用户名: 密码: 验证码:
碳纳米管/纳米铜复合润滑油添加剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米粒子处于原子簇和宏观物体交界的过渡区域,具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,使其在结构、光电、磁学和化学性质等方面表现出特异性。大量研究表明,纳米粒子添加到润滑油中,可以提高润滑油的极压性能。纳米粒子润滑油添加剂的制备及纳米粒子在润滑油中稳定的分散是润滑油能够得到实际应用的前提。
     本文介绍了本课题选用作为润滑油添加剂的纳米铜和碳纳米管的特性、制备及应用,并对纳米粒子润滑油添加剂的发展现状作了综述和讨论。
     本文以自制甲酸铜为原料,在润滑油基础油的保护下,采用热分解方法成功制备出用作润滑油添加剂的纳米铜粉。本文还通过正交试验法研究了Cu2+的初始浓度、球磨时间、热分解温度以及搅拌速度对铜粉粒径的影响,并用XRD和TEM对纳米铜粉进行了粒径计算和形貌观察。测试结果表明:当制备工艺参数Cu2+的初始浓度0.33mol/L、球磨时间12h、热分解温度200℃、搅拌速度30 rad/min时,纳米铜颗粒粒径分布均匀,呈球形,表面未氧化,平均粒径为42nm。
     本文在纳米铜润滑油添加剂制备的基础上,将改性后的碳纳米管与甲酸铜混合球磨,在200℃下热解得到碳纳米管/纳米铜复合润滑油添加剂。首先,对碳纳米管的表面改性进行了研究,采用混酸回流与超声波振荡处理相结合的方法对碳纳米管进行纯化处理,并在此基础上通过酯化反应对碳纳米管表面进行功能化改性处理。由透射电镜检测结果可知,纯化处理后的碳纳米管的纯度得到了明显的提高。由红外检测结果分析可知,经过纯化处理后碳纳米管表面含有大量羧基和羟基官能团;酯化改性处理后的碳纳米管表面成功的接入了酯基长链烷烃分子基团。其次,对碳纳米管/纳米铜复合润滑油添加剂进行XRD、SEM测试和静置观察,测试和观察结果均表明,碳纳米管/纳米铜复合润滑油添加剂的分散稳定性明显优于纳米铜润滑油添加剂的分散稳定性。
     本文采用四球摩擦磨损试验机对添加了纳米铜润滑油添加剂和碳纳米管/纳米铜复合润滑油添加剂的甲基硅油进行了极压性能的测试。测试结果表明,添加了纳米铜润滑油添加剂的甲基硅油的最大无卡咬负荷PB值提高了98N,而添加了碳纳米管/纳米铜复合润滑油添加剂的甲基硅油的最大无卡咬负荷PB值提高了294N。得出了甲基硅油极压性能得到显著提高、抗磨性能亦将得到相应改善的结论。
Nano-particles lie in the junction of the cluster and the macroscopic objects.It has the specific capacities in the structural, optical,electronic, magnetic and chemical properties with small size effect, surface effect, quantum size effect and macroscopic quantum tunnel effect. Numerous studies show that the extreme pressure of lubricating oil with the nano-particles additives can be improved. Preparation and stable dispersion of nano-particles in lubricating oil is the key of nano-particles as the lubricant additives.
     In the article, properties,preparation and application of copper nano-particles and carbon nanotube used in the research were described, and the recently development of nano-particles as the lubricant additives was summarized.
     In order to prepare the nanocopper particles,thermal decomposion of Cu(HCOO)2 in the basic-lubricating oil(150SN) under specified condition of temperature was applied by using self-made Cu(HCOO)2 as a raw material. Influence of the concentration of Cu2+,time of ball milling, temperature of thermal decomposion and the speed of the stir on the diameter of nanocopper particles were studied.XRD and TEM were used to characterize the size and structure of the nanocopper particles.Experimental results show that the nanocopper particles are with spherical geometry, their surfaces are not oxidized, and the particle sizes is about 42nm in average,when the concentration of Cu2+ is 0.33mol/L, time of ball milling is 12h, temperature of thermal decomposion is 200℃and the speed of the stir is 30rad/min. Though copper nano-particles had been dispersed evenly in the lubricating basic oil,the dispersed stability of the copper nano-particles in the lubricating basic oil was not good by the 1-2h standing observation. In order to solve the dispersion stability of the copper nano-particles in the lubricating oil, preparation and properties of MWNTs/copper nano-particles composite as the lubricant additive were studied.Firstly, MWNTs have been chemically purified and oxidized using a mixture of concentrated H2SO4/HNO3 mixture (volume ratio:3:1),and MWNTs were modified by the esterification. The result of TEM shows that the purity of MWNTs had been improved markedly by the treatment of the concentrated H2SO4/HNO3 mixture.The result of FT-IR shows that MWNTs were introduced with carboxyl groups which presented at the side wall defect sites and the open ends of oxidized MWNTs by the treatment of the concentrated H2SO4/HNO3 mixture,and MWNTs modified alkane were prepared by the esterification. Secondly, by the test of XRD and SEM, and the result of standing observation, the dispersed stability of MWNTs/copper nano-particles composite in the lubricating oil was better than the copper nano-particles'
     Two kinds of lubricant additives were added to the methyl silicone oil.The tribological property of the oil was evaluated using four-ball extreme pressure tester. The result of the test shows that the PB of methyl silicone oil with the copper nanoparticles was improved by 98N, and the PB of methyl silicone oil with MWNTs/copper nanoparticles composites was improved by 294N.
引文
[1]黄德欢,纳米技术与应用.上海:中国纺织大学出版社,2001.
    [2]高濂,孙静等著.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003.
    [3]Hanglein A.Small-Particle Research:Physico-Chemical Properties of Extremely Small Colloidal Metal and Semiconductor particles. Chem.Rev.1989,89:260~262.
    [4]Gleiter H. Nanostructured materials:basic concepts and microstructure. Acta Materiali-a, 2000,48:1~20.
    [5]张立德.超微粉体制备与应用技术[M],北京:中国石化出版社,2001.
    [6]曹新,赵振华著.纳米科技时代[M].北京:经济科学出版社,2001.
    [7]董静宇.美国通用汽车公司摩擦磨损和润滑技术[C].美国通用汽车公司研究发展中心,2000.
    [8]欧忠文,徐滨士,马世宁,等.纳米材料在表面工程中应用的研究进展[J].中国表面工程,2000,13(2):5~9.
    [9]薛群基,徐康.纳米化学[J].化学进展,2000,14(4):431~444.
    [10]王晓勇,陈月珠.纳米材料在润滑技术中的应用[J].化工进展,2001,15(2):27~30.
    [11]欧忠文,徐滨士,丁培道等.纳米润滑材料应用研究进展[J].材料学报,2001,14(8):28~30.
    [12]周瑞发,韩雅芳,陈祥宝著.纳米材料技术[M].北京:国防工业出版社,2003.
    [13]刘吉平,廖莉玲.无机纳米材料[M].北京:科学出版社,2003,7:28~30.
    [14]张志馄,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [15]杨剑,滕风恩,纳米材料综述[J].材料导报,1997,11(2):6~10.
    [16]张立德,牟季美著.纳米材料与纳米结构[M].北京:科学出版社,2001.
    [17]许并社等,纳米材料及应用技术[M].北京:化学工业出版社,2004,1:14~16.
    [18]李廷盛,尹其光,著.超声化学[M].北京:科学出版社,1995.
    [19]Alemdar A,Atici O, Gungor N.Mater. Lett,2000,43:57~61.
    [20]Colic M,Franks G,Fisher M,et al.J. Am. Ceram.Soc.1998,81(8):2157~2163.
    [21]Hisakado T, Tsukizoe T, Yoshikawa. Lubrication mechanism of solid lubricants in oil[J]. ASMEJ Lubr Tech,1983,105:245.
    [22]Rao R S,Walters A B,Vannice M A.Influence of Crystallite Size on Acetone Hydrogenation over Copper Catalysts[J].Journal of Physics and Chemistry B, 2005,109:2086~2092.
    [23]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004,228.
    [24]Rapoport L, Leshchinsky V, Volovik Yu, et al.Modification of Contact Surfaces by Fullerene-like Solid Lubricant Nanoparticles [J].Surface and Coatings Technology,2003 (163):405~412.
    [25]于鹤龙,许一,史佩京,等.纳米铜颗粒的摩擦学性能研究及其减摩润滑机理探讨 [J].材料工程,2007(10):35~48.
    [26]Hu Z S, Dong J X, Chen G X, et al.Preparation and Tribological Properties of Nanoparticle Lanthanum Borate [J].Wear,2000 (243):43~47.
    [27]周静芳.表面修饰纳米颗粒的制备表征与摩擦学行为研究[D].中国科学院兰州化学物理研究所,2000,75.
    [28]Sun L, Zhou J F, Zhang Z J, et al.Synthesis and Tribological Behavior of Surface Modified (NH4)3PMo1204oNanoparticles [J].Wear,2004(256):176~181.
    [29]陈洪龄,陈燕.纳米铜在润滑油中烷基苯三唑分散剂的制备和性能研究[J].润滑与密封,2007,32(4):68~71.
    [30]Wang Qingning, Si Baoli,YU Shurong. Study of effect of blended surfactants on dispersing stability of copper nanoparticles in lubricating oil [J].China Surfactant Detergent&Cosmetics,2008,(4):219~222.
    [31]王晓丽,徐滨士,许一,等.络合剂在KBH4液相还原制备纳米铜颗粒中的作用[A].2009国际粉体技术与应用论坛论文集[C].2009,(15):172~175.
    [32]S.R, F. C.A,Mechanical properties of nanocraystalline copper produced by solution phase synthesis [J].J. Mater Res,1996,(11):439~448.
    [33]武光,刘仁光,郭亚军,等.液相还原法制备纳米铜粉[J].应用科技,2004,31(5):61~63.
    [34]黄均声,任山,谢成文.化学还原法制备纳米铜粉的研究[J].材料科学与工程学报,2003,(21):57~59.
    [35]赵斌,蔡梦军,刘志杰.超细铜粉的水合肼还原法制备及其稳定性研究[J].华东理工大学学报.1997,(23):372~376.
    [36]I.Lisicecki, F.Billoudet, M.P.Pilemi,Syntheses of copper nanoparticles in gelified micro mulsion and in reverse micelles, Journal of Molecular Liquids.1997,(72):251~261.
    [37]高杨,奕春晖,薛永强.改进的溶胶-凝胶法制备超细铜粉[J],太原理工大学学报2000(31):271~273.
    [38]张志梅.纳米级金属粉改善润滑油摩擦性能的研究[J].润滑与密封,2000,(2):40~43.
    [39]廖戎,周大利,张王志.纳米铜粉的制备研究[J].四川有色金属,2003,(2):28-33.
    [40]温传庚,王开明,李小奇,等.液相沉淀法制备纳米铜粉[J].鞍山科技大学学报,2003,26(3):76~78.
    [41]陈宏,旷亚非,周海晖.化学镀方法制备纳米级铜粉及镍-磷粉[J].电镀与精饰,2002,(24):1~4.
    [42]刘志杰,赵斌,张宗涛.以甲醛作还原剂制备超细铜粉[J].化学通报,1996,(11):25~26.
    [43]曹晓国,吴伯麟.化学还原法制备导电涂料用片状超细铜粉的研究[J].涂料工业,2004,34(6):10~13.
    [44]刘志杰,赵斌,张宗涛.以抗坏血酸为还原剂的超细铜粉的制备及其热稳定性[J].华东理工大学学报,1996,(22):548~553.
    [45]Ding J. Ultra fine Cu Particles Prepared by Mechanochenmical Process [J].Journal of Alloys and compounds,1996,(234):1~3.
    [46]严红革,陈振华,黄培云.金属超微粉末制备技术中的几个问题[J].材料导报,1997:165~181.
    [47]黄钧声.纳米铜粉研制进展[J].材料科学工程,2001,(19):76.
    [48]郑精武,姜力强.铜粉的电解制备工艺研究[J].粉末冶金工业,2001,11(6):26~29.
    [49]王菊香,潘进,赵恂,等.超声电解法制备超细金属粉的研究[J].金属功能材料,1997,(3):115-118.
    [50]Dorda, F. A.Method of obtaining ultra-dispersive copper Powder by supplying copper nitrate solution into nitrogen plasma[J].Russ.Ru,2064369 C,1996, (7):271.
    [51]孙维民,金寿日,李志杰.提高Ni、Cu超微粉生产率的方法研究[J].应用科学学报,2000,(18):164~166.
    [52]Chen Zuyao, Chen Bo, Qian Yitao.Preparation of Ultra fine Metal Particles by Combined Method-ray Radiation by Drothermal Crystal-Lization [J].Aeta Metallargica Sinica. 1992,(5):407~410.
    [53]Olaf M,et al.Polymer,2004,45:739.
    [54]Hone J, Batlogg B,et al.[J].Science,2000,289:1730~1733.
    [55]Coleman J N, Blau W J, et al.[J].Appl.Phys. Lett,2003,82(11):1682~168.
    [56]Dalton A B,Coleman J N.A functional conjugated polymer to process, purifies and selectively interacts with single wall carbon nanotubes [J].Photo biology A:Chem, 2001,(144):31~41.
    [57]Treaey M M J,Ebbesen T W,Gibson J M, et al.Exceptionally high Young's modulus observed for individual carbon nanotubes[J].APPI Phys Lett,1996,381:678~680.
    [58]孙晓刚.碳纳米管的特性及应用[M].中国粉体技术,2001,(7):29~33.
    [59]Mintmire J W,Dunlap B I, White C T. Are fullerene tubules metallic [J].Phys Rev Lett,1992,68(5):631~634.
    [60]Hamada N, Sawada S I, Oshiyama A.New one-dimensional conductors:Graphitic microtu-bules [J].Phys Rev Lett,1992,68(10):1579~1581.
    [61]Huang Y H, Okada M, Tanaks K, et al.Estimation of superconducting transition temperature in metallic carbon nanotubes [J].Phys Rev B,1996,53:5139~5132.
    [62]Dai H J, Wong E W, Lieber C M. Probing electrical tansport in nanomaterials: Conductivity of individual carbon nanotubes [J].Science,2000,288:494~497.
    [63]邱桂花,夏和生.聚合物/碳纳米管复合材料研究进展[J].高分子材料科学与工程,2002,18(6):20~23.
    [64]M.麦亚潘.碳纳米管:科学与应用科学出版社,2007.
    [65]杨金红,刘敏,成会明,等.纳米碳管的孔结构.相关物性及应用[J].材料研究导报,2001,15(4):375~386.
    [66]Chen C S,Chen X H,Yang Z, et al.Effect of Multi-walled Carbon Nanotubes as Reinforced Fibers on Tribological Behavior of Ni-P Electro less Coatings [J].Diamond and Related Materials,2006,15(1):151~156.
    [67]Chen W X, Tu J P, Wang L Y, et al.Tribological application of carbon nanotubes in a metal-based composite coating and composites [J].Carbon,2003,41 (2):215~222.
    [68]Cai H,Yan F Y,Xue Q J.Investigation of tribological properties of poly in ide/carbon nanotube nanocomposites [J].Materials Science& Engineering A,2004,364(1/2):94~ 100.
    [69]郭晓燕,彭倚天,胡元中,等.碳纳米管添加剂摩擦学性能研究及机制探讨[J].润滑与密封,2007,32(11):95.
    [70]姜鹏,姚可夫.碳纳米管作为润滑油添加剂的摩擦磨损性能研究[J].摩擦学学报,2005,25(5):394.
    [71]陈传盛,刘天贵,陈小华,等.柠檬酸修饰碳纳米管及其分散性能[J].四川大学学报,2008,40(3):108-111.
    [72]陈传盛,刘天贵,陈小华,等.油酸修饰碳纳米管及其摩擦性能的研究[J].润滑与密封,2007,32(12):23.
    [73]王国建,董玥,刘琳,等.超支化聚对氯甲基苯乙烯修饰碳纳米管表面的研究[J].高等学校化学学报,2007,28(1):164.
    [74]王国建,屈泽华,郭建龙,等.苯乙烯/马来酸酐共聚物修饰碳纳米管的研究[J].化学学报,2006,64(24):2505.
    [75]王国建,王瑶,黄思浙,等.单壁碳纳米管-聚合物复合导电薄膜的制备[J].新型炭材料,2008,23(1):25.
    [76]王国建,屈泽华,李岩,等.超支化聚酯修饰多壁碳纳米管[J].应用化学,2004,24(7):828.
    [77]王国建,鲍磊,程思,等.纳米管原位改性聚氨酯的研究[J].工程塑料应用,2007,35(10):26.
    [78]Yu B,Liu Z L, Zhou F, et al.Mater Lett,2008,62(17-18):2967.
    [79]S.Tarasov, Kolubaev A, Belyaev S,et al.Study of friction by nanocopper additive to motor oil[J].Wear,2002.(252):63~69.
    [80]L.RapoPort, et al.friction and wear of powdered composites impregnated with WS2 inorganic fullerent-like nanoparticles, Wear,2002, (252):518~527.
    [81]L.RapoPort, et al. friction and wear of bronze powder composites including fullerent-like WS2 nanoparticles, Wear,2001,249:150~157.
    [82]李长华,俄罗斯的纳米级超微细粉末材料[J].材料导报,1995,9(2):75~76.
    [83]陈爽,刘维民,表面修饰PbS纳米微粒的合成及其抗磨性[J],摩擦学学报,1997,3:260~262.
    [84]张招柱,薛群基,刘维民,等.几种金属氧化物填充聚四氟乙烯复合材料在干摩擦条件下的摩擦磨损性能[J].摩擦学学报,1997,1:45~52.
    [85]阎逢元,金芝珊.C60/C70作为润滑油添加剂的摩擦学性能研究[J].1993,1:59~63.
    [86]夏延秋等,纳米级铜粉改善润滑油抗磨减摩性能的研究[J].润滑和密封,1998,(5):43.
    [87]夏延秋等,纳米级金属粉对润滑油摩擦磨损性能的影响[J].润滑和密封,1999,(3):33.
    [88]张志梅,纳米级金属粉改善润滑油摩擦学性能的研究[J].润滑与密封,2000,(2):40
    [89]XU Tao, ZHAO Jiazheng, XU Kang, et al. Study on the Tribological Properties of Ultra dispersed Diamond Containing Soot as an Oil Additive [J].Tribology Transactions,1997, 40:178-182.
    [90]B K Gupta, Bharat Bhu Shan. Fullerene Particles as an Additive to Liquid Lubricants and Greases for Low Friction and Wear [J].Lubrication Engineering,1994,50 (7):524~528.
    [91]赵修臣,刘颖,余智勇等.纳米粒子作润滑油添加剂的研究与展望[J].润滑与密封,2003,(6):80~83.
    [92]王文中,李良荣.纳米材料的性能制备和开发应用[J].材料导报,1994,6:8~10.
    [93]许并社等,纳米材料及应用技术[M].北京:化学工业出版社,2004,1:14~16.
    [94]张志馄,崔作林,纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [95]周瑞发,韩雅芳,陈祥宝著.纳米材料技术[M].北京:国防工业出版社,2003.
    [96]周震,阎杰,等.纳米材料的特性及其在电催化中的应用[J].化学通报,1998,(4):23~26.
    [97]张金利.化工原理实验[M].天津:天津大学出版社,2005,35~48.
    [98]刘银,王静,张明旭,等.机械球磨法制备纳米材料的研究进展[J].材料导报,2003,17(7):20~22.
    [99]A.Gupta and R.Jagannathan. Laser writing of copper lines from metal organic films [J]. Appl.Phys.Lett.,1987, (26):2254~2256.
    [100]Iijima S,Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature,1993,(363):603~605.
    [101]Salvetat J P, Bonard J M, Thomson N H. Mechanical properties of carbon nanotubes[J]. Appl Phys,1999,69(3):255~260.
    [102]曹茂盛,高正娟,朱静.CNTs/Polyester复合材料的微波吸收特性研究[J].材料工程,2002,(2):34-36.
    [103]http://emuch.net/html/200908/1471626.html.
    [104]J霍林.摩擦学原理[M].机械工业出版社,1981.
    [105]陈耕,汪一麟.摩擦与磨损[M].同济大学出版社,1991.
    [106]赵源.摩擦磨损的发展及其任务[J].摩擦磨损,1979,(1):8~23.
    [107]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002.
    [108]王汝霖.润滑剂摩擦化学[M].北京:中国石化出版社,1994,239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700