用户名: 密码: 验证码:
钍基熔盐堆中子能谱测量方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中子能谱对于核工程、核物理及核实验的研究工作有重要的意义,特别是对于新型堆的设计和建造,中子能谱的测量可为堆参数设计的合理性提供参考。本文采用理论与实验相结合的方法,重点就如何提高活化法测量中子能谱的精度及实验中所涉及的相关问题作了深入研究,为测量钍基熔盐堆内特殊环境下的中子能谱提供测量方案。
     本论文共分为八个部分,第一部分为引言,主要介绍钍基熔盐堆建造的背景及中子能谱测量对新型堆-钍基熔盐堆的意义;第二部分为中子能谱的理论计算方法,从中子输运方程着手,阐述了确定论方法和蒙特卡罗法的基本原理及其发展和应用,将两种方法的优缺点进行比较,结合本研究的需要,选用基于蒙特卡罗思想的MCNP计算程序作为本文中子能谱理论模拟计算的主要工具;第三部分为中子能谱的测量方法,从中子的特性开始,研究探测中子的原理,根据中子与物质作用的基本原理,结合不同中子源类型及中子场的特点,逐步介绍各种中子能谱测量的方法,综合考虑决定采用活化法测量中子能谱;第四部分为活化法测量中子能谱,首先从理论计算与实验测定两方面介绍活化法测量中子能谱的基本原理,然后介绍解谱的方法及解谱程序,详细分析了解谱程序SAND-Ⅱ和MSIT的解谱原理及解谱过程,研究了解谱中所需的群截面受箔片厚度和温度的影响;第五部分为对活化材料和高纯锗探测器的研究,这一部分为采用活化法测量中子能谱实验前的准备工作,通过大量调研、总结,介绍了活化材料的选取原则及活化箔的制备原则,分析了影响探测效率的主要因素,通过模拟计算比较了点源与面源对高纯锗探测效率的影响及源的自吸收问题;第六部分为活化法测量中子能谱的实验验证,利用活化法分别测量了西安脉冲堆辐照腔及原型微堆辐照孔道内的中子能谱,利用解谱程序SAND-Ⅱ和MSIT进行解谱,利用蒙特卡罗对解谱结果的不确定度进行分析,探讨了初始输入谱对于解谱结果的影响,分析了整个实验过程中可能出现的误差,将解谱结果与前人的实验结果进行比较,二者基本一致;第七部分为拟建钍基熔盐堆(TMSR-SF1)内中子能谱的理论计算及测量方案,TMSR-SF1是一个以液态熔盐为冷却剂,燃料元件为固态球型的实验堆,由于其在2MW功率正常运行时,反射层与堆内温度达550oC~650oC,这样的高温测量环境对中子能谱的测量技术有很大的考验,本部分通过对耐高温“兔盒”的研制及耐高温活化箔的选取、制备等,给出高温环境下测量中子能谱的方案;第八部分为结论与展望,归纳了本文所研究的主要内容,指出下一步的主要工作及工作设想。
     本论文采用理论计算与实验测量相结合的方法,掌握了测量环境温度不高于100oC的活化法测量中子能谱的关键技术,为拟测高温环境下的中子能谱打下基础。
The neutron energy spectrum is very important to the nuclear engineering design andapplication, as well as to the nuclear physics research. For a new type of reactor,the thoriummolten salt reactor, the neutron energy spectrum can provide a reference to the rationality of thedesign parameters. This thesis focuses on how to improve the measuring accuracy of the neutronenergy spectrum by activation method considering the related issues involved in experiments, inaddition to the measurement scheme of the neutron energy spectrum under the specificenvironment in the thorium molten salt reactor.
     The thesis is divided into eight parts. The first part mainly introduces the background of thethorium molten salt reactor and the significance of the neutron energy spectrum measurement tothe thorium molten salt reactor. In the second part, the theoretical calculation method of theneutron energy spectrum is researched. It is found that MCNP, based on Monte Carlo, can be asthe main tool to simulate the neutron energy spectrum after comparing the two methods,deterministic method and Monte Carlo method. In the third part, the measurement methods ofneutron energy spectrum are presented. The activation method is adopted by analyzing,considering the detecting principle of the neutron and the different measurement methods ofneutron energy spectrum. The fourth part briefly shows the activation method of neutron energyspectrum measurement, including the fundamental of the theoretical calculation andexperimental measurement,the methods of spectrum unfolding, the principle and process ofspectrum unfolding for SAND-Ⅱand MSIT, and the group cross-section affected by thethickness of the foil and the temperature of environment. In the fifth part, the active material andhigh purity germanium detector are researched, as the preparation work of the using activationmethod to measure the neutron energy spectrum. The selecting principle of active material andthe preparation principle of activation foil are stated. The main influence factors of the detectionefficiency are studied according to the shape and the absorptiong of the source. The sixth part isexperimental verification. The neutron energy spectrum in the radiation cavity of Xi’An pulsedreactor and prototype micro reactor is respectively measured by the activation method, choosingSAND-Ⅱand MSIT to unfold the spectrum. The uncertainty of the result is analysed using theMonte Carlo method, and the influence of initial input spectrum on the results is discussed. In the seventh part, the schemes for the theoretical simulation and the measurement of the neutronenergy spectrum for a proposed experiment reactor,the thorium molten salt reactor-solid facility(TMSR-SF1) are given, especially in the high temperature conditions when it is550oC~650oCin the reflector,along with the core, during TMSR-SF1normal working. The eighth part gives abriefly summary and prospect.
     In this thesis, the measurement of neutron energy spectrum in TMSR-SF1is studied, as wellas master the key measurement technology of neutron energy spectrum using activation methodwhen the temperature of environment is not higher than100oC.
引文
[1]安鹏.核反应堆简介[J],现代物理知识,12-17.
    [2]汪胜国.世界核能发电的现状及未来堆型的开发[J].Dongfang Electric Review,2006,20(3):1-5.
    [3]邬国伟.核反应堆工程设计[M].原子能出版社,1997.
    [4]徐米.我国快堆和第4代先进核能系统[J].中国原子能科学研究院年报,2006,(2):94-103.
    [5]U.S.DOE Nuclear Energy Research Advisory Committee, the generation Ⅳinternationalforum [J]. A Technology Roadmap for Generation IV Nuclear Energy System, GIF-002-00.2002.
    [6]Weinberg AM, Rosenthal MW, Haubenreich PN, et al. Collection of Papers on the Molten SaltReactor Experiment[J]. Nuclear Applications&Technology,1970,8(2).
    [7] Robertson RC. MSRE Design and Operations Reports: Description of Reactor Design [J].ORNL-TM-728,1965.
    [8] Houbenreich P.N, Engel J.R, Prince B.E, et al. MSRE Design and Operations Reports:Nuclear Analysis [J]. ORNL-TM-730.
    [9]Robertson RC. Conceptual Design Study of a Single-Fluid Molten-Salt Breeder Reactor[J].ORNL-4541,1971.
    [10]Dulap Scott and Grindell AG. Commponents and Systems Development for Molten SaltBreeder Reactor [J]. ORNL-TM-1855.
    [11]Forsberg C.The advanced high-temperature reactor:high-temperature fuel, liquid salt coolant,liquid-metal-reactor plant[J].Progress in Nuclear Energy,2005,47(1):32-43.
    [12]Bardet P, Blandford E, Fratoni M, et al. Design Analysis and Development of the ModularPB-AHTR [J], proceedings of ICAPP,2008.
    [13]Ignatiev V. MOSART fuels and container material study: case for Na, Li, Be/F solventsystem [J]. Proceedings of the2003ANS/ENS International Winter Meeting, USA,2003.
    [14]Masatoshi Ⅰand Koyama T. Actinides Recovery from Molten Salt/Liquid Metal System byElectrochemical Methods [J]. Journal of Nuclear Materials,1997,247:183-190.
    [15]Nuttin A and Heuer D. Potential of Thorium Molten Salt Reactors: Detailed Calculations andConcept Evolution with a View to Large Scale Energy Production [J]. Progress in NuclearEnergy,46(1),2005:77-79.
    [16]Soucek P and Frantisek L. Development of Electrochemical Separation Methods in MoltenLiF-NaF-KF for the Molten Salt Reactor Fuel Cycle [J]. Journal of Nuclear Science andTechnology,42(12),2005:1017-1024.
    [17]Uhlir J. Chemistry and Technology of Molten Salt Reactors-history and perspectives [J].Journal of Nuclear Materials,2007,360:6-11.
    [18]江绵恒,徐洪杰,戴志敏.未来先进裂变能—TMSR核能系统[J].中国科学院战略性先导科技专项.2012,27(3):366-374.
    [19]熔盐堆技术性能研究[R], http://www.docin.com/p-502753044.html.
    [20]谢仲生.核反应堆物理分析[M].西安交通大学出版社,1996.
    [21]谢仲生.核反应堆物理数值计算[M].原子能出版社,1997.
    [22]周涤宇.粒子输运的确定性问题并行算法研究[D].国防科学技术大学,2007.
    [23]鲁润宝.离散纵标SN方法的几个问题及直接积分法对两类穿透实验的计算[J].核科学与工程,1990,10(2):97-104.
    [24]王伟金.基于离散纵标法的三维中子/光子输运程序开发[D].华北电力大学,2012.
    [25]史萌.辐射问题的球谐函数-离散坐标法研究[D].哈尔滨工业大学,2008.
    [26]马文娟.基于辐射传输方程高阶球谐近似模型的时域DOT/FDOT成像方法研究[D].天津大学,2012.
    [27]吴宜灿,谢仲生.离散节块输运方法在一维曲线坐标系中的应用[J],核科学与工程,1990,10(1):34-45.
    [28]谢仲生.三维中子输运方程离散纵标节块数字解法[J],核科学与工程,1986,6(4):311-321.
    [29]经荣清,单文志,胡永明.离散坐标法用于反应堆物理计算[J],核科学与工程,1984,4(1):86-88.
    [30]巨海涛,吴红春等.三维中子输运方程的非结构网格离散纵标数值解法[J].西安交通大学学报,2007,41(3):363-366.
    [31]刘永康,胡永明等.多重网格扩散综合加速的三维离散纵标中子输运程序SN3C[J].核动力工程,2006,27(5):1-4.
    [32]Engle W.W.ANISN:A One-dimensional Discrete Ordinate Transport Code with AnisotropicScattering[R].K-1693,1967.
    [33]廖清富,赵玉钧.ANISN程序使用手册[R].北京应用物理与计算数学研究,1988.
    [34]Emmett M.B, Rhoades W.A, et al. The DORT Section of“A User’s Manual for MASH1.0-AMonte Carlo Adjoint Shielding Code System[R]”,ORNL/TM-11778,1992.
    [35]Rhoades W.A, Simpson D.B. The TORT Three-dimensinal Discrete OrdinatesNeutron/Photon Transport Code[R], ORNL/TM-13221,1997.
    [36]曾昌恒,堆物理实验测量技术的发展和展望[J],核科学与工程,1991,11(1):93-96.
    [37] B.R.L.Siebert, Assessment of sensitivities and uncertainties in Monte Carlo particletransport calculations for neutron spectrometry [J], Nucl. Instr. and Meth.,2002, A476:256-262.
    [38] K.Schweda, D.Schmidt, Improved response function calculations for scintillation detectorsusing an extended version of the MCNP code[J], Nucl. Instr. and Meth.,2002, A476:155-159.
    [39]雷桂媛.关于蒙特卡罗及拟蒙特卡罗方法的若干研究[D].浙江大学,2003.
    [40]裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运中的应用[M],原子能出版社,1980.
    [41]廖义香.蒙特卡罗方法在ADS屏蔽计算中的应用[J].核动力工程,2004,25(2):106~108.
    [42]江新标,陈达,谢仲生.反应堆孔道屏蔽计算的蒙特卡罗方法[J],计算物理.2001,18(3):285~288.
    [43]蒋校丰,谢仲生.ANISN-DOT4.2-ORIGEN2输运-燃耗程序系统及ADS基准题的计算[J],中国核科技报告,2003,CNIC-01638/03:25-38.
    [44] J. F. Briesmeister, Ed., MCNP-A General Monte Carlo N-Particle Transport Code, Version4C[R], LA-13709-M,2000.
    [45]卢希庭.原子核物理[M].原子能出版社,2000,299.
    [46] Robert T.Devine, Leonard L.Romero, Evaluation of spectrum measurement devices foroperational use[J], Nucl. Instr. and Meth.,2002, A476:416-422.
    [47] C.Eggler, C.M.Hrddleston, Measurement of Neutron Spectra of the Experimental BreederReactor1[J], Nucl. Sci. Eng.,1956,1:391-408.
    [48] D.K.Wehe, J.Schmidt, J.S.King, Absolute Measurements of Neutron Spectra in High andLow-Enriched Uranium Materials Test Reactor Fuel[J], Nucl. Sci. Eng.,1992,110:56-78.
    [49]邓勇军,反应堆中子能谱测量技术研究,博士论文,2006.
    [50] James E.Draper., Multiple Neutron Interactions in Resonant Foils[J], Nucl. Sci. Eng.,1956,1:522-540.
    [51]Handbook on Neutron Spectrometry in Mixed Fields[R], Chapter9: Unfolding Methods,2002:391-400.
    [52]丁大钊,叶春堂,赵志祥,等.中子物理学[M],原子能出版社,2005,123-139.
    [53]余周香,刘蕴韬,梁峰,等.中国先进研究堆中子飞行时间谱仪的设计与建造[J],原子能科学技术,2013,47(5):880-883.
    [54]唐琦,陈家斌,宋仔峰,等.用于中子能谱测量的反冲质子磁谱仪[J],强激光与粒子束,2012,4(12):2831-2836.
    [55]祁建敏.磁质子反冲谱仪的研制与实验研究[D],清华大学,2011.
    [56]祁建敏,周林,蒋世伦,等.紧凑型磁质子反冲谱仪磁分析系统的能量刻度[J].原子能科学技术,2011,45(7):880-883.
    [57]钱琬燕,王晓荣,蔡勖,等.新型的核乳胶探测技术[J],核技术,1999,22(7):392-394.
    [58]原子核乳胶组,原子核乳胶及其应用.136-140
    [59]李俊杰,蒋勇,郑春.3He半导体夹心中子能谱仪[J],核技术,2011,34(9):705-709.
    [60]江新标,张文首,杨宁,等.西安脉冲堆~3He快中子夹心谱仪的方案设计[J],核技术,2009,32(4):280-286.
    [61]李润良,汪崇森,周守荣,等.用6Li半导体谱仪测量临界装置中子能谱[J].核科学与工程,1983,3(2):128-133.
    [62]宋逢泉,祝庆军,廖燕飞,等.Bonner球谱仪对Pu-Be源中子能谱的测量.核科学与工程,2013,33(1):60-63.
    [63]M.Hajek, T.Berger, Comparison of Measurements with Active and Passive Bonner SphereSpectrometers, ANS Trans.,2000,83:263-265.
    [64] Victor V.Verbinski, Norman A.Lurie, Vern C.Rogers, Threshold-Foil Measurements ofReactor Neutron Spectua for Radiation Damage Applications, Nucl. Sci. Eng.,1978,65:316-330.
    [65]郑春,吴建华,李建胜等,活化法测量CFBR-II堆中子注量和中子能谱[J],核动力工程.2004,25(1):93-96.
    [66] James E.Draper., Multiple Neutron Interactions in Resonant Foils [J], Nucl. Sci. Eng.,1956,1:522-540.
    [67]Yasuji Nakamura, Yoshio Miyawaki, Foil Handling Technipue for the Measurement ofLattice Parameters in PuO2-UO2Fuel Rods[J], Journal of Nuclear Science and Technology,1972,9[5]:277-280.
    [68]Masood Iqbal, S K Ayazudin, Showket Pervez. Neutron Energy Flux SpectrumMeasurements for LEU core of PARR-1[R], PINSTECH-144, PK9600218,1995.
    [69]程桂贤.求解非线性方程的几种新的迭代法研究[D].浙江师范大学,2012.
    [70] R.Koohi-Fayegh, Stuart Green, Malcolm C.Scott. A comparison of neutron spectrumunfolding codes used with a miniature NE213detector [J], Nucl. Instr. and Meth.,2001, A460:391-400.
    [71] M.Weyrauch, E.Dietz, M.Matzke, Determination of neutron spectra using the programsGNSR and SPECTRUM [J], Nucl. Instr. and Meth.,2002, A476:208-212.
    [72]骆亿生,郭勇,史元明,等.一种简易求解活化法测量中子全能谱的方法[J].辐射防护,1997,17(5):341-347.
    [73]蒋鸿弟.活化技术测中子全谱的非线性规则[J].计量学报,1980,1(4):241.
    [74]Holt P D. Passive Detectors for Neutron Fluence Measurement [J]. Radiation ProtectionDosimetry,1985,10(1~4):251.
    [75]Handbook on Neutron Spectrometry in Mixed Fields [R], Chapter9: Unfolding Procedures,to be published.
    [76]V.B. Anykeyev, A.A.Spiridonov and P.Zhigunov. Comparative investigation of unfoldingmethods [J], Nucl. Instr. and Meth.1991, A303:350-369.
    [77]F.G.Perey. Least-Squares Dosimetry Unfolding:the Program STAY’SL [R]. ReportORNL/TM-6062, Oak Ridge National Laboratory,1978.
    [78]M.Tichy. Bayesian Approach to the Neutron Spectrum Adustment [J]. Nucl.Instr. andMethods,1988,A267:502-508.
    [79]Milan Tesinsky. Measurement and Monte Carlo Simulation of the Neutron Spectra of theSubcritical Reactor Experiment “Yalina Booster”[D].2006, ISBN91-7178-423-3.
    [80]于保生,陈国长,张华.中国评价核数据库(CENDL-3.1)中233U的更新和改进[J].中国原子能科学研究院年报,2011:96.
    [81]蔡敦九,梁祺昌,刘廷进,等.中国评价核数据库第二版(CENDL-2)[J].核科学与工程,1997,17(3):257-265.
    [82]史永谦.核反应堆中子学实验技术[M],中国原子能出版社,2011:353-354.
    [83]核素图表编制组.核素常用数据表[M],原子能出版社,1975.
    [84] ENDF/B-Ⅶ.1[R].核数据库.
    [85] G.M.Jacls.A study of thermal and resonance neutron flux detectors[J], DP-608,1961.
    [86]李兆桓,王永清,高集金,热中子堆内中子通量谱的多箔法测定[J],核科学与工程.1984,4(1),24-31.
    [87]史永谦.核反应堆中子学实验技术[M],中国原子能出版社,2011:76-77.
    [88]骆亿生,郭勇,史元明,等.一种简易求解活化法测量中子全能谱的方法[J].辐射防护,1997,17(5):341-347.
    [89]孙雪瑜.高纯锗核辐射探测器[J],核电子学与探测技术,1985,5(6):338-342.
    [90]陈志林,肖乐勤,赵景岐,等.中子活化瞬发γ多元素能谱分析的工业应用[J],江苏化工,2003,31(3):41-43.
    [91]曹忠.HPGe探测器效率刻度的新处理方法[J],原子能科学技术,1988,22(5):571-576.
    [92]朱传新,陈渊,郭海萍,等.高纯锗探测器探测效率研究[J].核电子学与探测技术,2006,26(2):191-193.
    [93]张富丽,曲德成等.应用蒙特卡罗方法确定NaI探测器的点源效率函数及其参数[J].核技术,2007,30(3):231-235.
    [94]张建芳.高纯锗探测器探测效率的MCNP模拟[D],吉林大学,2009.
    [95]张斌全,马吉增等.蒙特卡罗方法计算用于低能光子测量的高纯锗探测器的效率[J].核电子学与探测技术,2005,25(3):274-277.
    [96]唐碧华,白立新,王辉东.HPGeγ谱仪体源探测效率与射线能量和体源密度的关系[J].核电子学与探测技术,2006,26(5),683-685.
    [97]近代物理实验(二)[R],104-109.
    [98]刘书焕,陈伟时,阿景烨.多箔活化法测量铀氢锆脉冲堆辐照腔中子注量谱[J].核科学与工程,2002,22(4):374-378.
    [99]王松林,孔祥忠,邓勇军.活化法测量中子活化在线分析系统样品处的中子能谱[J].原子核物理评论,2009,26(1):27-32.
    [100]郑华智.阈活化法测量重离子反应的中子能谱[J].辐射防护,1991,11(6):440-443.
    [101]胡选文,袁仁峯,李先海,等.用活化法测量共振区中子能谱[J],原子能科学技术,1979,5:517-525.
    [102]杨岐,卜永熙,李达忠,等.西安脉冲反应堆[J],核动力工程,2002,23(6):1-6.
    [102]史永谦.核反应堆中子学实验技术[M].中国原子能出版社,2011:333-367.
    [103]何金声.SAND-II和RDMM解谱及其蒙特卡罗误差分析[J].原子能科学技术,1981,(6):300-306.
    [104] Keran O’BRIEN, Robert SANNA. Neutron Spectral Unfolding Using the Monte CarloMethod [J]. Nucl. Instr. and Meth,1981,185:277-286.
    [105]刘书焕,陈达,阿景烨.SAND-II解谱的不确定度分析[J].核动力工程,2003,24(3):204-210.
    [106] Manfred Matzke. Propagation of uncertainties in unfolding procedures [J], Nucl. Instr. andMeth.,2002, A476:230-241.
    [107] E.I.Grigor’ev, V.S.Troshin. An approach to estimating to estimating the uncertainty inunfolding a neutron spectrum [J], Measurement Techniques, Nucl. Instr. and Meth.,2002,45:102-105.
    [108]熊厚华.微堆低浓化及热中子束流装置优化研究[D],中国原子能科学研究院,2009.
    [109]王永清,高集金,李兆桓.反应率测定中的误差分析计算[J].核动力工程.1982,3(4):48-54.
    [110]邓勇军.反应堆中子能谱测量技术研究[D].中国原子能科学研究院,2006.
    [111]W.N.McElroy, J.L.Jackson, et al. EBR-Ⅱ DOSIMETRY TEST DATA ANALYSIS [R],1970.
    [112]阿景烨,陈伟时,张文首,等.铀氢锆脉冲反应堆中子活化分析系统[J],第三届全国核仪器应用学术会议论文集,139-141.
    [113]张文首,王凯,于青玉.西安脉冲堆中子活化分析系统应用[J],核动力工程,2002,23(6):93-95.
    [114]聚乙烯[R],http://baike.baidu.com.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700