用户名: 密码: 验证码:
小麦温敏雄性不育系BS366不育机理探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温敏雄性不育系BS366的育性受环境温度控制。在小孢子母细胞至减数分裂的育性敏感时期,将温敏雄性不育系置于适当低温后,温敏雄性不育系表现出花药不开裂、缺少花粉粒等不育表型。然而,温敏雄性不育系的营养生长和雌蕊的发育都表现正常。这表明温敏雄性不育系的小孢子发生过程,相对与营养生长和雌性生殖器官的发育对低温胁迫更为敏感。
     本研究的目的是探究低温胁迫是如何影响温敏雄性不育系小孢子的发生过程。首先,我们观察温敏雄性不育系败育的细胞学过程。在低温胁迫下,减数分裂Ⅰ时,由于细胞质的异常分裂导致二分体形成异常。激光共聚焦显微镜和透射电镜的进一步观察表明减数分裂Ⅰ时成膜体结构形成异常,细胞板不能正常组装。随后,利用小麦全基因组基因芯片研究雄蕊组织的基因表达谱,分析可育与不育条件下的差异表达基因。研究发现在低温胁迫下,温敏雄性不育系BS366共有840个差异表达基因,其中以育性正常的普通材料Jing411雄蕊组织基因表达谱为对照,筛选出278个普通低温胁迫响应相关基因。比较低温胁迫和对照生长条件下的雄蕊组织基因表达谱,结果表明,在低温胁迫下参与细胞骨架信号传导相关的基因被诱导表达,以响应低温胁迫;但是,参与细胞骨架组装和动态调节等相关的基因被显著抑制。此外,意识到miRNA具有调控生长发育和响应生物或非生物胁迫的多重功能,探究miRNA在雄蕊发育过程中如何响应低温胁迫,将有助于我们在miRNA的基因表达调控层面揭示温敏雄性不育的分子调控机理。通过small RNA的Solexa测序,我们鉴定出80个已知的miRNA,同时,运用降解组测序技术寻找miRNA在雄蕊组织中真实降解的靶基因。miRNA和靶基因的qPCR验证结果表明,调控靶基因ARF的tasiRNA-ARF和miRNA167家族miRNAs受低温胁迫影响,4个ARF靶基因的表达出现异常。因而,推测异常表达的tasiRNA-ARF和miRNA167可能与BS366的温敏雄性不育相关。
The male sterility of wheat thermosensitive genic male sterile (TGMS) line BS366 is strictly controlled by temperature. When a TGMS line BS366 is exposed to an appropriate low temperature, starting at the PMC stage and continuing to the meiosis stage, TGMS lines BS366 exhibit indehiscent anthers and lack pollen grains, while other organs, including pistils, and seedlings develop normally. This suggests that microsporogenesis is much more sensitive to cold stress compared with female reproductive development and vegetative growth.
     Our objective is to elucidate how cold stress influences the microsporogenesis process of TGMS lines BS366. As a first step towards achieving this aim, the histological features were examined in TGMS-line anthers. During cold stress, abnormal separation of dyads occurred during male meiosis I, owing to failure of male meiotic cytokinesis. The fluorescence labeling and transmission electron microscopy results further revealed that the phragmoplast structure was defectively formed and the cell plate was abnormally assembled during meiosis I under cold stress. To gain further insight into the developmental transition throughout microsporogenesis underlying the histological changes, genomic transcriptional profiling of TMGS-line anthers over a developmental time-series was monitored under cold stress and in controls. A total of 840 annotated probe sets showed significant changes in transcript levels under cold treatment, but 278 of these common cold-responsive genes were eliminated by comparisons with the cold-treated Jing411 controls. Comparing the transcriptomes of cold-stressed lines and the controls, signaling systems that orchestrated, cytoskeleton activity were moderately induced in response to cold-stress in anthers of the TGMS line; however, genes involved in dynamic organization of the cytoskeleton were dramatically repressed. Forthermore, microRNA (miRNA) plays an important role in plant development and response to bio-or abio-stress. Exploring the role of miRNA in the anther developmental context to respond to cold stress will help to understand the mechanism of male sterility. Total 80 miRNAs have been identified by small RNA sequencing with next-generation sequencing technology. A transcriptome-wide experimental method, called "degradome sequencing", was used to directly detect cleaved miRNA targets. The expression profiles of miRNAs and their targets indicated that tasiRNA-ARF and miR167 family were significantly depressed by cold stress, however, the ARF target genes were abnormally induced at meiosis stage in TGMS line. These results suggest the concerning relationship between abnormal regulation of miRNAs under cold stress and male sterility of TGMS line.
引文
1. 曹双河,刘冬成,刘立科,郭小丽,张爱民.小麦光温敏核雄性不育相关基因的G-box家族引物差式分析.遗传学报,2003,30:56-61.
    2. 程旭东,孙东发,荣德福.新型光温敏小麦不育系337S的组织结构研究.武汉植物学研究,2004,22:495-499.
    3. 何蓓如,董普辉,宋喜悦,马翎健,胡银岗,蒋通关,王俊鹏,李宏斌.小麦温度敏感不育系A3314温敏特性研究.麦类作物学报,2003,23:1-6.
    4. 何觉民.两系杂交小麦理论与实践.长沙:湖南科学技术出版社,1993.
    5. 马慧英,孙振,罗志昌,郭风琴,安建勇.硬粒温光敏核不育小麦DT94-1的发现及育性转换研究.山西农业科学,2001,2:3-6.
    6. 马翎健,何蓓如,宋喜悦,胡银岗.小麦光敏雄性不育系A31在不同生态地点的育性变异.中国农学通报,2004,20:76-78.
    7. 宋喜悦,马翎健,胡银岗,李宏斌,何蓓如.YS型小麦温敏不育系A3314的细胞学研究.干早地区农业研究,2007,5:15-19.
    8. 宋亚珍,雷国材,耿东梅,周桂莲,王强,陈天佑,路明.一种普通小麦光温敏雄性不育种质初探.中国农学通报,2003,19:34-36.
    9. 孙宗修.杂交水稻育种-三系、两系到一系.中国农业科技出版社,1994.
    10. 谭昌华,余国东,杨沛丰,张宗华,潘鹰,郑坚.重庆温光型核不育小麦的不育性研究初报.西南农业学报,1992,4:3-8.
    11. 王艳.小麦D2型核质互作光敏雄性不育的遗传研究.[博士学位论文].北京:中国农业大学图书馆,1999.
    12. 徐是雄,朱激,胡适宜.百合生殖细胞分裂过程中微管分布的显微荧光观察.植物学报,1990,32(11):821-836.
    13. 徐是雄.百合花粉原生质体中肌动蛋白微丝的荧光共焦镜观察.植物学报,1992,34(2):907-911.
    14. 杨迪.温光敏雄性不育小麦穗部发育时期均一化cDNA文库的构建、鉴定和EST分析以及减数分裂时期细胞骨架荧光标记体系探索.[硕士学位论文].武汉:华中农业大学图书馆,2009.
    15. 杨木军,顾坚,刘琨,李绍祥,田玉仙,杨和仙,周金生,刘大钧,陈佩度.小麦 温光敏雄性核不育系K78S在云南的生态适应性研究.作物学报,2006,11:1618-1624.
    16. 杨木军.温光敏两系法杂交小麦技术体系的研究和应用.[博士学位论文].南京:南京农业大学图书馆,2006.
    17. 张建奎,刘刚,冯丽,何立人,余国东.温光敏细胞核雄性不育小麦C49S的育性及其适应性分析.麦类作物学报,2002,2:38-41.
    18. 张明,王岳光,刘广田.小麦品质性状杂种优势及其配合力研究.麦类作物学报,2006,26:63-66.
    19. 张少华,杨赞林,甘斌杰.小麦光敏不育系皖901S研究初报.安徽农业科学,1995,23:97-99.
    20. 赵昌平,王新,张风廷,叶志杰,戴惠君.杂种小麦的研究现状与光温敏二系法.北京农业科学,1999,17:3-5.
    21. 赵昌平,张立平,李云伏,马荣才,单福华,张风廷,叶志杰,秦娜.小麦光温敏雄性不育相关基因的DDRT-PCR分析及功能预测.中国生物化学与分子生物学报,2007,23:56-62.
    22. 赵昌平.中国杂交小麦研究现状与趋势.中国农业科技导报,2010,12:5-8.
    23. 周美兰,程尧楚,邹应斌,何觉民.光温敏核不育小麦ES-14花粉败育的细胞学研究.作物研究,1996,4:20-23.
    24. 周美兰,何觉民,唐启源.光周期对光温敏核不育小麦ES-8育性转换特性的影响.麦类作物学报,1997,17:9-12.
    25. 周美兰,何觉民,邹应斌,刘雄伦,李海林.光温敏核不育小麦育性转换条件的研究.湖南农业大学学报,1996,22:231-235.
    26. 庄巧生,王恒立,曾启明,李英婵,李登春.冬小麦亲本选配的研究Ⅰ.杂种第一代优势和配合力的研究.作物学报,1963,2:117-129.
    27. Addo-Quaye C, Miller W, Axtell MJ. CleaveLand:a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics,2009,25(1):130-131.
    28. Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouche N, Gasciolli V, Vaucheret H. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol,2006,16(9):927-932.
    29. Ahlfors R, Lang S, Overmyer K, Jaspers P, Brosche M, Tauriainen A, Kollist H, Tuominen H, Belles-Boix E, Piippo M, Inze D, Palva ET, Kangasjrvi J. Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell,2004,16(7):1925-1937.
    30. Allen E, Xie Z, Gustafson AM, Carrington JC. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell,2005,121(2):207-221.
    31. Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet,2004,36(12):1282-1290.
    32. Allwood EG, Smertenko AP, Hussey PJ. Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. FEBS Letters,2001,499:97-100.
    33. Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC. Cloning and characterization of micro-RNAs from moss. Plant J,2005,43(6):837-848.
    34. Arenas-Huertero C, Perez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol, 2009,70(4):385-401.
    35. Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K. Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J,2004,39:170-181.
    36. Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell,2003, 15(11):2730-2741.
    37. Axtell MJ, Bartel DP. Antiquity of microRNAs and their targets in land plants. Plant Cell,2005,17(6):1658-1673.
    38. Axtell MJ, Jan C, Rajagopalan R, Bartel DP. A two-hit trigger for siRNA biogenesis in plants. Cell,2006,127(3):565-577.
    39. Ayscough KR. In vivo functions of actin-binding proteins. Curr Opin Cell Biol, 1998,10(1):102-111.
    40. Bannigan A, Lizotte-Waniewski M, Riley M, Baskin TI. Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants. Cell Motil Cytoskeleton,2008,65(1):1-11.
    41. Barr FA, Gruneberg U. Cytokinesis:placing and making the final cut. Cell,2007, 131:847-860.
    42. Bartels D, Sunkar R. Drought and Salt Tolerance in Plants. Crit Rev Plant Sci,2005, 24(1):23-58.
    43. Baskin TI, Cande WZ. The structure and function of the mitotic spindle in flowering plants. Annu Rev Plant Physiol Plant Mol Biol,1990,41:277-315.
    44. Beck M, Komis G, Miiller J, Menzel D, Samaj J. Arabidopsis homologs of nucleus-and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell,2010,22(3):755-771.
    45. Berleth T, Krogan NT, Scarpella E. Auxin signals-turning genes on and turning cells around. Curr Opin Plant Biol,2004,7(5):553-563.
    46. Bernstein BW, Bamburg JR. ADF/cofilin:a functional node in cell biology. Trends Cell Biol,2010,20(4):187-195.
    47. Boi S, Solda G, Tenchini ML. Shedding light on the dark side of the genome: overlapping genes in higher eukaryotes. Curr Genomics,2004,5(6):509-524.
    48. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell,2005,123(7):1279-1291.
    49. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily:conserved structure and molecular mechanism. Nature,1991,349:117-127.
    50. Brown RC, Lemmon BE. The cytoskeleton and spatial control of cytokinesis in the plant life cycle. Protoplasma,2001,215:35-49.
    51. Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell,2008,20(7):1760-1774.
    52. Chan J, Jensen CG, Jensen LC, Bush M, Lloyd CW. The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci USA,1999,96(26):14931-14936.
    53. Chan SW, Zilberman D, Xie Z, Johansen LK, Carrington JC, Jacobsen SE. RNA silencing genes control de novo DNA methylation. Science.2004,303(5662):1336.
    54. Chen HM, Li YH, Wu SH. Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci USA,2007,104(9):3318-3323.
    55. Chen R, Zhao X, Shao Z, Wei Z, Wang Y, Zhu L, Zhao J, Sun M, He R, He G. Rice UDP-glucose pyrophosphorylasel is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. Plant Cell,2007,19(3):847-61.
    56. Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science,2004,303(5666):2022-2025.
    57. Cherfils J, Chardin P. GEFs:structural basis for their activation of small GTP-binding proteins. Trends Biochem Sci,1999,24(8):306-11.
    58. Cobbe N, Heck MM. The evolution of SMC proteins phylogenetic analysis and structural implications. Mol Biol Evol,2004,21(2):332-347.
    59. Cvrckova F, Novotny M, Pickova D, Zarsky V. Formin homology 2 domains occur in multiple contexts in angiosperms. BMC Genomics,2004,5(1):44.
    60. Deeks MJ, Hussey PJ, Davies B. Formins:intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends Plant Sci,2002, 7(11):492-498.
    61. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol,2007,17(6):520-527.
    62. Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrasek J, Seifertova D, Tejos R, Meisel LA, Zazimalova E, Gadella TW Jr, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci U S A.2008,105(11):4489-4494.
    63. Dr (?) bak BK, Franklin-Tong VE, Staiger CJ. The role of the actin cytoskeleton in plant cell signaling. New Phytologist,2004,163:13-30.
    64. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC. High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes. PLoS One,2007,2(2):e219.
    65. Floyd SK, Bowman JL. Gene regulation:ancient microRNA target sequences in plants. Nature,2004,428(6982):485-486.
    66. Frank M, Egile C, Dyachok J, Djakovic S, Nolasco M, Li R, Smith LG. Activation of Arp2/3 complex-dependent actin polymerization by plant proteins distantly related to Scar/WAVE. Proc Natl Acad Sci USA,2004,101:16379-16384.
    67. Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell,2005,120:687-700.
    68. Fu Y, Li H, Yang Z. The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell,2002,14:777-794.
    69. Fu Y, Xu T, Zhu L, Wen M, Yang Z. A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol,2009, 19(21):1827-32.
    70. Gandikota M, Birkenbihl RP, H?hmann S, Cardon GH, Saedler H, Huijser P. The miRNA156/157 recognition element in the 3'UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 2007,49(4):683-693.
    71. Gard DL, Becker BE, Josh Romney S. MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Disl family of microtubule-associated proteins. Int Rev Cytol,2004,239:179-272.
    72. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell,2003, 112(2):219-230.
    73. German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol,2008,26(8):941-946.
    74. Goode BL, Eck MJ. Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem,2007,76:593-627.
    75. Gothandam KM, Kim ES, Chung YY. Ultrastructural study of rice tapetum under low-temperature stress. J of Plant Bio,2009,50:396-402.
    76. Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ. miRBase:tools for microRNA genomics. Nucleic Acids Res.2008,36(Database issue):D154-8.
    77. Grummt M, Pistor S, Lottspeich F, Schliwa M. Cloning and functional expression of a 'fast' fungal kinesin. FEBS Lett,1998,427(1):79-84.
    78. Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol,2005,169(1):127-38.
    79. Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol,2008, 147(2):852-863.
    80. Guilfoyle TJ, Hagen G. Auxin response factors. Curr Opin Plant Biol,2007, 10(5):453-460.
    81. Guo RX, Sun DF, Tan ZB, Rong DF, Li CD. Two recessive genes controlling thermophotoperiod-sensitive male sterility in wheat. Theor Appl Genet,2006, 112(7):1271-1276.
    82. Hamada T. Microtubule-associated proteins in higher plants. J Plant Res,2007, 120(1):79-98.
    83. Hannah MA, Heyer AG, Hincha DK. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genetics,2005, 1:e26.
    84. Havelda Z. In situ detection of miRNAs using LNA probes. In:Meyers BC, Green PJ. Plant microRNAs methods and protocols. Humana Press,2010.126-136.
    85. Herr AJ, Jensen MB, Dalmay T, Baulcombe DC. RNA polymerase IV directs silencing of endogenous DNA. Science,2005,308(5718):118-120.
    86. Higaki T, Kutsuna N, Okubo E, Sano T, Hasezawa S. Actin microfilaments regulate vacuolar structures and dynamics:dual observation of actin microfilaments and vacuolar membrane in living tobacco BY-2 Cells. Plant Cell Physiol,2006, 47(7):839-852.
    87. Higaki T, Sano T, Hasezawa S. Actin microfilament dynamics and actin side-binding proteins in plants. Curr Opin Plant Biol,2007,10(6):549-556.
    88. Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science,1998,279(5350):519-526.
    89. Huang S, Robinson RC, Gao LY, Matsumoto T, Brunet A, Blanchoin L, Staiger CJ. Arabidopsis VILLIN1 generates actin filament cables that are resistant to depolymerization. Plant Cell,2005,17(2):486-501.
    90. Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A. The plant cytoskeleton:recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MORI. Plant Mol Biol,2002,50(6):915-924.
    91. Hussey PJ, Ketelaar T, Deeks MJ. Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol,2006,57:109-125.
    92. Jiang S, Ramachandran S. Identification and molecular characterization of myosin gene family in Oryza sativa genome. Plant Cell Physiol,2004,45(5):590-599.
    93. Jin H, Axtell MJ, Dahlbeck D, Ekwenna O, Zhang S, Staskawicz B, Baker B. NPK1, an MEKKl-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev Cell,2002,3(2):291-297.
    94. Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell,2004, 14(6):787-799.
    95. Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G. Rice Undeveloped Tapetuml is a major regulator of early tapetum development. Plant Cell,2005,17(10):2705-2722.
    96. Kanno T, Huettel B, Mette MF, Aufsatz W, Jaligot E, Daxinger L, Kreil DP, Matzke M, Matzke AJ. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet,2005,37(7):761-765.
    97. Kawamura E, Himmelspach R, Rashbrooke MC, Whittington AT, Gale KR, Collings DA, Wasteneys GO. MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol,2006,140(1):102-114.
    98. Kawamura E, Wasteneys GO.1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. J Cell Sci,2008,121:4114-4123.
    99. Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J,2009, 57(2):313-321.
    100. Kidner CA, Martienssen RA. The developmental role of microRNA in plants. Curr Opin Plant Biol,2005,8(1):38-44.
    101. Krysan PJ, Jester PJ, Gottwald JR, Sussman MR. An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell,2002,14(5):1109-1120.
    102. Le J, Mallery EL, Zhang C, Brankle S, Szymanski DB. Arabidopsis BRICK1/HSPC300 is an essential WAVE-complex subunit that selectively stabilizes the Arp2/3 activator SCAR2. Curr Biol,2006,16(9):895-901.
    103. Lee YR, Li Y, Liu B. Two Arabidopsis phragmoplast-associated kinesins play a critical role in cytokinesis during male gametogenesis. Plant Cell,2007, 19(8):2595-2605.
    104. Li CF, Pontes O, El-Shami M, Henderson IR, Bernatavichute YV, Chan SW, Lagrange T, Pikaard CS, Jacobsen SE. An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell,2006, 126(1):93-106.
    105. Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell,2008, 20(8):2238-2251.
    106. Li Y, Sorefan K, Hemmann G, Bevan MW. Arabidopsis NAP and PIR regulate actin-based cell morphogenesis and multiple developmental processes. Plant Physiol,2004,136(3):3616-3627.
    107. Li YF, Zhao CP, Zhang FT, Sun H, Sun DF. Fertility alteration in the photo-thermo-sensitive male sterile line BS20 of wheat (Triticum aestivum L.). Euphytica,2006,151(2):207-213.
    108. Liscum E, Reed JW. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol,2002,49(3-4):387-400.
    109. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA,2008,14(5):836-843.
    110. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods,2001, 25(4):402-408.
    111. Lu C, Kulkarni K, Souret FF, MuthuValliappan R, Tej SS, Poethig RS, Henderson IR, Jacobsen SE, Wang W, Green PJ, Meyers BC. MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res,2006,16(10):1276-1288.
    112. Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ. Elucidation of the small RNA component of the transcriptome. Science,2005,309(5740):1567-1569.
    113. Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus. Plant J,2008, 55(1):131-151.
    114. Machida Y, Nakashima M, Morikiyo K, Banno H, Ishikawa M, Soyano T, Nishihama R. MAPKKK-Related protein kinase NPK1:Regulation of the M phase of plant cell cycle. J Plant Res,1998,111:243-246.
    115. Maciver SK, Hussey PJ. The ADF/cofilin family:actin-remodeling proteins. Genome Biol,2002,3(5):reviews3007.
    116. Maisch J, Nick P. Actin is involved in auxin-dependent patterning. Plant Physiol, 2007,143(4):1695-1704.
    117. Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell,2005, 17(5):1360-1375.
    118. McCurdy DW, Kovar DR, Staiger CJ. Actin and actin-binding proteins in higher plants. Protoplasma,2001,215:89-104.
    119. McKinney EC, Kandasamy MK, Meagher RB. Arabidopsis contains ancient classes of differentially expressed actin-related protein genes. Plant Physiol,2002, 128(3):997-1007.
    120. Megraw M, Baev V, Rusinov V, Jensen ST, Kalantidis K, Hatzigeorgiou AG. MicroRNA promoter element discovery in Arabidopsis. RNA,2006, 12(9):1612-1619.
    121. Mou Z, Wang X, Fu Z, Dai Y, Han C, Ouyang J, Bao F, Hu Y, Li J. encing of phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. Plant Cell,2002,14(9):2031-2043.
    122. Muller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ, Hauser MT. The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr Biol,2004,14(5):412-417.
    123. Murai K, Tsunewaki K. Photoperiod-sensitive cytoplasmic male sterility in wheat with Aegilops crassa cytoplasm. Euphytica,1993,67:41-48.
    124. Murai K. Factors responsible for levels of male sterility in photoperiod-sensitive cytoplasmic male sterile (PCMS) wheat lines. Euphytica,2001,2:111-116.
    125. Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci,2005,10(7):339-346.
    126. Nakashima M, Hirano K, Nakashima S, Banno H, Nishihama R, Machida Y. The expression pattern of the gene for NPK1 protein kinase related to mitogen-activated protein kinase kinase kinase (MAPKKK) in a tobacco plant:correlation with cell proliferation. Plant Cell Physiol.1998,39(7):690-700.
    127. Neale MJ, Keeney S. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature,2006,442(7099):153-158.
    128. Nebenfuhr A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA. Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol,1999,121(4):1127-1142.
    129. Niiya F, Xie X, Lee KS, Inoue H, Miki T. Inhibition of cyclin-dependent kinase 1 induces cytokinesis without chromosome segregation in an ECT2 and MgcRacGAP-dependent manner. J Biol Chem,2005,280(43):36502-36509.
    130. Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y. The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev,2001,15(3):352-363.
    131. Nogueira FT, Chitwood DH, Madi S, Ohtsu K, Schnable PS, Scanlon MJ, Timmermans MC. Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet,2009,5(1):e1000320.
    132. Onodera Y, Haag JR, Ream T, Nunes PC, Pontes O, Pikaard CS. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell,2005,120(5):613-622.
    133. Oshino T, Abiko M, Saito R, Ichiishi E, Endo M, Kawagishi-Kobayashi M, Higashitani A. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol Genet Genomics,2007,278(1):31-42.
    134. Oshino T, Miura S, Kikuchi S, Hamada K, Yano K, Watanabe M, Higashitani A. Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations. Plant Cell Environ,2011,34(2):284-290.
    135. Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev,2004,18(18):2237-2242.
    136. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci USA,1988,85(8):2444-2448.
    137. Pesin JA, Orr-Weaver TL. Regulation of APC/C activators in mitosis and meiosis. Annu Rev Cell Dev Biol,2008,24:475-99.
    138. Petrasek J, Schwarzerova K. Actin and microtubule cytoskeleton interactions. Curr Opin Plant Biol,2009,12(6):728-734.
    139. Phillips JR, Dalmay T, Bartels D. The role of small RNAs in abiotic stress. FEBS Lett,2007,581(19):3592-3597.
    140. Pontier D, Yahubyan G, Vega D, Bulski A, Saez-Vasquez J, Hakimi MA, Lerbs-Mache S, Colot V, Lagrange T. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev,2005,19(17):2030-2040.
    141. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev,2006,20(24):3407-3425.
    142. Reddy AS, Day IS. Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol,2001, 2(7):RESEARCH0024.
    143. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev,2002,16(13):1616-1626.
    144. Reynolds MP, Rajaram S, McNab A. Increasing Yield Potential in Wheat:Breaking the Barriers. Mexico:CIMMYT,1996.134-149.
    145. Ru P, Xu L, Ma H, Huang H. Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res,2006,16(5):457-465.
    146. Saedler R, Zimmermann I, Mutondo M, Hiilskamp M. The Arabidopsis KLUNKER gene controls cell shape changes and encodes the AtSRA1 homolog. Plant Mol Biol, 2004,56(5):775-782.
    147. Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A. Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA,2010,107(19):8569-8574.
    148. Sasabe M, Soyano T, Takahashi Y, Sonobe S, Igarashi H, Itoh TJ, Hidaka M, Machida Y. Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev,2006,20(8):1004-1014.
    149. Shen D, Wang S, Chen H, Zhu QH, Helliwell C, Fan LJ. Molecular phylogeny of miR390-guided trans-acting siRNA genes (TAS3) in the grass family. Plant Syst Evol,2009,283:125-132.
    150. Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ. The Arabidopsis microtubule-associated protein AtMAP65-1:molecular analysis of its microtubule bundling activity. Plant Cell, 2004,16(8):2035-2047.
    151. Smertenko AP, Jiang CJ, Simmons NJ, Weeds AG, Davies DR, Hussey PJ. Ser6 in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant J,1998,14(2):187-193.
    152. Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y. NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev,2003,17(8):1055-1067.
    153. Staiger CJ, Blanchoin L. Actin dynamics:old friends with new stories. Curr Opin Plant Biol,2006,9(6):554-562.
    154. Staiger CJ. S ignaling to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol,2000,51:257-288.
    155. Strompen G, El Kasmi F, Richter S, Lukowitz W, Assaad FF, Jurgens G, Mayer U. The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Curr Biol,2002, 12(2):153-158.
    156. Sunkar R, Chinnusamy V, Zhu J, Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci,2007, 12(7):301-309.
    157. Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell,2004,16(8):2001-2019.
    158. Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell,2006, 18(8):2051-2065.
    159. Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol,2008, 8:25.
    160. Sunkar R. MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol,2010,21(8):805-811.
    161. Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K. The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J,2000,23(2):171-182.
    162. Tanaka H, Ishikawa M, Kitamura S, Takahashi Y, Soyano T, Machida C, Machida Y. The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells,2004,9(12):1199-1211.
    163. Thomas C, Moreau F, Dieterle M, Hoffmann C, Gatti S, Hofmann C, Van Troys M, Ampe C, Steinmetz A. The LIM domains of WLIM1 define a new class of actin bundling modules. J Biol Chem,2007,282(46):33599-33608.
    164. Tiezzi A, Moscatelli A, Cai G, Bartalesi A, Cresti M. An immunoreactive homolog of mammalian kinesin in Nicotiana tabacum pollen tubes. Cell Motil Cytoskeleton, 1992,21(2):132-137.
    165. Trindade I, Capit?o C, Dalmay T, Fevereiro MP, Santos DM. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta,2010, 231(3):705-716.
    166. Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ. MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol,2002,4(9):711-714.
    167. Valoczi A, Varallyay E, Kauppinen S, Burgyan J, Havelda Z. Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues. Plant J,2006,47(1):140-151.
    168. Van Breugel M, Drechsel D, Hyman A. Stu2p, the budding yeast member of the conserved Disl/XMAP215 family of microtubule-associated proteins is a plus end-binding microtubule destabilizer. J Cell Biol,2003,161(2):359-369.
    169. Van Gestel K, K o hler RH, Verbelen JP. Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. J Exp Bot,2002,53(369):659-667.
    170. Vogel JT, Zarka DG, Buskirk VHA, Fowler SG, Thomashow MF. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J,2005,41:195-211.
    171. Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell,2009, 136(4):669-687.
    172. Wallar BJ, Alberts AS. The formins:active scaffolds that remodel the cytoskeleton. Trends Cell Biol,2003,13(8):435-446.
    173. Wang A, Xia Q, Xie W, Datla R, Selvaraj G. The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development. Proc Natl Acad Sci USA,2003,100(24):14487-14492.
    174. Wang H, Chua NH, Wang XJ. Prediction of trans-antisense transcripts in Arabidopsis thaliana. Genome Biol,2006,7(10):R92.
    175. Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY. Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell, 2005,17(8):2204-2216.
    176. Wang XJ, Gaasterland T, Chua NH. Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol.2005, 6(4):R30.
    177. Wasteneys GO, Yang Z. New views on the plant cytoskeleton. Plant Physiol,2004, 136(4):3884-3891.
    178. Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu YQ, Vogel J, Jia J, Qi Y, Mao L. Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat(Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics,2009,9(4):499-511.
    179. Welch MD, DePace AH, Verma S, Iwamatsu A, Mitchison TJ. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J Cell Biol,1997, 138(2):375-384.
    180. Wheatley SP, Hinchcliffe EH, Glotzer M, Hyman AA, Sluder G, Wang Y. CDK1 inactivation regulates anaphase spindle dynamics and cytokinesis in vivo. J Cell Biol,1997,138(2):385-393.
    181. Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO. MOR1 is essential for organizing cortical microtubules in plants. Nature,2001,411(6837):610-613.
    182. Wilson ZA, Yang C. Plant gametogenesis:conservation and contrasts in development. Reproduction,2004,128(5):483-492.
    183. Wu G, Gu Y, Li S, Yang Z. A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell,2001, 13(12):2841-2856.
    184. Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development,2006,133(21):4211-4218.
    185. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol,2004,2(5):E104.
    186. Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC. Expression of Arabidopsis MIRNA genes. Plant Physiol,2005,138(4):2145-2154.
    187. Xing QH, Ru ZG, Zhou CJ, Xue X, Liang CY, Yang DE, Jin DM, Wang B. Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene (wtmsl) in wheat. Theor Appl Genet,2003,107(8):1500-1504.
    188. Xu SX, Liu XD, Feng JH, Lu YG. Comparative studies on the changes of microtubule distribution and reorganization during the meiotic stages of development in normal (IR36) and a temperature/photoperiod sensitive male sterile line (Peiai 64S) of rice(Oryza sativa). Acta Botanica Sinica,2001,43:221-226.
    189. Yang CY, Spielman M, Coles JP, Li Y, Ghelani S, Bourdon V, Brown RC, Lemmon BE, Scott RJ, Dickinson HG TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant J,2003,34(2):229-240.
    190. Yang D, Tang ZH, Zhang LP, Zhao CP, Zheng YL. Construction, characterization, and expressed sequence tag (EST) analysis of normalized cDNA library of thermo-photoperiod-sensitive genic male sterile (TPGMS) wheat from spike developmental stages. Plant Mol Biol Rep,2008,27:117-125.
    191. Yang KZ, Xia C, Liu XL, Dou XY, Wang W, Chen LQ, Zhang XQ, Xie LF, He L, Ma X, Ye D. A mutation in Thermosensitive Male Sterile 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. Plant J,2009,57(5):870-882.
    192. Yang M, Hu Y, Lodhi M, McCombie WR, Ma H. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc Natl Acad Sci USA,1999,96(20):11416-11421.
    193. Ye XL, Yeung E, Xu SX, Liang CY. Microtubule structure and male sterility in a gene-cytoplasmic male sterile line of rice, Zhen Shan 97 A. Acta Bot Sin,2003, 45:183-192.
    194. Yokota E, Ueda S, Tamura K, Orii H, Uchi S, Sonobe S, Hara-Nishimura I, Shimmen T. An isoform of myosin XI is responsible for the translocation of endoplasmic reticulum in tobacco cultured BY-2 cells. J Exp Bot,2009, 60(1):197-212.
    195. Zhang J, Xu Y, Huan Q, Chong K. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics,2009,10:449.
    196. Zhang X, Dyachok J, Krishnakumar S, Smith LG, Oppenheimer DG IRREGULAR TRICHOME BRANCH1 in Arabidopsis encodes a plant homolog of the actin-related protein2/3 complex activator Scar/WAVE that regulates actin and microtubule organization. Plant Cell,2005,17(8):2314-2326.
    197. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y. Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun,2007, 354(2):585-590.
    198. Zhao YD. Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol,2010,61:49-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700