用户名: 密码: 验证码:
金沟岭林场三种森林类型生物量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文运用经典生态学理论对金沟岭林区主要森林类型—天然云冷杉林、杨桦次生林和人工落叶松林的森林生物量进行定量分析,探索基于林分尺度生物量的研究方法。本研究首次全面系统地研究了不同森林类型林分生物量动态模型,对于评价中国东北部森林生物量及碳汇功能研究具有重要的学术意义和实用价值,同时也为其他地区森林资源保护提供科学依据。本研究主要取得了以下成果:
     (1)运用皆伐样地数据拟合了金沟岭林区主要树种各器官和地上总生物量模型,并通过精度检验获得了最优模型。10个主要树种的地上生物量最优模型分别是冷杉(M5,R2=0.987);色木(M21,R2=0.952);枫桦(M5,R2=0.986);白桦(M20,R2=0.995);水曲柳(M6,R2=0.984);落叶松(M20,R2=0.956):云杉(M20,R2=0.990);红松(M5,R2=0.995);山杨(M20,R2=0.983)和椴树(M20,R2=0.979)。
     (2)运用最优模型,估算出皆伐样地地上总生物量为387,553kg,各样地地上生物量值范围为86.692-160.592kg ha-1,平均每公顷110,729kg。冷杉地上生物量最大,占28.96%(32,062kg ha-1),其次是云杉25.76%(28,527kg ha-1),红松次之15.12%(16,744kgha-1),最少是落叶松,仅为0.19%(209kg ha-1)。在各树种器官所占地上总生物量比例中,落叶松树干生物量占其地上总生物量比例最大为83.24%;椴树树皮和枝条生物量占其地上总生物量的比例最大,分别为14.47%和17.27%;而云杉叶生物量占其地上总生物量的比例最大,为11.79%。
     (3)将皆伐样地总生物量情况与其他区域相比较得出:a)本研究样地的生物量值小于天然原始林分,但大于人工林分;b)本研究样地生物量高于同区域内阔叶树种森林类型、针阔混交林分和其他针叶林分类型的平均水平:c)本研究样地生物量结果高于落叶阔叶林、云冷杉林和红松林平均水平;d)与不同国家平均水平比较发现,本研究结果高于韩国、日本和全球森林总生物量的平均水平。
     (4)通过拟合的主要树种的树高和树冠方程,结合林区材积方程,q值理论和各树种单木生物量方程,联立方程组建立生物量动态模型。然后通过建立的动态模型计算出三种林分不同q值下的乔木生物量最大值,拟合q值和最大生物量曲线模型。云冷杉林最大生物量曲线模型为:Y=2289591.20-2171042.39X+314300.54X3,R2为0.994;杨桦次生林最大生物量曲线模型为:Y=1938026.88-2465222.23X+820532.23X2,R2为0.997;人工落叶松林最大生物量曲线模型为:Y=3552713.56-4556777.99X+1529854.91X2,R2为0.997。q值从1.50递减到1.10时,云冷杉林分地上生物量从92Mg ha-1增加到312Mg ha-1;杨桦次生林地上生物量从83Mg ha-1增加到:221Mg ha-1;人工落叶松地上生物量从153Mg ha-1:增加到402Mg ha-1。
     (5)通过分析118块样地数据,云冷杉林25块,杨桦次生林36块,落叶松57块,得到云冷杉林根茎比为0.2464±0.06,杨桦次生林为0.2164±0.05,人工落叶松林为0.2442±0.08。结合地上生物量值计算了林分不同q值地下生物量数值。
     (6)利用金沟岭林区的生物量数据,构建了三种林型主要灌木植物和乔木幼树最优生物量模型,估算了云冷杉林与杨桦次生林在不同郁闭度下和人工落叶松林在不同林龄下灌木层的总生物量。运用样方收获法推算不同林型草本层生物量情况。乔木幼树的各器官以及地上、地下生物量最优模型为模型12(Y=a×Hb×CAc×CVd×De)和模型13(Y=a×(D2H)hb),模型精度比灌木物种高。三个林型灌木层生物量情况是:云冷杉林0.6郁闭度(2410kg ha-1)>1.0郁闭度(1921kg ha-1)>0.8郁闭度(1735kg ha-1);杨桦次生林0.8郁闭度(2523kg ha-1)>0.6郁闭度(1845kg ha-1)>1.0郁闭度(1203kg ha-1);人工落叶松林53年(1952kg ha-1)>39年(320kg ha-1)>19年(0.85kg ha-1)。不同林型草本层生物量情况:云冷杉林0.6郁闭度(911kg ha-1)>0.8郁闭度(813kg ha-1)>1.0郁闭度(751kg ha-1):杨桦次生林0.6郁闭度(970kg ha-1)>0.8郁闭度(458kg ha-1)>1.0郁闭度(428.24kg ha-1);人工落叶松林53年(1972kg ha-1)>39年(1366kg ha-1)>19年(65kg ha-1)。
In this study, forest biomass of the major forests types in Jingouling forest, i.e., natural spruce-fir forest, polar-birch secondary forests and artificial larch forest were analyzed quantitatively by classical ecology theory. The study also explored a new research method based on the forest database at stand scale. Dynamic simulation for tree biomass at different forest stand types were studied comprehensively and systematically for the first time. It has the vital academic interest and the practical value to evaluate the forest biomass and carbon sequestration function of northeastern China. Meanwhile, this study supplies scientific evidence for forest resources protection in other areas. Main results were as follows:
     (1) The models for total aboveground biomass and each organ biomass of the main trees in Jingouling forest were fitted by using the data of clear cutting plots. The optimal equations were obtained by the accuracy test. The aboveground optimal biomass models of10main tree species were Abies nephrolepis (M5,R2=0.987), Acer mono (M21,R2=0.952), Betula costata (M5,R2=0.986), Betula platyphylla (M20,R2=0.995), Fraxinus mandshurica (M6,R2=0.984), Larix olgensis (M20, R2=0.956), Picea koraiensis (M20, R2=0.990), Pinus koraiensis (M5, R2=0.995), Populus davidiana (M20, R2=0.983) and Tilia amurensis (M20,R2=0.979), resepectively.
     (2) The total aboveground biomass was387.553kg that was estimated by using the optimal model. The aboveground biomass range of each clear cutting plot was from86.92to160.592kg ha-1and average per hectare was110,729kg. Abies nephrolepis had the most aboveground biomass, accounted for up to28.96%(32,062kg ha-1) of the total aboveground biomass. The following was Picea koraiensis25.76%(28,527kg ha-1), followed by Pinus koraiensis15.12%(16,744kg ha-1). The last one was Larix olgensis, only0.19%(209kg ha-1). Among all the species, Larix olgensis trunk accounted for the largest proportion of its own total aboveground biomass, about83.24%. Tilia amurensis bark and branches accounted for the largest proportion of its total aboveground biomass, about14.47%and17.27%. However, the leave of Picea koraiensis accounted for the largest proportion of its total aboveground biomass, which was about11.79%.
     (3) Compared the aboveground biomass of clear cutting plot with that of neighboring region, the results suggested, a) the biomass of this cutting plot was less than natural primitive forest stand, but higher than that of artificial forest stand, b) the biomass of this cutting plot was higher than that of in average broad-leaved tree stand, coniferous and broadleaf mixed forest stand and other needle stand in the same area, c) the biomass of this cutting plot was higher than that of average deciduous broadleaf forest, spruce-fir forest and korean pine forest, d) compared with different countries in average, the biomass of this cutting plot was higher than in Korea and Japan, even higher than the average of the global total forest biomass.
     (4) A system of simultaneous analysis, namely'dynamical model'was obtained by fitting the height and crown features of the main tree species and combining tree volume equation in it, in addition to q value theory and equation for each tree species biomass. Then the maximum biomass value of three tree species in different q value by the dynamical model and the maximum biomass curve model were calculated out. The maximum biomass curve model of spruce-fir forest, polar-birch secondary forests and artificial larch forest were Y=3552713.56-4556777.99X+1529854.91X2(R2=0.997),Y=1938026.88-2465222.23X+820532.23X2(R2=0.997) and Y=3552713.56-4556777.99X+1529854.91X2(R2=0.997), respectively. When q value decreasing from1.50to1.10, the aboveground biomass of spruce-fir forest, polar-birch secondary forests and artificial larch forest increased from92Mg ha-1to312Mg ha-1,83Mg ha-1to221Mg ha-1and153Mg ha-1to402Mg ha-1, respectively.
     (5) After analysis of the data of118plots (25plots of spruce-fir forest,36plots of polar-birch secondary forests and57plots of artificial larch forest), the root/shoot ratio were obtained. The root/shoot ratio of spruce-fir forest, polar-birch secondary forests and artificial larch forest were0.2464±0.06,0.2164±0.05and0.2442±0.08respectively. The underground biomass was calculated out by combining their aboveground biomass.
     (6) The optimal biomass equation of the major shrub and young tree of different types of forests were established by using the biomass data of Jingouling forest. Meanwhile total shrub biomass of different types of forest in different canopy density was estimated. Then herbaceous layer biomass situation of different types of forest was calculated out by quadrat method. The optimal young tree biomass model of each organ and aboveground and underground biomass were model12(Y=a×H b×CAc×CVd×De) and model13(Y=a×(D2H)b). The accuracy of model of young tree was higher than shrub. The shrub biomass situation of three tree species was spruce-fir forest in0.6canopy density (2410kg ha-1)>1.0canopy density (1921kg ha-1)>0.8canopy density (1735kg ha-1), polar-birch secondary forests in0.8canopy density (2523kg ha-1)>0.6canopy density (1845kg ha-1)>1.0canopy density (1203kg ha-1) and artificial larch forest of53year (1952kg ha-1)>39year (320kg ha-1)>19year (0.85kg ha-1). The herbaceous layer biomass situation of three tree species was spruce-fir forest in0.6canopy density (911kg ha-1)>0.8canopy density (813kg ha-1)>1.0canopy density (751kg ha-1), polar-birch secondary forests in0.6canopy density (970kg ha-1)>0.8canopy density (458kg ha-1)>1.0canopy density (428.24kg ha-1) and artificial larch forest of53year (1972kg ha-1)>39year (1366kg ha-1)>19year (64kg ha-1).
引文
蔡烁,亢新刚,龚直文,等.金沟岭次生林种子植物区系成分分析[J].南京林业大学学报(自然科学版).2012,36(3):74-80.
    蔡哲,刘琪璟,欧阳球林.千烟洲试验区几种灌木生物量估算模型的研究[J].中南林学院学报.2006(3):16-23.
    陈传国,朱俊凤.东北主要林木生物量手册[M].北京:中国林业出版社,1989:1-39.
    陈新美,张会儒.柞树林树高结构的研究[J].西北林学院学报.2010(4):130-134.
    成俊卿.木材学[M].北京:中国林业出版社,1985:3-49.
    程堂仁.甘肃小陇山森林生物量及碳储量研究[D].北京林业大学,2007.
    邓坤枚,石培礼,杨振林.长白山树线交错带的生物量分配和净生产力[J].自然资源学报.2006(6):943-946.
    范小莉.长白山地区云冷杉林和近原始林林下灌草生物量预测模型的研究[D].北京林业大学,2011.
    方精云,陈安平,赵淑清,等.中国森林生物量的估算[J].植物生态学报.2002(2):243-249.
    房用,蹇兆忠,房堃,等.杨树生物量结构与模型的研究[J].辽宁林业科技.2002(5):5-7.
    冯宗伟.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999:25-33.
    符利勇,曾伟生,唐守正.利用混合模型分析地域对国内马尾松生物量的影响[J].生态学报.2011,31(19):5797-5808.
    符利勇,张会儒,唐守正.基于非线性混合模型的杉木优势木平均高[J].林业科学.2012,48(7):66-71.
    龚直文.长白山退化云冷杉林演替动态及恢复研究[D].北京林业大学,2009.
    龚直文,亢新刚,顾丽,等.长白山杨桦次生林生长过程与演替动向分析[J].林业科学研究.2009,22(3):379-384.
    龚直文,亢新刚,顾丽,等.天然林林分结构研究方法综述[J].浙江林学院学报.2009,26(3):434-443.
    龚直文,亢新刚,杨华,等.长白山杨桦次生林直径结构研究[J].西北林学院学报.2009,24(3):1-6.
    何列艳.长白山过伐林区杨桦次生林与落叶松人工林林下灌草多样性和生物量研究[D].北京林业大学,2011.
    何列艳,亢新刚,范小莉,等.长白山区林下主要灌木生物量估算与分析[J].南京林业大学学报(自然科学版).2011,35(5):45-50.
    何榕彬.水杉人工林生物量模型的研究[J].林业勘察设计.1997(2):46-49.
    贺东北,骆期邦,曾伟生.立木生物量线性联立模型研究[J].浙江林学院学报.1998(3):298-303.
    胡万良,姚国清,王树利.杨桦林抚育改造后林分的种群结构及演替趋向的研究[J].辽宁林业科技.1996(2):29-31.
    胡文力.长白山过伐林区云冷杉针阔混交林林分结构的研究[D].北京林业大学,2003.
    胡云云,亢新刚,赵俊卉.长白山地区天然林林木年龄与胸径的变动关系[J].东北林业大学学报.2009,37(11):38-41.
    黄劲松.帽儿山地区天然次生林下常见灌木生物量模型研究[D].东北林业大学,2011.
    黄劲松,邸雪颖.帽儿山地区6种灌木地上生物量估算模型[J].东北林业大学学报.2011,39(5):54-57.
    黄贤松,吴承祯,洪伟,等.2种杉木人工林密度与立木生物量的研究[J].福建林学院学报.2011,31(2):102-105.
    贾炜玮,于爱民.樟子松人工林单木生物量模型研究[J].林业科技情报.2008,40(2):1-2.
    江泽慧,彭镇华.世界主要树种木材科学特性[M].北京:科学出版社,2001.
    蒋艳,李任波,李玻.云南松树高——胸径生长关系模型[J].内蒙古林业调查设计.2010,33(1):58-60.
    菊花.内蒙古大青山油松人工林单木生长模型与生物量模型的研究[D].内蒙古农业大学,2010.
    巨文珍,农胜奇.森林生物量研究进展[J].西南林业大学学报.2011,31(2):78-89.
    巨文珍,王新杰,付尧,等.长白落叶松林冠空隙度随林木因子的变化[J].东北林业大学学报.2010,38(7):3-6.
    亢新刚,胡文力,董景林,等.过伐林区检查法经营针阔混交林林分结构动态[J].北京林业大学学报.2003,25(6):1-4.
    需相东,张则路,陈晓光.长白落叶松等几个树种冠幅预测模型的研究[J].北京林业大学学报.2006,28(06):75-79.
    林开敏,俞新妥,何智英,等.不同密度杉木林分生物量结构与土壤肥力差异研究[J].林业科学.1996,32(5):385-390.
    李钢铁,秦富仓,贾守义,等.旱生灌木生物量预测模型的研究[J].内蒙古林学院学报(自然科学学).1998,6(2):26-30.
    李思东,见正街.利用目测数据估测放牧草地草本植物的生物量[J].草原与草坪.1994(2):15-19.
    李希菲,唐守正,袁国仁,等.自动调控高曲线和一元立木材积模型[J].林业科学研究.1994,5:512-515.
    李晓娜,国庆喜,王兴昌,等.东北天然次生林下木树种生物量的相对生长[J].林业科学.2010,46(8):22-25.
    廖涵宗,邸道生,张春能,等.建立在树冠竞争因子上的建柏人工林密度管理[J].林业实用技术.1990(8):23-26.
    林开敏,洪伟,俞新妥,等.杉木人工林林下植物生物量的动态特征和预测模型[J].林业科学.2001(S1):99-105.
    林力.马尾松人工林生物量模型的研究[D].福建农林大学,2011.
    林伟.井冈山森林生态系统植被碳密度研究[D].南昌大学,2010.
    林伟,李俊生,郑博福,等.井冈山自然保护区12种常见灌木生物量的估测模型[J].武汉植物学研究.2010,28(6):725-729.
    刘凤娇,孙玉军.林下植被生物量研究进展[J].2011,24(2):53-58.
    刘琪璟.嵌套式回归建立树木生物量模型[J].植物生态学报.2009(2):331-337.
    刘亚茜.河北地区华北落叶松、杨树单木生物量、碳贮量及其分配规律[D].河北农业大学,2012.
    卢振龙,龚孝生.灌木生物量测定的研究进展[J].林业调查规划.2009,34(4):38-45.
    吕康梅.长白山过伐林区云冷杉针阔混交林最优林分结构和最优生长动态的研究[D].北京林业大学,2006.
    罗云建,张小全,侯振宏,等.我国落叶松林生物量碳计量参数的初步研究[J].植物生态学报.2007,31(6):1111-1118.
    罗云建,张小全,王效科,等.森林生物量的估算方法及其研究进展[J].林业科学.2009,45(8):129-133.
    骆期邦,曾伟生,贺东北,等.立木地上部分生物量模型的建立及其应用研究[J].白然资源学报.1999(03):271-277.
    闵志强.长白落叶松生物量估测模型研究[D].北京林业大学,2010.
    倪红伟,吴海一,周琳.洪河自然保护区杨桦林植物多样性及保护[J].国土与自然资源研究.2001(02):75-79.
    倪健.赤松稀疏幼林下灌木和草木层地上生物量的初步研究[J].华东师范大学学报(自然科学版).1994,4:105-108.
    宁金魁.北京西山地区典型植被类型森林发展类型设计研究[D].北京林业大学,2009.
    宁杨翠.长白山杨桦次生林健康评价与经营模式[D].北京林业大学,2011.
    彭小勇.闽北杉木人工林地上部分生物量模型的研究[D].福建农林大学,2007.
    彭懿.海南岛西部橡胶人工林生态系统植物亚系统碳汇功能研究[D].海南大学,2010.
    秦建华,姜志林.杉木林生物量及其分配的变化规律[J].生态学杂志.1996,15(1):1-7.
    唐守正,杜纪山.利用树冠竞争因子确定同龄间伐林分的断面积生长过程[J].林业科学.1999,35(6):35-39.
    唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学.2000(S1)19-27.
    王刚.关于植物自疏过程的一般模型[J].兰州大学学报(自然科学版).1993,29(4):215-218.
    王建华.赣南丘陵山地森林健康监测与分析研究[D].北京林业大学,2008.
    王铁牛.长白山云冷杉针阔混交林经营模式研究[D].北京林业大学,2005.
    王玉魁,杨文斌,卢琦,等.半干旱典型草原区白榆防护林的密度与生物量试验[J].干旱区资源与环境2010,24(11)144-150.
    吴冬秀,张彤,白永飞,等.-3/2方自疏法则的机理与普适性[J].应用生态学报.2002,13(9):1081-1084.
    吴明宇.基于航片估测乌兰布和沙漠地上生物量的研究[D].东北林业大学,2010.
    武纪成.落叶松云冷杉林结构特征及调整研究[D].中国林业科学研究院,2008.
    王秀云,孙玉军,马炜,等.不同密度长白落叶松林生物量与碳储量分布特征[J].福建林学院学报.2011,31(3):221-226.
    肖兴翠,李志辉,唐作钧,等.林分密度对湿地松生物量及生产力的影响[J].中南林业科技大学学报.2011,31(3):123-129.
    谢小魁,苏东凯,刘正纲,等.长白山原始阔叶红松林径级结构模拟[J].生态学杂志.2010,29(8):1477-1481.
    邢艳秋,王立海.基于森林调查数据的长白山天然林森林生物量相容性模型[J].应用生态学报.2007,18(1):1-8.
    胥辉.林木生物量模型研究评述[J].林业资源管理.1997,(5):33-36.
    胥辉.生物量模型方差非齐性研究[J].西南林学院学报.1999(2):73-77.
    胥辉,全宏波,王斌.思茅松标准树高曲线的研究[J].西南林学院学报.2000,20(2):75-77.
    许广山.长白山北坡主要森林土壤有机质及其特性的初步研究[M].中国科学院长白山生态定位 站:森林生态系统定位研究,1980:215-220.
    许俊利,何学凯.林木生物量模型研究概述[J].河北林果研究.2009,24(2):142-144.
    阎玉慧.长白山过伐林区云冷杉针阔混交林与落叶松人工林多目标效益研究[D].北京林业大学,2009.
    杨丽韫,李文华.长白山不同生态系统地下部分生物量及地下C贮量的调查[J].自然资源学报.2003,18(2):204-209.
    杨晓梅.子午岭天然柴松林碳储量与碳密度研究[D].中国科学院研究生院(教育部水土保持与生态环境研究中心),2010.
    姚源,龚维.碳汇——林业发展的机遇[J].中国林业.2008(14):41.
    宇万太,于永强.植物地下生物量研究进展[J].应用生态学报.2001,12(6):927-932.
    岳彩荣.香格里拉县森林生物量遥感估测研究[D].北京林业大学,2011.
    曾慧卿,刘琪璟,冯宗炜,等.红壤丘陵区林下灌木生物量估算模型的建立及其应用[J].应用生态学报.2007,18(10):2185-2190.
    曾慧卿,刘琪璟,马泽清,等.千烟洲灌木生物量模型研究[J].浙江林业科技.2006,(1):13-17.
    曾伟生.立木生物量建模样本数据采集方法研究[J].中南林业调查规划.2010,29(2):1-5.
    曾伟生.全国立木生物量方程建模方法研究[D].中国林业科学研究院,2011.
    曾伟生,骆期邦,贺东北.兼容性立木生物量非线性模型研究[J].生态学杂志.1999,(4):19-24.
    曾伟生,唐守正.东北落叶松和南方马尾松地下生物量模型研建[J].北京林业大学学报.2011,33(2):1-6.
    曾珍英,刘琪璟,曾慧卿.江西千烟洲几种灌木生物量模型的研究[J].福建林业科技.2005,32(4):68-72.
    张海清,刘琪璟,陆佩玲,等.千烟洲试验站几种常见灌木生物量估测[J].林业调查规划.2005,30(5):43-49.
    张慧芳,张晓丽,黄瑜.遥感技术支持下的森林生物量研究进展[J].世界林业研究.2007,20(4):30-34.
    张尚炬.沿海马尾松台湾相思次生林生态系统生物量及碳贮量的研究[D].福建农林大学,2008.
    张世利.基于RS、GIS的闽江流域杉木林生物量及碳贮量估测研究[D].福建农林大学,2008.
    张思玉,潘存德.天山云杉人工幼林相容性生物量模型[J].福建林学院学报.2002,22(3):201-204.
    赵蓓,郭泉水,牛树奎,等.雾灵山灌木生物量模型研究[J].广东农业科学.2012,8:61-65.
    赵浩彦.长白山云冷杉林幼树结构和生长动态分析[D].北京:北京林业大学,2012.
    赵俊卉.长白山云冷杉混交林生长模型的研究[D].北京:北京林业大学,2010.
    赵俊卉,亢新刚,龚直文.择伐对北方森林更新、生物多样性和生长的影响研究进展[J].内蒙古农业大学学报(自然科学版).2008,29(4):265-268.
    赵俊卉,亢新刚,刘燕.长白山主要针叶树种最优树高曲线研究[J].北京林业大学学报.2009,31(04):13-17.
    赵俊卉,亢新刚,张慧东,等.长白山主要针叶树种胸径和树高变异系数与竞争因子的关系[J].应用生态学报.2009,20(8):1833-1837.
    赵俊卉,亢新刚,张慧东,等.长白山3个主要针叶树种的标准树高曲线[J].林业科学.2010,46(10):191-194.
    赵俊卉,刘燕,张慧东,等.长白山天然林不同树种树高曲线对比研究[J].浙江林学院学报.2009, 26(6):865-869.
    赵林,殷鸣放,陈晓非,等.森林碳汇研究的计量方法及研究现状综述[J].西北林学院学报.2008,(1):59-63.
    郑绍伟,唐敏,邹俊辉,等.灌木群落及生物量研究综述[J].成都大学学报(自然科学版).2007,3:189-191.
    中国林业科学研究院木材工业研究所.中国主要树种的木材物理力学性质[M].北京:中国林业出版社,1982:2-40.
    周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报.2000,24(5):518-522.
    孜来汗·达吾提.塔里木河中,游胡杨林地上生物量研究[D].新疆大学,2009.
    Baker D M, Webster K L, Kim K. Caribbean octocorals record changing carbon and nitrogen sources from 1862 to 2005[J]. Global Change Biology.2010,16(10):2701-2710.
    Beier C M, Horton J L, Walker J F, et al. Carbon limitation leads to suppression of first year oak seedlings beneath evergreen understory shrubs in Southern Appalachian hardwood forests[J]. Plant Ecology.2005,176(1):131-142.
    Bravo F, Bravo-Oviedo A, Diaz-Balteiro L. Carbon sequestration in Spanish Mediterranean forests under two management alternatives:a modeling approach[J]. European Journal of Forest Research. 2008,127(3):225-234.
    Bray J R. Root production and the estimation of net productivity [J]. Canadian Journal of Botany.1963, 41:65-72.
    Brown S L, Schroeder P E. Spatial patternsof abovegroundproduction andmortality of woody biomass for eastern U. S. forests. [J]. Ecological Applications.1999,9:968-980.
    Brown S, Gillespie A, Lugo A E. Biomass estimation methods for tropical forests with applications to forest inventory data[J]. Forest Science.1989,35:881-902.
    Brown S, Lugo A E. Biomass of tropical forests:an ewestimate based on forest volumes[J]. Science. 1984,233:1290-1293.
    Brown S. Estimating biomass and biomass change of tropical forests:a primer[Z].1997.
    Cairns M A, Brown S, Helmer E H. Root biomass all ocationin the world's up land forests[J]. Oecologia. 1997,111:1-11.
    Cao Z W, Zhang Y Z, Gao Y. The productivity of the plantation on sand land of Nenjiang River[J]. Protection Forest Science and Technology.2004:73-75.
    Chastain R A, Currie W S, Townsend P A. Carbon sequestration and nutrient cycling implications of the evergreen understory layer in Appalachian forests B-5741-2008[J]. Forest Ecology and Management.2006,231(1-3):63-77.
    Chave J, Condit R, Aguilar S, et al. Error propagation and scaling for tropical forest biomass estimates[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences.2004,359(1443):409-420.
    Chen B H, Chen C. A preliminary study on the biomass and production of Picea koraiensis Nakai forest communities in the dune[J]. Scientia Silvae Sinicae.1980,16:269-278.
    Chen Y X, Li Z. Biomass for three majorLarix gmelinii forest type[J]. Forestry Inventory and Design of Neimenggu.1989,7:29-39.
    Cheng D L, Niklas K J. Above- and below-ground biomass relationships across 1534 forested communities[J]. Annals of Botany.2007,99(1):95-102.
    Coble D W, Milner K S, Marshall J D. Above- and below-ground production of trees and other vegetation on contrasting aspects in western Montana:a case study[J]. Forest Ecology and Management.2001,142(1-3):231-241.
    Ding B Y, Liu S. Studies on biological productivity of artificial forests of Dahurian larches[J]. Acta Phytoecologica et Geobotanica Sinica.1990,14:226-236.
    Djomo A N, Ibrahima A, Saborowski J, et al. Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa[J]. Forest Ecology and Management.2010,260(10):1873-1885.
    Drexhage M, Gruber F. Above- and below-stump relationships for Picea abies:Estimating root system biomass from breast-height diameters[J]. Scandinavian Journal of Forest Research.1999,14(4): 328-333.
    Fang J Y, Chen A P, Peng C H. Changes in forest biomass carbon storage in China between 1949 and 1998 [J]. Science.2001,291:2320-2322.
    Fang J Y, Liu G. Carbon cycles of three temperate forest ecosystems in mountains of Beijing[J]. Science in China (D).2006,36:533-543.
    Fang J Y, Wang G G, Liu G H. Forest biomassofChina:an estimate based on the biomass volume relationship[J]. Ecological Applications.1998,8(4):1084-1091.
    Fearnside P M. Wood density for estimating forest biomass in Brazilian Amazonia[J]. Forest Ecology and Management.1997:59-87.
    Feng L, Yang Y. A study on biomass and production of three types of Dahurian larch virgin forest[J]. Scientia Silvae Sinicae.1985,21:86-92.
    Fonseca W, Benayas J, Alice F E. Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica[J]. Forest Ecology and Management.2011, 262(8):1400-1408.
    Garber S M, Monserud R A, Maguire D A. Crown Recession Patterns in Three Conifer Species of the Northern Rocky Mountains[J]. Forest Science.2008,54(6):634-643.
    Genet A, Wernsdorfer H, Jonard M, et al. Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe[J]. Forest Ecology and Management.2011,261(7):1188-1202.
    Gower S T, Kucharik C J, Norman J M. Directandindirect estimation of leaf area index, f APAR, and net primary production of terrestrial ecosystems& a real or imaginary problem?[J]. Remote Sensing of Environment.1999,70(1):29-51.
    Han M Z. A research on biomass and production of Larix dahurica forest communities[J]. Acta Agriculturae Boreali-Sinica.1987,2:134-138.
    Han M Z. A study on biomass and net primary production in a Dahurian larch birch forest ecosystem. In: Zhou, X.F. (Ed.), Long-Term Research on China's Forest Ecosystems[M]. Ha'erbin:Northeast Forestry University Press,1994:451-458.
    Henry M, Besnard A, Asante W A, et al. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa[J]. Forest Ecology and Management. 2010,260(8):1375-1388.
    IPCC.2006 IPCC guidelines for national greenhouse gas inventory[Z].2006.
    IUFRO. International guidelines for forestmonitoring[S]. Vienna IUFRO World Series Vol.5,1994.
    Jepsen M R. Above-ground carbon stocks in tropical fallows, Sarawak, Malaysia[J]. Forest Ecology and Management.2006,225(1-3):287-295.
    Kantavichai R, Briggs D, Turnblom E. Modeling effects of soil, climate, and silviculture on growth ring specific gravity of Douglas-fir on a drought-prone site in Western Washington[J]. Forest Ecology and Management.2010,259(6):1085-1092.
    Kennth P B, David R A. Model Selection and Multimodel Inference A Practical Information-Theoretic Approach, Second Edition[M]. New York:Springer-Verlag,2002.
    Ketterings Q M, Coe R, van Noordwijk M, et al. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests[J]. Forest Ecology and Management.2001,146(1-3):199-209.
    Kittredge J. Estimation of the a mount of foliage of trees and stand[J]. Journal of Forestry.1944,42: 905-912.
    Kraenzel M, Castillo A, Moore T. Carbon storageof harvest ageteak (Tectona grandis) plantations, Panama[J]. Forest Ecology and Management.2003,173(1-3):213-225.
    Kunze M. Lehrbuch der Holzmesskunst. In:Zweiter Band[M]. Berlin:Wiegandt und Hempel,1873.
    Laclau P. Root biomass and carbon storage of ponderosa pine in the northwest Patagonia plantations[J]. Forest Ecology and Management.2003,173(1-3):353-360.
    Lehtonen A M, Kip R, Heikkinen J. Biomass expansion factors(BEFs) for Scots pine, Norway spruceand birch according to stand agefor boreal forests[J]. Forest Ecology and Management.2004, 188:211-224.
    Li K R, Wang S Q, Cao M K. Vegetation and soil carbon storage in China[J]. Science in China (D). 2004,47:49-57.
    Li S, Liu W Y, Wang L S, et al. Biomass, diversity and composition of epiphytic macrolichens in primary and secondary forests in the subtropical Ailao Mountains, SW China[J]. Forest Ecology and Management.2011,261(11):1760-1770.
    Li W H, Deng M K, Li F. Study on biomass and primary production of main ecosystems in Changbai Mountain. Res Forest Ecosyst 2,34-50[J].1981.
    Liocurt F D. De l'amenagement des sapiners. Bulletin of the Soc.vypsat Forest[J]. Franche-Comte et Belfort.1898,4:396-409.
    Liu S R, Cai Y. Patterns and processes of net primary productivity in a Dahurian larch plantation ecosystem. In:Zhou, X.F. (Ed.), Long-term Research on Forest Ecosystems (I). [M]. Ha'erbin: Northeast Forestry University press,1991:419-427.
    Loetsch F, Zohrer F, Haller K E. Forest Inventory[M]. Munich, Germany:BLV Verlags gesells chaft, 1973.
    Makela A. Acclimation in dynamic models based on structural relationships[J]. Functional Ecology. 1999,13(2):145-156.
    Meyer H A. Structure, growth and drain in balanced uneven-aged forests[J]. Journal of Forestry.1952, 50:85-92.
    Mokany K, Raison J R, Prokushkin S A. Critical analysis of root:shoot ratios interrestrial biomes[J]. Global ChangeBiology.2006,12:84-96.
    Mu C C, Wan S C, Su P, et al. Biomass distribution patterns of Alnus hirsuta and Betula platyphylla —swamp ecotone communities in Changbai Mountains[J]. Chinese Journal of Applied Ecology. 2004,15:2211-2216.
    Mu L Q, Zhang J, Liu X J, et al. Study on the tree layer biomass of Picea koraiensisartificial forests[J]. Bulletin of Botanical Research.1995,15:551-557.
    Muukkonen P, Makipaa R. Biomass and stem volume equations for tree species in Europe[J]. Silva Fennica Monographs.2006,40(4):763-773.
    Nabeshima E, Kubo T, Hiura T. Variation in tree diameter growth in response to the weather conditions and tree size in deciduous broad-leaved trees[J]. Forest Ecology and Management.2010,259(6): 1055-1066.
    Niklas K J. Plant Allometry:The Scaling of Form and Process[M]. Chicago,Illinois:University of Chicago Press,1994.
    Niu X Z, Duiker S W. Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern US[J]. Forest Ecology and Management.2006,223(1-3):415-427.
    Ogawa H. Principle and methods of estimating primary production in forests, ShideiT, KoraT. Primary Productivity of Japanese forests & productivity of terrestrial communities[M]. Tokyo:University of Tokyo Press,1977:29-38.
    Pajtik J, Konopka B, Lukac M. Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees[J]. Forest Ecology and Management.2008,256(5):1096-1103.
    Parresol B R. Additivity of nonlinear biomass equations[J]. Canadian Journal of Forest Research.2001, 31:865-878.
    Parresol B R. Assessing tree and stand biomass:a review with examples andcritical comparisons [J]. Forest Science.1999,45(4):573-593.
    Peri P L, Gargaglione V, Pastur G M, et al. Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia[J]. Forest Ecology and Management.2010,260(2):229-237.
    Ponette Q, Ranger J, Ottorini J M, et al. Aboveground biomass and nutrient content of five Douglas-fir stands in France[J]. Forest Ecology and Management.2001,142(1-3):109-127.
    Ranger J, Gelhaye D. Below ground biomass and nutrient content in a 47-year-old Douglas-fir plantation[J]. Annals of Forest Science.2001,58:423-430.
    Ribeiro S C, Fehrmann L, Soares C, et al. Above- and belowground biomass in a Brazilian Cerrado[J]. Forest Ecology and Management.2011,262(3):491-499.
    Rodriguez R, Hofmann G, Espinosa M, et al. Biomass partitioning and leaf area of Pinus radiata trees subjected to silvopastoral and conventional forestry in the VI region, Chile[J]. Revista Chilena de Historia Natural.2003,76(3):437-449.
    Salis S M, Assis M A, Mattos P P. Estimatingtheaboveground biomassand wood volume of savannawoodlands in Brazil's Pantanal wetlands based on allometric correlations[J]. Forest Ecology and Management.2006,228:61-68.
    Schroeder P E, Brown S, Mo J. Biomass estimation for temperate broadleaf forests of theUnited States using inventory data[J]. Forest Science.1997,43(3):424-434.
    Shirima D D, Munishi P, Lewis S L, et al. Carbon storage, structure and composition of miombo woodlands in Tanzania's Eastern Arc Mountains[J]. Annals of Forest Science.2011,49(3): 332-342.
    Smith J E, Heath L S, Jenkins J S. Forest volume to biomass models and estimates of mass for live and standing dead trees of U.S.forests[Z].2003.
    Sprugel D G. Correcting for Bias in Log-Transformed Allometric Equations[J]. Ecology.1983,64: 209-210.
    Tangki H, Chappell N A. Biomass variation across selectively logged forest within a 225-km(2) region of Borneo and its prediction by Landsat TM[J]. Forest Ecology and Management.2008,256(11): 1960-1970.
    Termikaelian M T, Korzukhin M D. Biomass equations for sixty-five North American tree species[J]. Forest Ecology and Management.1997,97(1):1-24.
    Verwijst T, Telenius B. Biomass estimation procedures in short rotation forestry[J]. Forest Ecology and Management.1999,121(1-2):137-146.
    Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management.2006,222(1-3):9-16.
    Wang C, Gower S T, Wang Y, et al. The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China[J]. Global Change Biology.2001, 7:719-730.
    Wang X P, Fang J Y, Tang Z Y, et al. Climatic control of primary forest structure and DBH-height allometry in Northeast China [J]. Forest Ecology and Management.2006,234(1-3):264-274.
    Wang X P, Fang J Y, Zhu B. Forest biomass and root-shoot allocation in northeast China[J]. Forest Ecology and Management.2008,255:4007-4020.
    Wang Y X, Wu Y X, Li C B, et al. Study on biomass of Larix Kampferi plantation and its distribution[J]. Journal of Liaoning Forestry Science & Technology.1999:17-20.
    Wauters J B, Coudert S, Grallien E, et al. Carbon stock in rubber tree plantations in Western Ghana and Mato Grosso (Brazil)[J]. Forest Ecology and Management.2008,255(7):2347-2361.
    West P W. Treeand Forest Measurement[M]. Berlin:Springer Verlag,2004.
    Whittaker R, Likens G E. Methods of assessing terrestrial productivity[M]. New York:Springer Verlag, 1975:305-328.
    Xing Y Q, de Gier A, Zhang J J, et al. An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain:A case study in Changbai mountains, China[J]. International Journal of Applied Earth Observation and Geoinformation.2010,12(5): 385-392.
    Zhang C L, Zhou X F. Biomass of a natural secondary birch stand. In:Zhou, X.F. (Ed.), Long-term Research on Forest Ecosystems (Ⅰ).[M]. Ha'erbin:Northeast Forestry University Press,1991: 428-435.
    Zhang H, Brandle J R, Meyer G E. The relationship between open windspeed and windspeed reduction in shelter[J]. Agro for Syst.1995,32:297-311.
    Zhang J B, Dong X W, Xu L F, et al. Biomass and accumulation and distribution of nutritive elements of Populas alba P. bemll-nensis[J]. Journal of Northeast Forestry University.1999,27:31-35.
    Zhou G S, Wang Y H, Jiang Y L. Estimating biomass and net primary production from forest inventory data:a casestudyof China's Larix forests[J]. Forest Ecology and Management.2002,169:149-157.
    Zhu B A, Wang X P, Fang J Y, et al. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China [J]. Journal of plant research.2010,123(4):439-452.
    Zhu C Q, Liu X D, Zhang Q, et al. The biomass of intensive and extensive cultured poplar plantationx The biomass of intensive and extensive cultured poplar plantation[J]. Journal of Northeast Forestry University.1997,25:53-56.
    Zianis D, Mencuccini M. Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus sp. [J]. Annals of Forest Science.2003,60(5):439-448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700