用户名: 密码: 验证码:
裂解连杆用V-Ti-N微合金钢的开发及组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发动机连杆裂解加工技术是目前国际上连杆生产的最新技术,有着传统连杆加工方法无可比拟的优越性。其对裂解连杆材料要求具有高强度来减轻发动机连杆重量和提高疲劳性能,合适的脆性和较小塑性变形来减少裂解加工过程中的变形量,同时裂解连杆材料还需具备良好的切削加工性能来提高刀具寿命,改善连杆表面质量,节约加工成本。在我国,对汽车连杆裂解技术的研究刚刚起步,而裂解连杆材料也还是以引进为主。因此,开发出具有良好性能的汽车发动机裂解连杆用钢成为国内汽车用钢开发的热点之一。
     本文以裂解连杆用钢为研究对象,研究了微合金化元素V、Ti、N含量对中碳微合金钢组织和性能的影响,开发了用于裂解连杆的中碳V-Ti-N微合金钢。通过精炼工艺研究了脱氧工艺和精炼渣组成对V-Ti-N微合金钢的夹杂物组成、形态及分布的影响。采用热膨胀法测试了V-Ti-N微合金钢的奥氏体连续冷却转变曲线(CCT曲线),基于CCT曲线研究了轧后冷却速度和锻造温度对V-Ti-N微合金钢组织和性能的影响,在此基础上,对比研究了V-Ti-N微合金钢、C70S6BY和42CrMo三种汽车发动机连杆用钢的疲劳性能,探讨其疲劳裂纹形成机理,取得如下研究结果:
     开发了一种裂解连杆用V-Ti-N微合金钢,其化学成分为(wt%):C0.35~0.40,Si0.50~0.70,Mn0.90~1.20,S0.040~0.070,V0.20~0.30,Ti0.010~0.020,N0.0100~0.0150。该微合金钢的强化机制是,V、N等微合金元素在轧制冷却过程中析出弥散分布的V(C,N)强化相;而适量的Ti在钢中形成弥散分布的TiN相阻止热加工过程中奥氏体晶粒的过分长大,细化了微合金钢的组织。
     对V-Ti-N微合金钢的精炼工艺研究发现,在精炼过程中,采用Si-Mn脱氧和精炼渣扩散脱氧,减少钢中Al脱氧数量,有利于钢水的浇注性能和减少钢中AlN夹杂物。LF精炼工艺采用前期高碱度白渣、后期低碱度渣,其钢中氧含量能降低到0.0016%,硫的回收率达75%。通过钢包钙处理,可以将长条状MnS夹杂转变为球状复合夹杂。
     应用FORMASTOR-F热膨胀试验仪对V-Ti-N微合金钢的奥氏体连续冷却转变进行研究。结果表明,随着冷却速度的增大,相变时间变短,相变开始点和结束点均呈下降趋势,而晶粒逐渐细化。在0.1~5.0℃/s的冷却速度下,首先发生γ→α+P转变,最终产物是铁素体和珠光体两相组织;在5.0~30.0℃/s的冷却速度下,试验钢在先共析少量铁素体后,不发生珠光体和贝氏体转变,而发生马氏体转变,其最终组织为少量铁素体和马氏体组织。而在冷却速度达到50.0℃/s时,会直接发生γ→M转变,最终产物为马氏体组织。同时,随着冷却速度的增大,试验钢中析出相多而细小,但当冷却速度增大到一定程度后(≥10.0℃/s),共析相变被抑制,造成析出相数量显著减少。
     轧后冷却速度和锻造温度对裂解连杆用V-Ti-N微合金钢的组织和性能有重要影响。提高轧后冷却速度和锻造温度有利于钢中珠光体的增加,降低铁素体晶粒尺寸和珠光体片层间距,增加析出相,提高抗拉强度和屈服强度,在高的冷却强度下和1200℃锻造温度下,其屈服强度和抗拉强度分别达到840MPa、1050MPa,其中析出相对屈服强度的贡献达到174MPa。冲击断口表现出典型的脆性断口特征,钢中的硫化物、碳氮化物和氧化物成为断裂的裂纹源。
     对比研究了V-Ti-N微合金钢、C70S6BY、42CrMo三种连杆用钢的疲劳强度、疲劳断口形貌和疲劳裂纹形成机理,结果表明,V-Ti-N微合金钢的中值疲劳强度σ-1约为400MPa,优于对比钢C70S6BY和42CrMo的疲劳极限。试验钢疲劳裂纹萌生于试样表面的铁素体-珠光体边界,并主要沿着铁素体-珠光体边界及珠光体内部扩展,疲劳断口呈韧窝状,属韧性断裂。C70S6BY中先共析铁素体呈薄片状断续分布在珠光体周围,疲劳裂纹在晶界铁素体处萌生及扩展,疲劳断口呈解理状,属脆性疲劳断裂。42CrMo钢是空冷贝氏体+铁素体组织,在应力载荷下,原粗奥氏体晶界处较长贝氏体-铁素体板条成为疲劳微裂纹。
Connecting-rod fracture splitting is the newest engine connecting-rod processinginternationally and it has irreplaceable superiority. The high duty materials are requiredfor decreasing the weight and improving the fatigue strength of engine connecting-rod.Appropriate brittleness and low ductile of connecting-rod materials can reduce thedistortion. Meanwhile, good machinability is required for increasing the life of machinetool, improving the surface quality of connecting-rod, and reducing the cost. In domestic,the research and development of connecting-rod fracture splitting technology just start andthe fracture splitting material also is mainly dependent on import. Therefore, thedevelopment of automobile engine fracture splitting materials with good performance hasbeen the focus of research and exploitation of automobile steels.
     In this paper, with the steel for engine fracture splitting connecting-rod as the studyobject, the effects of microalloying elements such as V, Ti and N on microstructure andmechanical properties of medium carbon microalloyed steel were studied. The V-Ti-Nmicroalloyed steel used for fracture splitting connecting-rod was developed. The effects ofdeoxidation and the composition of refining slag on its inclusion composition,morphology and distribution were studied by the refining process. The CCT diagram ofaustenite continuous cooling transformation was gained by the thermal expansion methods.Based on the diagram, the effects of the cooling rate after rolling and the forgingtemperature on microstructure and properties of the V-Ti-N microalloyed steel wereinvestigated. Finally, the fatigue performance of V-Ti-N microalloyed steel, C70S6BYand42CrMo for automobile engine connecting rod steel were comparative studied and theforming mechanism of fatigue cracks was explored. The following results were obtained:
     A new type of V-Ti-N microalloyed steel, whose chemical composition (wt%) wasC0.35~0.40,Si0.50~0.70,Mn0.90~1.20,S0.040~0.070,V0.20~0.30,Ti0.010~0.020, N0.0100~0.0150used for fracture splitting conrods was developed. Thestrengthening mechanism of microalloying elements mainly lie on that the V, Ti and Nelements precipitate a tiny V (C, N) phase in V-Ti-N microalloyed steel in the coolingprocess of rolling. At the same time, because of a suitable amount of Ti content, dispersedTiN particles could contribute to prevent austenitic graining excessively duringhot-working and obtain fine microstructure.
     The research of the refining technology of V-Ti-N medium carbon microalloyed steelshowed that, it was helpful for casting performance and reducing AlN inclusions in steelby improving the Si-Mn deoxidization and reducing Al deoxidization in the refiningprocess. By changing the refine slag basicity from high to low, the oxygen content of steelreached0.0016%, while the sulfur recovery reached75%. After calcium treatment,inclusion shape MnS inclusions were changed into ball shape inclusions.
     The results of the FORMASTOR-F test of V-Ti-N medium carbon microalloyed steelshowed that, with the cooling rate increasing, the time required for phase transformationwas shorten. The starting point and the end point of phase transformation tended to declineand the grains were refined gradually. At a cooling rate of0.1~5℃/s, austenitic firstlytransformed to ferrite and pearlite. The final microstructure was the mixture of ferrite andpearlite. At a cooling rate of5~30℃/s, proeutectoid ferrite was obtained on the boundaryof prior austenite grains without pearlite and bainite transformation. Instead, martensitetransformation took place and its final microstructure was composed of martensite and afew ferrites. When the cooling rate was up to50℃/s, martensite transformation happeneddirectly and the final microstructure was martensite. At the same time, as the cooling rateincreased, the number of tiny precipitations in steel increased. However, when the coolingrates increased to over10℃/s, precipitations were suppressed, leading to less precipitatedphase.
     The cooling rate after rolling and the forging temperature have important influenceson the composites, microstructure and performance properties of the V-Ti-N mediumcarbon microalloyed steel used as fracture splitting con-rods. The contents of pearlite andnumbers of precipitated phases increase while ferrite grain size and interlayer spacing ofpearlite decrease when the cooling rate and the forging temperature get higher. Thus thetensile strength and the yield strength improve. After higher cooling rate was appliedunder a forging temperature of1200℃, the yield strength and tensile strength went up to840MPa and1050MPa respectively. The precipitant phase in the steel gave a contributionof174MPa to the yield strength. The impact test shows typical brittle fracturecharacteristics with sulfide, carbon nitrides and oxides as the origins of the fracture cracks.
     Fatigue fracture and its mechanism have been studied by fatigue test of V-Ti-Nmedium carbon microalloyed steel, C70S6BY and42CrMo. The results show that thefatigue strength of V-Ti-N medium carbon microalloyed steel was about400MPa, whichis better than C70S6BY and42CrMo. Fatigue cracks in the V-Ti-N medium carbon microalloyed steel initiated in the boundaries of ferrite and pearlite, then expanded alongthe boundaries and expanded into the internal pearlite. The surface of the fatigue fractureshowed typical ductile fracture characters, which was dimple and necking. Fatigue cracksin C70S6BY initiated and expanded from the ferrites in the boundaries of a thin anduncontinuous network of proeutectoid ferrite, the surface of the cracks showed distinctbrittle fracture character. The microstructure of42CrMo steel was composed ofair-cooling bainite and ferrite, when applied under a condition of stress, the longbainite-ferrite stick in the boundaries of original coarsen austenite became the initiationsof fatigue micro cracks.
引文
[1]夏国华,朱自成,冯文刚等.非调质钢.北京:国防工业出版社,1997.1~6
    [2]徐文亮,张中铧,张弛等.汽车用特钢的发展现状及前景.宝钢技术,2007,(6):17~22
    [3]吴玮.汽车零部件用非调质钢的应用和发展.世界钢铁,2009(4):62~68
    [4]关洪涛.日本汽车金属材料应用发展及变化特征.汽车工艺与材料,2006(7):1~6
    [5]寇淑清,杨慎华,金明华等.发动机连杆裂解加工技术及其应用.机械强度,2004,26(5):538~541
    [6]杨慎华,寇淑清,谷诤巍等.发动机连杆裂解加工新技术.哈尔滨工业大学学报,2000,32(3):129~131
    [7]寇淑清,杨慎华,邓春萍等.裂解工艺-发动机连杆制造最新技术.中国机械工程,2001,12(7):839~842
    [8]赵新海.程联军.国内连杆模锻加工技术的现状及发展.锻压装备与制造技术,2006,(1):15~17
    [9] News and views.Wrought versus powder forged connecting rods.Powder Metallurgy,2005,48(1):5
    [10] Hasegana T,Iida Z,Takada K.Non-heattreated connecting rod and method ofmanufacturing.United States Patent:0000088(A1),2006,1~5
    [11]韩凤麟.汽车发动机连杆发动趋势.MC现代零部件,2006,(6):48~54
    [12]姚贵升.汽车连杆裂解用钢的开发.汽车工艺与材料,2004,(11):6~9
    [13]邓伟辉,张永俊.连杆涨断加工技术现状与发展.机电工程技术,2008,37(4):13~17
    [14]寇淑清,金文明.内燃机连杆制造最新技术与发展趋势.内燃机工程,2001,22(1):28~31
    [15]顾永生.现代汽车发动机制造工艺的发展动向.柴油机设计与制造,2000,(3):36~39
    [16]阎洪涛.发动机连杆裂解工艺参数确定及数值模拟[博士学位论文].河北:燕山大学,2006
    [17] Yoo Y M,Haug, E J,Choi K K.Shape optimal design of an engine connectingrod.Journal of mechanisms transmissions and automation in design, Transactions ofASME,1984,106:415~419.
    [18] Pai C L.The shape optimization of a connecting rod with fatigue life constraint.JMater Process Technol,1996,11(5~6):357~370.
    [19] Repgen B.Optimized connecting rods to enable higher engine performance and costreduction.SAE Technical Paper Series:980882,1998,1~5
    [20] Satoshi Koganemaru,Ryuji Ohmi.Development of fracture splitting connecting rodwith high yield ratio.SAE20065182,7~10
    [21] Tsuyoshi Kubota,Shinya Iwasaki,Tsuneo Isobe.et al.Development of FractureSplitting Method for Case Hardened Connecting Rods, Yamaha Motor TechnicalReview,2005,4:1~10
    [22] Rune Lagneborg,Tadeusz Siwecki,Stanislaw Zajac,et al.The role of vanadium inmicroalloyed steels.Scandinavian journal of metallurgy,1999,28:186~241
    [23]杨作宏,陈伯春.谈微合金元素Nb、V、Ti在钢中的作用..甘肃冶金,2000,(4):20~22
    [24]杨才福,张永权.CSP品种与钒氮微合金化.北京:钢铁研究总院钒氮钢发展中心,2002,80~88
    [25] T Kimura, F Kawabata, K Amano. Heavy gauge shapes with excellentseismic-resistance for building structures produced by the third generation TMCP,Pro.of International Symposium on Steel for Fabricated Structures, Cincinnati,USA,1999,165~171
    [26]蒋昌林,朱涛,潘国平.在CSP线生产V微合金化钢的探讨.钢铁钒钛,2004,25(1):39~43
    [27]查小琴,惠卫军,雍岐龙等.钒对中碳非调质钢疲劳性能的影响,金属学报,.2007,43(7):719~723
    [28] S Zajac.Thermodynamic model for the precipitation of carbonitrides in microalloyedsteels,Swedish institute for metals research,internal report IM-3566,1998,1:34~45
    [29] S Zajac,R Lagneborg,T Siwecki.The role of nitrogen in microalloyed steels,Contribution to the Int. Conf. Microalloying”95”,Iron and Steel Society Inc.,Pittsburgh,PA,June1995:321~340
    [30] Kamel A EL-FAWAKHRMY,Mohamed F MEKKAWY,Michael L MISHREKY,et al.Characterization of precipitates in Vanadium and Titanium microalloyedsteels.ISIJ International,1991,31(9):1020~1025
    [31] M J Balart,C L Davis,M Strangwood.Fracture behaviour in medium-carbonTi–V–N and V–N microalloyed ferritic-pearlitic and bainitic forging steels withenhanced machinability.Materials Science and Engineering,2002,A328:48~57
    [32] Zajac S,Siwecki T,Korchynsky M.Importance of nitrogen for precipitationphenomena in V-microalloyed steels.Conf. Prec. On Low Carbon Steel for the90’s[C]Pittsburgh:ASM/TSM,1993,139~150
    [33] Engineer S,Huchtemann B.Renew and development of microalloyed steels forforgings.Bars and Wires Sympum Proceedings on Fundamentals and Applications ofMicroaloying Forging Steels.Golden:1996,61~78
    [34] Stanislaw Zajac.含钒钢的沉淀和晶粒细化.钒应用技术研讨会论文集,中国北京:2001,282~285
    [35] Ochi T,Takahashi T,Takada H.Improvement of the toughness of hot forged productsthrough intragranula ferrite formation.I&SM.1989,(2):21~28
    [36] Zajac S,Siweeki T,Hutchinson W B,et at.The role of carbon in enchancingprecipitation strengthening of V-microalloyed steels.Conf.Proc.of Int.Symposiumon Microalloying in Steels:New Trends for the21Century,San-Se basitian,1998,295~302
    [37]季怀中,杨才福,张永权等,氮在非调质钢中的作用,钢铁,2000,35(7):66~72
    [38]尹贵权,黄贞益,杨才福等.氮含量和TMCP对微合金V-N钢显微组织和力学性能的影响.金属热处理,2008,33(3):4~8
    [39] C.Capdevila,C.Garcia-mateo,J.Chao,et al.Effect of V and N precipitation onacicular ferrite formation in sulfur-lean vanadium steels.Metallurgical and materialstransactions A,2009,40(5):522~538
    [40] Kai WANG,Lijun WANG,Wenfang CUI,et al.Effect of V and V-N microalloyingon deformation induced ferrite transformation in low carbon steels.J. Mater. Sci.Technol.,2006,22(2):159~163
    [41]鄢国强.材料质量检测与分析技术.北京:中国计量出版社,2005,(5):287~312
    [42]赵虎,赵岚.低碳中硫铝脱氧易切削钢夹杂物的变性.青海师范大学学报.1999,(1):24~28
    [43] Oikawa K,Ohtani H,Ishida K,et al.The control of the morphology of MnSinclusions in steel during solidification.ISIJ International,1995,35(4):402~408
    [44]马翔.钛微合金化钢中硫化物夹杂的态别定量.冶金分析,1995,15(1):426~430
    [45]张鉴.炉外精炼的理论与实践.北京:冶金工业出版社,1999
    [46]常地开,赵焕春,张慧峰等.含硫非调质钢轧后硫化物夹杂形貌的观察.金属热处理,2006,31(9):60~64;
    [47]刘永铨.易切削钢.沈阳:东北工学院出版社,1990
    [48]陈日曜.金属切削原理.北京:机械工业出版社,1985
    [49]张小峰.低碳高硫易切削钢中MnS夹杂物形貌、分布的分析.东莞理工学院学报,2002,9(1):24-28
    [50] Saburo Ohtani,Sakae Katayama,Tadahisa Akasawa,et al.Qualities of strand castresulfurized free-machining steels. In: ASM international conference on highproductivity machining,material,and processing,1985, New Orleans,LA,1985,34~56
    [51] Hiromsa Takada,Yoshiro Koyasu.Present status and future outlook of microalloyedforging steels.Nippon steel technical report,1995,64:7~12
    [52] Ishikawa, F., Takahashi,T., Ochi, T., Intragranular ferrite nucleation inmedium-carbon vanadium steels Metallurgical and Meterials Transactions,1994,25A:929~935
    [53]Nadkmai, M McComriek, J D.Boyd. Austenite transformation kinetics inmicroalloyed spring steels.In:A J DeArdo.Proeessing Proc Int Conf onProcessing,Microstructure and properties of microalloyed and other modem HighStrength Low Alloyed Steels,Iron and Steel Society,Warrendale,AP,1991:235~245
    [54]尹桂丽,周立岱,王劲松等.非调质钢固溶强化规律的研究.辽林工业大学学报(自然科学版),2008,28(5):333~337
    [55] R.Bengochea, B.Lo’pez, I.Gutierrz. Microstructural evolution during the austenite toferrite transformation from deformed austenite,Metall. Trans.,1998,29A:41~47
    [56] Willima Roberts.Recent innovations in alloy design and processing of microalloyedsteels. International conference on technology&applications HSLAsteels.Philadelphia,Pennsylvania,Published by: America Society of Metals,MetasPark,Ohio44073,1983,33~65
    [57] Kop T A.,J Sietsma,et al.Dilatometric analysis of phase transformations in hypo~eutectoid steels.Journal of Materials Seience,2001,36(2):519~526
    [58] D.L.Baragar.The high temperature and high strain-rate behavior of a plain carbonand an HSLA steel,Journal of Mechanical Working Technology,1987,(14):295~307
    [59] Wang, S H,Y Zhang,et al.Room temperature creep and strain-rate-dependentstress-strain behavior of pipe line steels. Journal of Materials Science,2011,36(8):1931~1938.
    [60] A Najafi Zadeh,J J Jonas,S Yue.Effect of dynamic recrystallization on grainrefinement of IF steels.Mater. Sci. Forum,1993,.113~115:441~450
    [61]王向成.新一代钢铁材料的研究进展.武钢技术,2004,42(2):38~42
    [62]干勇.先进钢铁材料及其生产技术进步.中国冶金,2003,(2):10~15,34
    [63]翁宇庆.超细晶粒钢.北京:冶金工业出版社,2003
    [64]迁伸泰,曾加炳译.钢铁材料的超微细化.首钢科技,2003,(4):7~15
    [65]董瀚.超细晶粒钢及其力学性能特征.中国冶金,2003,(10):26~35
    [66]戚正风.金属材料热处理原理.北京:机械工业出版社,1986,81~88
    [67]雍歧龙,马明图.微合金钢-物理和力学冶金.北京:冶金工业出版社,1989,105~120
    [68] T Siwecki,S Zajac.Recrystallization controlled rolling and accelerated cooling ofTi-V-(Nb)-N microalloyed steels. In:32nd Mechanical working and SteelProcessing Conference,Warrendale,PA,ISS-AIME,1991,441~451
    [69] T Siwecki,S Zajac.Recrystallization controlled rolling of steels,themo-mechanicalprocessing in theory,modelling&practice.Stockholm,ASM Intern,1997:12l~144
    [70] S F MEDINA,J E MANCILLA.Determination of static recrystallization criticaltemperature of austenite in microalloyed steels.ISIJ intenrational,1993,33(12)1257~1264
    [71] C M Sellers,J A Whiteman.Recrystallization and grain growth in hot rolling,MetalScience,1979(3-4):187~194
    [72] Kop T A,P G W Remijn, et al.Some observations on the effect of austenitisationconditions on the transformation kinetics in an HSLA steel and related C-Mnsteels.Journal of Materials Science,2011,36(8):1863~1871
    [73]刘振宇.C-Mn钢热轧板带组织-性能预测模型的开发及在生产中的应用.东北大学博士学位论文,1995
    [74]野村茂树.成型性能优良的热轧高强度钢板的开发.武钢技术,1994,(12):39~43
    [75]刘东生.钢铁材料变形奥氏体相变的研究及应用.东北大学博士学位论文,1999
    [76]李箭,徐文崇,孙福玉.控制轧制中的微合金碳氮化物的析出行为.钢铁,1991,(1):24~27
    [77]王昭东.应用形变热处理原理开发HQ685高强钢板.东北大学博士学位论文,1998
    [78] S Ranganathan.A technique for prediction of carbonitride precipitation in highstrength low alloy steels.Materials seience and technology,1999,15(5):523~526
    [79] R L Bodnar,S S Hansen.Effect of austenite grain size and cooling rate onwidmnasttten ferrite formation in low-alloy steels.Metall Trans,1994,25A:665~676
    [80] L J Cuddy.Microstructures developed during thermo-mechanical treatment of HSLAsteels.Metall Trans,1981,12A:1313~1320
    [81]韩凤麟.粉末锻造连杆发展思考.新材料产业,2005,(11):55~59
    [82] Chernenkoff R A,Hall D W,Mocarski S.Material characterization of powder-forgedcopper steels.SAE910155,1991,15~23
    [83] Weber M.Cost effective finishing of powder forged connecting rods with the fracturesplitting method.SAE910157,1991,1~7
    [84] Repgen B.Optimized connecting rods to enable higher engine performance and costreduction.SAE9800882,1998,1~8
    [85]李绍忠.连杆常用制造工艺及技术经济性分析.汽车工艺与材料,2000,(4):10~13
    [86]包雪鹏,刘善德,吴勇等.C70S6裂解连杆性能分析.轻型汽车技术,2008,(3):25~29
    [87]曹正.高碳微合金非调质钢连杆研究.汽车工艺与材料,2000,(12):24~27
    [88]赵立新,刘志民,赵树国等.C70S6连杆材料的研究.车用发动机,2005,(4):47~53
    [89] Hyounsou Park.Development of fracture split steel connecting rods。SAE,2003,(1):1309~1312
    [90] Q Wang,F Heb.A review of developments in the forging of connecting rods inChina.Journal of Materials Processing Technology,2004,151:192~195
    [91] Berthold Repgen.Optimized connecting rods to enalle higher engine performanceand cost reduction.SAE,1998,(8):82~89
    [92]魏莹.连杆的“论战”-访中国机械通用零部件工业协会粉末冶金分会韩凤麟.MC现代零部件,2005,(11):27~29
    [93] Pravardhan S Shenoy.Dynamic load analysis and optimization of connectingrod.The master of science degree in mechanical engineering,The university ofToledo,2004
    [94] DANIEL R.Steels for connecting rod forgings with optimum splittability.The16thInternational Forging Congress,Beijing,China,1999
    [95] Cristinacce M.Automotive supply chains and the engineering steel supplier.In:CBM,Procedings of the‘Globalisation-A Metal forming Industry Response’conference,Birmingham,2000,1~13
    [96] Shinsaku Fukuda,Hirohito Eto.Development of fracture splitting connectingrod.JSAE Review,2002,23:101~104
    [97]杨志强,杨慎华,寇淑清等,发动机连杆裂解材料,新技术新工艺~新材料开发与研究,2005,(6):63~65
    [98]杨慎华,张志强。,寇淑清等,发动机连杆裂解加工关键技术的研究,内燃机工程,2006,27(5):80~84
    [99]曹正.汽车发动机连杆材料的现状及发展趋势.汽车工艺与材料,2007,(1):7~10
    [100] De Ardo AJ.Microalloyed strip steels for the21st century.Materials scienceForum,1998,254~286:15~26
    [101]金振蓉.钢铁工业要重视微合金化应用.http://www.glnw.cn
    [102]曹荫之,姚卫熏.借鉴世界先进经验加速微合金钢的发展.国外钢铁,1997,(7):16~26
    [103]莫里森.钢的微合金化概述.http://www.envana.eom/teehnology/g
    [104]王祖滨.低合金钢和微合金钢的发展.中国冶金,1999,(3):19~23
    [105] Meyer L.微合金化元素Nb、Vv、Ti、Zr和B及其在现代汽车钢中的作用.宝钢情报,1989,(4):70~80
    [106]姚连登.微合金化与控制轧制的进展.宽厚板,1999,5(1):1~4
    [107] Carlos G M,Carlos C,Francisca G. C,et al.Influence of V precipitates on acicularferrite transformation part1:the role of nitrogen.ISIJ International,2008,48(9):1270~1275
    [108] Carlos G M,Carlos C,Francisca G. C,et al.Influence of V precipitates on acicularferrite transformation part2:transformation kinetics.ISIJ International,2008,48(9):1276~1279
    [109] L Pindor,V Matejka,P Kozelsky,et al.Investigation into secondary phases in steelsmicroalloyed with vanadium and nitrogen.Ironmaking and Steelmaking,2008,35(2):124~128
    [110] S Zajac,T Siweck,M Korchynsky.Importtance of nitrogen for precipitationphenomena in V-microalloyed steels.Int. Symp. on Low Carbon Steels for the90’s1993ASM/TSM Materials Week,Pittsburgh,USA,1993,139~150
    [111] W Roberts,A Sandberg,T. Siwecki.Precipitation of V(C,N) in HSLA steelsmicroalloyed with V.Proc. Conf. Vanadium Steels,Krakow,Vanitec,1980,D1~D12
    [112] Kamela E F,Mohame F M,Michael L M.Characterization alloyed Steels ofprecipitates in vanadium and titanium microalloyed steels.ISIJ International,1991,31(9):1020~1025
    [113] S Zajac,T Siweck,W.B.Hutchinson,et al.Strengthening intended mechanisms forlong products vanadium microalloyed steels.ISIJ international,1998,38(10):1130~1139
    [114] P Zhao,J D Boyd.Strengthening and fracture mechanisms in warm forgedmicroalloyed medium carbon steel.Materials Science and Technology,2007,23(10):1186~1194
    [115] Brimacombe J K,Nakanishi K,Anagbo P E,et al.Proceedings of the elliotsymposium on chemical process metallurgy.Iron and steel society inc,Warrendale,1991,342~412
    [116] T Kawawa,M Okubo.Kinetic studies on deoxidation of steel.Tetsu-to-hagane,1967,53(14):1569~1589
    [117] R Sakagami, C Kawasaki. On the deoxidation of liquid iron withsilicon.Tetsu-to-hagane,1969,55(7):550~590
    [118] K Suzuki,S Banya.Deoxidation with silicon in liquid iron alloys.Tetsu-to-hagane,1970,56(1):20~109
    [119] K Nakanishi,H Ooi.Kinetic study for deoxidation of molten iron with aluminium inthe combined alumina-silica crucibles.Tetsu-to-hagane,1969,55(6):460~489
    [120] E Yokoyama,H Ooi.Influence of crucible materials on the attained oxygen contentafter deoxidation of aluminium or silicon in stirred liquid iron.Tetsu-to-hagane,1969,55(6):454~467
    [121] Carl Blais,Gilles Esperance,Hoang Lehuy,et al.Development of an integratedmethod for fully character multiphase inclusions and its application tocalcium-treated steels.Materials Characterization,1997,(38):25~37.
    [122]雍岐龙.钢铁结构材料中的第二相.北京:冶金工业出版社,2006
    [123] Woodhead JH.Fundamentals of microalloyed forging Steels.In:Krauss G,BanerjiSK,editors,TMS,Warrendale,PA,1986,3~17
    [124] Balart MJ,Davis CL,Strangwood.Cleavage initiation in Ti-V-N and V-Nmicroalloyed ferritic–pearlitic forging steels.Master Sci Eng,2000,284:1~13
    [125] Naylor DJ.Microalloyed forging steels.Mater Sci Forum,1998,284~286:83~94.
    [126] Matlock DK, Krauss G,Speer JG.Microstructures and properties of direct cooledmicroalloy forging steels.J Mater Process Technol,2001,117:324~328.
    [127] Gonzalez Baquet I,Kaspar R,Richter J.Conditioning of austenite by hot workingof microalloyed forging steels.Steel Res,1997,68(2):61~66.
    [128] Jahazi M,Eghbali B.The influence of hot forging conditions on the microstructureand mechanical properties of two microalloyed steels.J Mater Process Technol,2001,113:594~598
    [129] Sage AM.An overview of the use of microalloys in HSLA steels with particularreference to vanadium and titanium.In:Tither G,Shouhua Z,editors.HSLA steels:Properties and Application,1992,51~68
    [130] Grassl K,Thompson SW,Krauss G.New options for steel selection for automotiveapplications.SAE Paper,1989,No.890508
    [131] J Strid,K E Easterling.On the chemistry and stability of complex carbides andnitrides in mlcroalloyed steels.Acta Metal1,1985,33:2057~2074
    [132] Gladman T.The physical metallurgy of microalloyed steels.1sted,the Institute ofMaterials,1997,337~344
    [133]李桂芬,王琪,董瀚等.我国非调质钢的发展及应用.钢铁研究学报,1994,(1):93~98
    [134] Yoshitake Matsushima,Toyofumi Hasegawa.Microalloyed steels for automobilecomponents.Kobe steel engineering reports,1997,47(9):46~49
    [135] Masakasu Ikeda,Gorou Anan.High strength microalloyed.Kobe steel engineeringreports,2002,52(11):47~51
    [136] S Sen,A K Sengupta,R S Verma,et al.Improved impact energy throughmicrostructural refinement of0.3C-Mn-Nb microalloyed forging steels.In:G.Krauss,S K Banerji.Fundamentals of microalloying forging steels,Warrendale,Pennsylvania:TMS,1987,627~636
    [137] R Langnborn,O Sandberg,W.Roberts.Optimization of microalloyed ferrite-pearliteforging steels.In:G. Krauss, S K Banerji.Fundamentals of microalloying forgingsteels.Warrendale,Pennsylvania:TMS,1987:39~54
    [138] M E Burnett.Correlation of forging parameters to microstructure and mechanicalproperties and vanadium modified0.40percent carbon steels.In:G. Krauss, S. K.Banerji.Fundamentals of microalloying forging steels.Warrendale.Pennsylvania:TMS,1987,601~625

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700