirsch AM, Testolin R, Brown S, et al. Embryo rescue from interspecific crosses inthe genus Actinidia. Plant Cell Rep.,2001:508-516.
    [144]陈绪中,罗正荣.鄂柿1号离体叶片秋水仙素诱导和再生植株倍性鉴定.果树学报,2005,22:554-556.
    [145] Ulrich I, Ulich W. High resolution flow cytometry of nuclear DNA in higher plants.Protoplasma,1991:212-215.
    [146] El-Sayed M, Verpoorte R. Catharanthus terpenoid indole alkaloids: biosynthesis andregulation. Phytochem. Rev.,2007,6:277-305.
    [147] Decendit A, Liu D, Ouelhazi L, et al. Cytokini-enhanced accumulation of indolealkaloids in Catharanthus roseus cell cultures: the factors affecting the cytokininresponse. Plant Cell Rep.,1992,11:400-403.
    [148] Pan QF, Chen Y, Wang Q, et al. Effect of Plant Growth Regulators on theBiosynthesis of Vinblastine, Vindoline and Catharanthine in Catharanthus roseus.Plant Growth Regulation,2010,60:133-141.
    [149] Pasquali G, Goddijn OJM, De-Wall A, et al. Coordinated regulation of two indolealkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. PlantMol. Biol.,1992,18:1121-1131.
    [150] Roytrakul S, Verpoorte R. Role of vacuolar transporter proteins in plant secondarymetabolism: Catharanthus roseus cell culture. Phytochem. Rev.2007,6:383-396.
    [151] Zhao J, Verpoorte R. Manipulating indole alkaloid production by Catharanthusroseus cell cultures in bioreactors: from biochemical processing to metabolicengineering. Phytochem. Rev.,2007,6:435-457.
    [152] Aerts RJ, Gisi D, De-Carolis E, et al. Methyl jasmonate vapor increases thedevelopmentally controlled synthesis of alkaloids in Catharanthus roseus andCinchona seedlings. Plant J.,1994,5:635–643.
    [153] El-Sayed M, Verpoorte R. Methyl jasmonate accelerates catabolism ofmonoterpenoid indole alkaloids in Catharanthus roseus during leaf processing.Fitoterapia,2005,76:83-90.
    [154] Lee-Parsons CWT, Ertuk S, Tengtrakool J. Enhancement of ajmalicine production inCatharanthus roseus cell cultures with methyl jasmonate is dependent on timing anddosage of elicitation. Biotechnol. Lett.,2004,26:1595-1599.
    [155] Ruiz-May E, Galaz-Avalos RM, Loyola-Vargas VM. Differential secretion andaccumulation of terpene indole alkaloids in hairy roots of Catharanthus roseus treatedwith Methyl Jasmonate. Mol. Biotechnol.,2008,41:278-285.
    [156] Godoy-Hernandez G, Loyola-Vargas VM. Effect of acetylsalicylic acid on secondarymetabolism of Catharanthus roseus tumor suspensions cultures. Plant Cell Rep.,1997,16:287-290.
    [157] Bulgakov VP, Tchernoded GK, Mischenko NP, et al. Effect of salicylic acid, methyljasmonate, ethephon and cantharidin on anthraquinone production by Rubiacordifolia callus cultures transformed with the rolB and rolC genes. J. Biotechnol.,2002,97:213-221.
    [158] Amini A, Glevarec G, Andreu F, et al. Low levels of gibberellic acid control thebiosynthesis of ajmalicine in Catharanthus roseus cell suspenion cultures. PlantaMed.,2009,75:187-191.
    [159] Srivastava NK, Srivastava AK. Influence of gibberellic acid on14CO2metabolism,growth, and production of alkaloids in Catharanthus roseus. Photosynthetica,2007,45:156-60.
    [160] Verpoorte R, van der Heijden R, Moreno PRH. Biosynthesis of terpenoid indolealkaloids in Catharanthus roseus cells. The Alkaloids,1997,49:221-299.
    [161] El-Sayed M, Verpoorte R. Growth metabolic profiling and enzymes activities ofCatharanthus roseus seedlings treated with plant growth regulators. Plant GrowthRegul.,2004,44:53-58.
    [162] Johnson JS, Wright HF, Svoboda GH. Experimental basis of clinical evalu tion ofantitumor principles derived from Vinca rosea L. Lab. Clin. Med.,1959,54:380.
    [163] Memelink J, Verpoorte R, Kijne JW. ORCAnization of jasmonate responsive geneexpression in alkaloid metabolism. Trends in Plant Sci.,2001,6:212-219.
    [164] Kumar S, Jaggi M, Taneja J, et al. Cloning and characterization of two new Class IIIperoxidase genes from Catharanthus roseus. Plant Physiol. Biochem.,2011,49:404-412.
    [165]王荃,潘琪芳,袁芳,等.超声波辅助农杆菌介导的长春花(Catharanthus roseus)遗传转化.上海交通大学学报:农业科学版,2009,6:615-618,634.
    [166]陈雨,孙小芬,赵静雅,等.长春花萜类吲哚生物碱含量测定及相关基因的表达分析.天然产物研究与开发,2010,22:93-97.
    [167] Poulsen C, Bongaerts RJ, Verpoorte R. Purification and characterization ofanthranilate synthase from Catharanthus roseus. Eur. J. Biochem.,1993,212:431-440.
    [168] Pasquali G, Erven AS, Ouwerkerk PB, et al. The promoter of the strictosidinesynthase gene from periwinkle confers elicitor-inducible expression in transgenictobacco and binds nuclear factors GT-1and GBF. Plant Mol. Biol.,1999,39:1299-1310.
    [169] Sottomayor M, Duarte P, Figueiredo R, et al. A vacuolar class III peroxidase andmetabolism of anticancer indole alkaloids in Catharanthus roseus. Plant SignalBehav.,2008,3:899-901.
    [170] Liscombe DK, O’Connor SE. A virus-induced gene silencing approach tounderstanding alkaloid metabolism in Catharanthus roseus. Phytochem.,2011, Jul27.
    [171] Poulsen C, Bongaerts RJ, Verpoorte R. Purification and characterization ofanthranilate synthase from Catharanthus roseus. Eur. J. Biochem.,1993,212:431-440.
    [172] Wendel JF, Genome evolution in polyploids. Plant Mol. Biol.,2000,42,(1):225-249.
    [173] Albertin W, Balliau T, Brabant P, et al. Numerous and rapid nonstochasticmodifications of gene products in newly synthesized Brassica napus allotetraploids.Genetics,2006,173:1101-1113.
    [174] Aleza P, Juárez J, Ollitrault P, et al. Production of tetraploid plants of non apomicticcitrus genotypes. Plant Cell Rep.,2009,28:1837-1846.
    [175] Dutt M, Vasconcellos M, Song K, et al. In vitro production of autotetraploid Ponkanmandarin (Citrus reticulata Blanco) using cell suspension cultures. Euphytica,2010,173:235-242.
    [176] Liu G, Li Z, Bao M. Colchicine-induced chromosome doubling in Platanus acerifoliaand its effect on plant morphology. Euphityca,2007,157:145-154.
    [177] Nguyen T, Phuong T, Kenji U, et al. Induction of tetraploids in ornamental Alocasiathrough colchicine and oryzalin treatments. Plant Cell Tissue and Organ Culture,2003,72:19-25.
    [178] Urwin NAR, Horsnell J, Moon T. Generation and characterization ofcolchicine-induced autotetraploid Lavandula angustifolia. Euphytica,2007,156:257-266.
    [179] Blakeslee AF, Avery AG. Methods of inducing doubling of chromosomes in plants. J.Hered.,1937,28:393-411.
    [180] Kadota M, Niimi Y. In vitro induction of tetraploid plants from a diploid Japanesepear cultivar (Pyrus pyrifolia N. cv. Hosui), Plant Cell Rep.,2002,21:282-286.
    [181] Stanys V, Weckman A, Staniene G, et al. In vitro induction of polyploidy in Japanesequincy (Chaenomeles japonica). Plant Cell Tissue and Organ Culture,2006,84:263-268.
    [182] Gu XF, Yang AF, Meng H, et al. In vitro induction of tetraploid plants from diploidZiziphus jujuba Mill. Cv. Zhanhua. Plant Cell Rep.,2005,24:671-676.
    [183] Morejohn LC, Bureau TE, Mole-Bajer J, et al Oryzalin, a dinitroaniline herbicide,binds to plant tubulin and inhibits microtubule polymerization. Planta,1987,172:141-147.
    [184] Flor S, Ludewig G. Polyploidy-induction by dihydroxylated monochlorobi phenyls:Structure–activity-relationships. Environment International,2010,36:962-969.
    [185] Kato A, Birchler JA. Induction of tetraploid derivatives of maize inbred lines bynitrous oxide gas treatment. J. Hered.,2006,97:39-44.
    [186] Dolezel J, Bartos J. Plant DNA flow cytometry and estimation of nuclear genome size.Ann. Bot.,2005,95:99-110.
    [187] Dolezel J. Flow cytometric analysis of nuclear DNA content in higher plants.Phytochem. analysis,1991,2:143-154.
    [188] Dolezel J. Application of flow cytometry for the study of plant genomes. J. Appl.Genet.,1997,38:285-302.
    [189] Malkassian A, Nerini D, van Dijk MA, et al. Functional analysis and classification ofphytoplankton based on data from an automated flow cytometer. Cytometry A,2011,79:263-275.
    [190] Bainard JD, Fazekas AJ, Newmaster SG. Methodology significantly affects genomesize estimates: quantitative evidence using bryophytes. Cytometry A,2010,77:725-732.
    [191] Praca-Fontes MM, Carvalho CR, Clarindo WR, et al. Revisiting the DNA C-values ofthe genome size-standards used in plant flow cytometry to choose the ‘best primarystandards’. Plant Cell Rep.,2011,30:1183-1191.
    [192] Dolezel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants usingflow cytometry. Nat. Protoc.,2007,2:2233-2244.
    [193] Eelco WT, Pras N, Quax WJ. Seasonal variations of artemisinin and its biosyntheticprecursors in tetraploid artemisia annua plants compared with the diploid wild-type.Planta med.,1999,65:724-727.
    [194] Chen ZJ. Genetic and epigenetic mechanisms for gene expression and phenotypicvariation in plant polyploids. Annu. Rev. Plant Biol.,2007,58:377-406.
    [195] Soltis DE, Albert VA, Leebens-Mack J, et al. Polyploidy and angiospermdiversification. Am. J. Bot.,2009,96:336-348.
    [196] Riddle NC, Jiang HM, An LL, et al. Gene expression analysis at the intersection ofploidy and hybridity in maize. Theor. Appl. Genet.,2010,120:341-353.
    [197] Mishra P, Kumar S. Emergence of periwinkle Catharanthus roseus as a modelsystem for molecular biology of alkaloids: phytochemistry, pharmacology, plantbiology and in vitro and in vivo cultivation. J. Med. Aromat. Plant Sci.,2000,22:306-337.
    [198] Facchini PJ. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecularregulation and metabolic engineering applications. Annual Rev. Plant Physiol. PlantMol. Biol.,2001,52:29-66.
    [199] Van Der Heijden R, Jacobs DI, Snoeijer W, et al. The Catharanthus alkaloids:pharmacognosy and biotechnology. Curr. Med. Chem.,2004,11:607-628.
    [200] Van der FL, Memelink J. The jasmonate inducible AP2/ERF-domain transcriptionfactor ORCA3activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J.,2001,25:43-53.
    [201] Facchini PJ, St-Pierre B. Synthesis and trafficking of alkaloid biosynthetic enzymes.Curr. Opin. Plant Biol.,2005,8:657-666.
    [202] Mahroug S, Courdavault V, Thiersault M, et al. Epidermis is a pivotal site of at leastfour secondary metabolic pathways in Catharanthus roseus aerial organs. Planta,2006,223:1191-2000.
    [203] Shelley AJ, David TB. Leaf morphological and anatomical characteristics ofheteroblastic Eucalyptus globulus ssp. Globules (Myrtaceae). Aust. J. Bot.,2001,49:259-269.
    [204] Aryavand A, Ehdaie B, Tran B, et al. Stomatal frequency and size differentiate ploidylevel in Aegilops neglecta. Genet. Resources Crop Evol.,2003,50:175-182.
    [205] Beck SL, Dunlop RW, Fossey A. Stomatal length and frequency as a measure ofploidy level in black wattle, Acacia mearnsii (de Wild). Bot. J. Linn. Soc.,2003,41:177-181.
    [206] Kulithinee P, Kenji, Takejiro T, et al. Flow cytometric assessment of ploidy in nativeresources of Actinidia in Japan. American Pomological Society,2005,59:44-49.
    [207] Lee HC, Lin TY. Isolation of plant nuclei suitable for flow cytometry fromrecalcitrant tissue by use of a filtration column. Plant Molecular Biology Reporter,2005:53-58.
    [208] McArthur ED, Sanderson SC. Cytogeography and chromosome evolution ofsubgenus Tridentatae of Artemisia (Asteraceae). Am. J. Bot.,1999,86:1754-1775.
    [209] Wentworth JE, Gornall RJ. Cytogenetic evidence for autopolyploidy in Parnassiapalustris. New Phytol.,1996,134:641-648.
    [210] Levin DA. The Role of Chromosomal Change in Plant Evolution. Oxford UniversityPress,New York, USA,2002.
    [211] Abdul JC, Gopi R, Lakshmanan GMA, et al. Triadimefon induced changes in theantioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G.Don. Plant Sci.,2006,171:271-276.
    [212] Sottomayor M, López-Serrano M, DiCosmo F, et al. Purification and characterizationof alpha-3',4'-anhydrovinblastine synthase (peroxidase-like) from Catharanthusroseus (L.) G. Don. FEBS Lett.,1998,428:299-303.
    [213] Zhou M, Shao J, Tang Y. Production and metabolic engineering of terpenoid indolealkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don(Madagascar periwinkle). Biotechnol. Appl. Biochem.,2009,52:313-323.
    [214] Balsevich J, Bishop G, Kurz WGW. Primary and secondary metabolism of plant cellcultures. Berlin7Springer-Verlag, Berlin,1989.
    [215] Deus-Neumann B, Stockigt J, Zenk MH. Radioimmunoassay for the quantitativedetermination of catharanthine. Planta Med.,1987,53:184-188.
    [216] Westekemper P, Wieczoreck U, Gueritte F, et al. Radioimmunoassay for thedetermination of the indole alkaloid vindoline in Catharanthus roseus. Planta Med.,1980,39:24-37.
    [217] Guirimand G, Guihur A, Poutrain P, et al. Spatial organization of the vindolinebiosynthetic pathway in Catharanthus roseus. J. Plant Physiol.,2011,168:549-557
    [218] Yahia A, Kevers C, Gaspar T, et al. Cytokinins and ethylene stimulate indole alkaloid
    accumulation in cell suspensions cultures of Catharanthus roseus by two distinct
    mechanisms. Plant Sci.,1998,133:9-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700