用户名: 密码: 验证码:
非洲鸵鸟胫骨的形态学特征及硼对其生长发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非洲鸵鸟(Struthio camelus)是世界上现存体形最大的鸟,现已列为世界濒危动物范畴。非洲鸵鸟原产于非洲草原和阿拉伯沙漠,属于脊索动物门,脊椎动物亚门,鸟纲,鸵鸟目,鸵鸟科,鸵鸟属。成年鸟身高240-280cm,体重130-200kg,腿长而粗,肌肉发达。鸵鸟已经失去飞翔能力,其主要运动是在陆地上行走和奔跑,奔跑时速一般为50 km/h左右,最高可达90~100 km/h。所以推测其腿骨在组织结构和生理功能上应与其它鸟类的有所不同。有关非洲鸵鸟骨骼的解剖学特征,前人已进行了研究,表明鸵鸟骨骼在结构形态上与其它鸟类的骨骼基本相似。但是关于非洲鸵鸟腿骨的是否有特殊的组织学特征,至今未见更为深入的相关报道。
     在鸵鸟的养殖过程中,6月龄以内的小鸵鸟很容易发生胫骨骨折,影响育成率,降低鸵鸟养殖业的经济效益。导致雏鸵鸟发生腿病的最重要病因就是营养因素,即日粮中钙、磷、维生素D等营养成分不足、或日粮中钙、磷含量的比例不当、或肠道对营养元素的吸收受到阻遏。同时,鸵鸟是世界上最大的鸟类,身体躯干部分的重量也很大;与其它鸟类相比,鸵鸟的生长速度很快,这就对钙、磷等营养元素有着更高的要求;同时又由于骨的生长发育要略慢于肌肉的生长发育。这就使得雏鸵鸟极易发生腿病,即胫骨的骨折或关节的变形等。雏鸵鸟的腿病在国内外每个鸵鸟场均有不同程度的发生,给鸵鸟产业造成了很大程度的威胁和经济损失。虽然国内外对鸵鸟的研究不断深入,但是这一问题仍然没有被有效地解决。
     硼,原子序数5,原子量10.811。越来越多的证据表明硼可以促进骨的生长发育。硼对骨生长的影响表现在影响软骨和骨结构、维生素D代谢和矿物质代谢等方面,它可以增加骨量和骨的抗骨折能力、可提高缺钙和缺镁大鼠大腿骨中骨灰分含量、能够提高血中钙、磷含量,并且对微量元素铁、铜、锌的代谢也有一定的促进作用。但尚未报道硼对雏鸵鸟的腿病问题是否有改善作用。
     综合以上三方面的原因,本课题利用大体解剖、骨磨片技术(结晶紫染色)、扫描电镜(SEM)技术、骨脱钙石蜡切片HE染色技术、细胞凋亡检测及图像分析技术、以及骨密度测定、蛋白质双向电泳技术、放射免疫法、原子吸收分光光度、流动注射分析综合手段,对非洲鸵鸟胫骨的形态学、雏鸵鸟胫骨发育的特征、患腿病雏鸵鸟胫骨病理变化及硼对雏鸵鸟胫骨发育的影响进行全面、系统的研究,旨在为非洲鸵鸟(尤其是雏鸟)的疾病防控及养殖业发展提供研究基础和理论依据。主要研究内容和研究结果包括以下4个方面:
     1.非洲鸵鸟胫骨形态学特征
     本试验以1岁非洲鸵鸟为试验动物,采用大体解剖、骨密度测量、骨磨片制作、骨脱钙石蜡切片制作、结晶紫染色、HE染色技术,研究非洲鸵鸟胫骨的形态学结构特征。结果显示:在非洲鸵鸟的胫骨外侧附着有腓骨,但腓骨呈现一种退化的迹象,在距远端关节7~10cm左右的地方与胫骨愈合在一起。在非洲鸵鸟的体内,胫骨独自支撑着身体的全部重量。鸵鸟胫骨的远端关节不能像人类的踝关节一样左右旋转,只能前后伸曲活动,这一解剖学特征更有利于承重,并有利于提高奔跑的速度和效率。1岁非洲鸵鸟胫骨的骨密度值很高,平均值为5.656 g/cm2,不同部位的骨密度值差别十分显著。胫骨组织中有大量骨盐沉积,十分坚硬。鸵鸟胫骨具有一个“过渡区”,位于外环骨板与骨单位的交接处,这个区域着色特殊。
     2.雏鸵鸟胫骨发育的特点
     本研究以1d、45d和90d健康非洲雏鸵鸟为试验动物,采用大体解剖、骨密度测量、扫描电镜、骨脱钙石蜡切片制作、HE染色技术,研究雏鸵鸟胫骨的发育特征。研究结果显示:1~90日龄雏鸵鸟胫骨的生长十分迅速。随着日龄的增长,雏鸵鸟胫骨的长度、重量、骨密度(BMD)的增长均为十分显著(P<0.01)。从显微水平和超显微水平上观察发现:在1日龄雏鸵鸟胫骨中,过渡型骨小梁构成了初级骨松质,由初级骨松质构成最初形成的骨干,大量成骨细胞贴附在软骨表面形成薄层初级骨松质,过渡型骨小梁十分菲薄。45日龄雏鸵鸟的胫骨中,骨组织的重吸收活动十分活跃,过渡型骨小梁正在被破骨细胞吸收并重建。同时,骨小梁中央的软骨基质钙化过程也十分活跃,软骨基质钙化区中软骨细胞逐渐退化,留下空泡状的宽大的陷窝。90日龄雏鸵鸟的胫骨中已经形成较厚的骨密质的雏形,但还不是真正意义的骨单位。在新形成的类似骨单位结构的最外周,已经形成了类似成型骨单位的粘合线,可以此来识别新形成的类似骨单位的结构。因此,在雏鸵鸟的饲养过程中,应加强对雏鸟饲养环境的维护和日粮的合理配比,保证雏鸟骨骼生长发育的需要。
     3.90日龄正常鸵鸟与患腿病鸵鸟胫骨差异
     本研究以90日龄健康正常的和患有腿病的雏鸵鸟为试验动物,利用骨密度测量、扫描电镜、骨脱钙石蜡切片制作、蛋白质二维电泳技术,揭示正常与患病雏鸵鸟的胫骨组织学与蛋白质水平的差异。试验结果显示:患有腿病的雏鸵鸟的骨密度值显著低于正常的雏鸵鸟。与正常雏鸵鸟胫骨的组织结构相比,患腿病雏鸵鸟胫骨骨小梁面积明显减少,骨小梁变细,且出现断裂消失的现象,骨小梁中间的软骨基质钙化活动也不如正常组的那样活跃;经扫描电镜观察,正常90日龄的雏鸵鸟胫骨的内表面有许多球状新生的骨组织,在新形成的类似中央管的管壁上,有许多骨小管的开口。而患腿病雏鸵鸟胫骨中的骨小梁多处出现微骨折现象,在骨组织观察面上、布满了大大小小的吸收坑。根据这些结果分析,患有腿病的雏鸵鸟虽然腿病各有不同,但基本上都会出现骨量变少和骨小梁微断裂现象。根据试验结果分析显示,患腿病的雏鸵鸟其病因可能为骨质疏松症。
     此外,本实验通过荧光差异凝胶电泳技术,对正常组与患病组的蛋白质样本进行了进行2D DIGE检测,并用DeCyder v.5.02图像分析软件对DIGE图像进行分析,通过对相匹配的蛋白质点丰度进行差异比较,筛选出154个具有显著性意义(P<0.05)的1.5倍以上的差异蛋白质点。之后计划对已筛选到的154个差异表达的蛋白质点进行酶切肽提取,之后进行质谱鉴定,并通过工具软件对蛋白质进行分类和功能分析,利用Western blot验证DIGE的结果。
     4.硼的添加对雏鸵鸟胫骨发育的影响
     本试验选取身高体重近似的45日龄雌性非洲鸵鸟饲喂45d之后,采用扫描电镜(SEM)技术、骨脱钙石蜡切片HE染色技术、细胞凋亡检测及图像分析技术、以及骨密度测定、放射免疫法、原子吸收分光光度、流动注射分析等方法观察硼对雏鸵鸟胫骨发育的影响。结果显示:添加硼饲喂之后使鸵鸟血清中的钙水平呈现下降趋势,血清中的磷水平先下降再升高,血钙和血磷的比值([Ca]/[P])出现先升高后降低的情况。血清中的瘦素水平逐渐升高,在添加200mg/L硼之后不再升高,而雌二醇的水平波动十分剧烈。添加少量硼时,血清中雌二醇的水平显著升高;但当硼的添加量达到200 mg/L时,其含量陡然下降,只比对照组略高;而当硼的添加量继续升高时,雌二醇水平又随之升高。在饮水中添加不同剂量的硼(A、B、C、D组鸵鸟的饮水中分别添加0 mg/L、100 mg/L、200 mg/L、400mg/L)之后,4组鸵鸟的平均体重A组和C组基本持平,B组略高,D组最低;胫骨长度先出现显著的增长,之后又出现明显的下降;胫骨的重量也逐渐升高,C组的胫骨重量达到最高峰值,之后下降;胫骨周长持续增加:胫骨的灰分也随之持续增加;胫骨的骨密度先升高,而后陡然下降;胫骨骨髓腔的直径显著缩减,同时骨质的厚度也显著增加;此外,胫骨的骨髓腔不再居于胫骨的中央,而是位于靠近边侧的位置,即骨密质的最大值与最小值相差极为悬殊;4组的胫骨脱钙石蜡切片上用Tunel法检测出细胞凋亡情况,并用类流式细胞仪图像分析系统分析,得到的细胞凋亡检测结果显示,A、C两组细胞凋亡情况类似,而B、D两组中的细胞凋亡情况却显著高于B组,但T检验结果显示差异并不显著。
     由数据分析得出:B组的血清钙磷比最高,C、D组血清瘦素水平最好,C组雌二醇水平最优,B组体重数值最高,B、C组胫骨长度数值最高,C组胫骨重量数值最高,加硼组的胫骨周长均优于对照组,C、D组灰分占优,C组骨密度数值最高,骨密质厚度B、C组占优,A、C组凋亡细胞数量最少。综上所述,推测C组中雏鸵鸟胫骨发育的情况最为良好,即推测在4组不同剂量中,最适硼的添加量为200 mg/L。但真正的最适添加量仍需要更为严格的加硼梯度试验来进一步确定,以便更加有效地应用于鸵鸟饲养的生产实践中。
African Ostrich is the existing biggest birds, originated from African grassland and Arabian desert, and is classified within the kingdom Animalia, phylum of Chordata, class of Aves, superorder of Paleognathae, Struthioniformes order of ratites, genus of Struthio, and family of Struthionidae. Adult ostriches are 240-280cm high and 130-200kg weight, have long legs with developed muscle. The ostrich has lost flying ability, but running at speed around 50 km/h, and the top is 90~100 km/h. It is inferred that ostrich shank would have special structure compared with other birds. Some studies have indicated ostrich skeletal characteristics, but seldom further reports.
     Tibia fracture occurs on the ostrich chicks under 6 months frequently, which reduces the economic benefits of ostrich breeding. The main reason for tibia fracture is nutritious factors, including the diet calcium, phosphorus and vitamin D deficiency, inappropriate diet calcium phosphorus proportion, or nutrition uptake repression. These reasons cause osteoporosis in ostrich chicks, which induces leg diseases (eg. tibia fracture or transformation). Ostrich leg disease occurs frequently, and cause economic losses in ostrich husbandry. There are some researches about ostrich leg diseases resently, but the problem is still not solved.
     Boron, atomic number is 5, atomic weight is 10.811. More and more evidence shows that boron can promote the growth of bones. Boron may influence cartilage and bone structure, vitamin D metabolism and minerals metabolism, for instance. It can increase the bone mass and the ability of anti-fracture, can improve the ash content in the femur of calcium and magnesium deficiency rats, can improve metabolism of blood calcium and phosphorus, and copper and zinc. But high dosage of boron would also bring adverse effects on animal development and reproduction. There are no reports referred to the effects of boron on ostrich bone development at present.
     For the above 3 reasons above, this article is about the research of morphology of ostrich tibia, tibia development in ostrich chick, pathological change of leg disease ostrich tibias, and the effects of boron on ostrich tibia development by using anatomy, bone grinding chip(crystalline violet stain), scanning electron microscopy (SEM), bone demineralization paraffin section(HE stain), two-dimensional difference gel electrophoresis(2-D DIGE), apoptosis detection and image analysis technology, bone density determine, radiation immune method, atomic absorption spectrophotometric, flow injection analysis comprehensive method, etc., aiming to provide fundamental research and theoretical foundation for disease control and prevention of ostrich (especially nestlings). The main contents and results of this research include the following 4 aspects:
     1. Morphology characteristics of African Ostrich tibia
     1-year-old African ostriches are used in the study to investigate the morphological structure of tibia, by the experiments of anatomy, bone grinding chip (crystalline violet stain), scanning electron microscopy(SEM), bone demineralization paraffin section(HE stain), bone density determination. Result shows that:the bone mineral density of the experimental animals is very high (5.656 g/cm2), and the bone mineral density on different parts of tibia are significantly different. Ostrich tibia is very hard with plenty of mineral deposited. There is a transform area stained specially between outer circumferential lamella and osteon area. In addition, ostrich tibial distal joints cannot left-right rotate as human, these anatomic features may be more advantageous for bearing and improving the running speed.
     2. Developmental characteristics of ostrich chick tibia
     1,45,90 days old ostrich chicks are used in this study to investigate the morphological structure of tibia of ostrich chicks, by the experiments of anatomy, scanning electron microscopy(SEM), bone demineralization paraffin section(HE stain), bone density determination. Result shows that:ostrich chicks under 90 days grow very fast, and the length, weight, bone mineral density (BMD) of the tibia all increase significantly and continuously. In the tibia of 1-day-old bird, transitional bone trabeculae constitute the primary cancellous bone, which constitute the early formation of backbone. In the tibia of 45-day-old bird, resorption is very active, transitional bone trabeculae are absorbed by osteoclasts and then rebuilded. In thetibia of 90-day-old bird, rudiment of new born compact bone and osteons already exists, but the mature bones are still not formed. Therefore, in the young ostrich husbandry, nestlings should be kept in a good feeding environment and the feed should be given at a reasonable nutrition proportion to meet the needs of the tibias growth of ostrich chicks.
     3. Differences between tibias from normal and leg disease ostrich chicks
     90 days old normal and leg disease ostrich chicks were used in the study to investigate the difference of morphological structure and protein content between disease bird tibia and the normal one, by the experiments of anatomy, scanning electron microscopy(SEM), bone demineralization paraffin section(HE stain), bone density determine and protein two-dimensional electrophoresis technology. Result shows:bone mineral density value of leg disease birds is much lower than the normal one. In the disease tibia, compared with normal tibia, there are less bone trabeculae, which are attenuated and began to disappear. In addition, great number of absorb pits are observed on the surface and micro-fracture appears on bone trabeculae. These results indicate that, the disease tibia has less bone density and trabeculae micro-fracture happens in tibia with different disease. Furthermore, the samples of normal group and leg-disease group are detected by two- dimensional difference gel electrophoresis (2-D DIGE). And the 2-D DIGE results are analyzed to screen out 154 differentially expressed protein spots with more than 1.5 times of significance(P<0.5).
     4. Effects of boron on the development of ostrich chick tibia
     90 days old ostrich chicks were used in the study to investigate the effects of boron on ostrich chick tibia development, by the experiments of scanning electron microscopy (SEM), bone demineralization paraffin section(HE stain), apoptosis detection and image analysis technology, bone density determination, radiation immune method, atomic absorption spectrophotometric, flow injection analysis comprehensive method, etc.. Result shows that:with different dosage of additional boron, the ostrich serum calcium and boron level are decreased, but serum calcium phosphate ratio increased, serum leptin levels gradually raised, estradiol level in Group C slightly higher than Group A, Bone density value, length, ash, etc all were improved. Group B has highest body weight, B and C group tibial length numerical highest, Group C tibial weight is highest, Group C, D has more ash content, Group C has highest BMD, Group A and C has less apoptosis cells. In conclusion, it was support that ostrich chick tibias in group C grow best, and the most suitable dosage for the development of tibia is 200 mg/L. However, the real optimum dosage of additional boron still needs further gradient experiments to ascertain to effectively apply in animal production.
引文
1.毕振东,周洪涛,李风洲,宁自利.乳牛血清钙磷乘积与骨密度的关系.黑龙江畜牧兽医,1996,1:34-38.
    2.陈东,安长新,黄绍轩,孙宏,郭惠兰,张志平,杨大雷,左勇.2011.广东医学院组织胚胎学教研室——组织学与胚胎学网络课程.(http://jpkc.gdmc.edu.cn/zupei/zupeicourse/5788923112.htm).
    3.陈宁.高、低转移肝细胞癌细胞株的定量蛋白质组研究.[硕士学位论文].北京:军事医学科学院放射与辐射医学研究所,2008,12-37.
    4.陈越.糖皮质激素性骨质疏松的药物防治.国际泌尿系统杂志,2007,27:399-402.
    5.畜牧兽医科技信息.我国首创:将鸵鸟、乌贼骨用于骨移植.畜牧兽医科技信息,2004,44.
    6.崔保维.鸵鸟养殖技术.北京:中国农业出版社,1999,33-40.
    7.董武子,张彦明,尹燕博,吉亚杰.不同月龄鸵鸟主要血液生化参数测定.西北农林科技大学学报(自然科学版),2002,30:93-95.
    8.杜卓民.实用组织学技术.北京:人民卫生出版社,1998,45-49.
    9.甘世祥,钱宁,冯济凤.贵州小型猪组织学图谱.贵阳:贵州科技出版社,2001,25-56.
    10.高腾云.前景广阔的鸵鸟产业.科学养殖,2002,5:28-30.
    11.顾有方,刘小成,刘德义.安徽省部分地区牛血清硼含量检测与分析.中国农学通报,2005A,21:52-53;80.
    12.顾有方,刘华,刘德义.安徽省部分地区猪血清硼含量检测与分析.动物医学进展,2005B,26:80-82.
    13.霍金龙,苗永旺,霍海龙,陈涛,伍革民,刘丽仙.澳洲鸵鸟的随机扩增多 态DNA研究.西南农业学报,2008,21:208-212.
    14.考察组.关于南非鸵鸟产业的考察报告.中国农垦经济,2001,11:45-46.
    15.李金书.浅谈雏鸵鸟的腿部病.农业科技与信息,2003,31.
    16.李升和.微量元素硼对大鼠营养和毒性作用及作用机理的研究.[博士学位论文]武汉:华中农业大学动物科学技术学院动物医学院,2008,79-118.
    17.李升和,顾有方,王珏,金光明,刘德义,陈会良.硼及其化合物在动物营养方面的研究进展.安徽科技学院学报,2006,20:19-23.
    18.李哓佳,魏松全,李双庆,安振梅,杨元.瘦素对成骨细胞骨保护蛋白mRNA表达的影响初探.中国骨质疏松杂志,2004,10:429-431.
    19.李绪刚,姜怀志,孙泽威.鸵鸟的全身骨骼特点.吉林农业大学学报,1999,21:86-88.
    20.李绪刚,姜怀志,孙泽威.鸵鸟的全身骨骼特点.吉林农业大学学报,1999,21:86-88.
    21.梁成珠,杨元杰.鸵鸟--饲养管理与疾病防治.北京:北京农业大学出版社,1996.
    22.刘福辰.我国鸵鸟养殖现状与发展前景.科技致富向导,2007,2:8.
    23.刘华珍,彭克美,陈文钦.非洲鸵鸟延髓网状结构细胞构筑研究.畜牧兽医学报,2005,36:851-854.
    24.刘建仁,樊粤光,王海彬.中药治疗激素性骨坏死的蛋白质组学分析.中国中医骨伤科杂志,2005,13:4-10.
    25.刘振湘,唐晓玲.雏鸵鸟腿病的诊疗.山东家禽,2001,1:24-25.
    26.柳亦松.鼻咽癌细胞系HNEI及肝脏星状细胞HSC细胞膜蛋白质组分析和膜蛋白数据库的构建.[硕士学位论文].生物化学及分子生物学,长沙:湖南师范大学,2004,77-81.
    27.鲁道海,张忠民,陈映红,陈建庭,金大地,郑晓明.雌激素对体外培养破骨细胞功能的影响.中华老年医学杂志,2000,19:32-35.
    28.鲁梅花.辛伐他汀对糖尿病骨质疏松患者骨钙素及骨密度的影响.山东医药,2007,47:23-27.
    29.马建章.世界上最大的鸟——鸵鸟.野生动物,1996,91:3.
    30.马涛.跳跃对生长期大鼠骨组织形态计量学和生物力学指标的影响.[硕士学位论文].南京:华东师范大学体育与健康学院,2007,13-27.
    31.彭克美.动物组织学及胚胎学.北京:高等教育出版社,2009,49-53.
    32.彭克美,邱德新,周和清,罗旋.鸵鸟骨骼的解剖学观察.野生动物,1997,2:44-46.
    33.彭克美,张维民,冯月平.非洲鸵鸟脑的解剖研究.华中农业大学学报,1998,17:373-377.
    34.硼.百度百科,2007, (http://baike.baidu.com/view/20686.htm).
    35.强爱珍,丁有彪,刘保安,沈明亮.防治育雏期鸵鸟腿骨弯曲变形病的探索.宁夏农林科技,2001,2:35.
    36.商常发,顾有方,陈会良.硼对鸡组织器官硼含量及其健康状况的影响.中国兽医学报,2005,25:314-315.
    37.商常发,顾有方,莫俊生.硼对鸡10项生理生化指标的影响.中国兽医学报,2007,27:221-223.
    38.石芳萍.幼鸵鸟趾腿病综合防治Journal of Animal Science and Veterinary Medicine,2006,25:60.
    39.宋卉,彭克美,唐文花,刘华珍,工岩,位兰,杜安娜,唐丽.鸵鸟口咽腔结构特点与功能关系.中国兽医学报,2007,27:77-78.
    40.孙锷, 郑长华,万春梅,冯凯.影响幼鸵鸟成活率的因素.吉林畜牧兽医,2005,2:58.
    41.孙金艳,刘大森,潘玉武,张鹏.硼对绵羊血液生化指标的影响.东北农业大学学报,2004,35:129-134.
    42.孙励敬,高瞻,李琳,于学敏,方肇伦.土壤速效磷的流动注射分析.分析 化学,1980,9:586-590.
    43.唐丽,彭克美,宋卉,位兰,王岩,李升和,杜安娜,靳二辉,王家乡.非洲雏鸵鸟泌尿系统的解剖学研究.野生动物学杂志,2006,27:35-37
    44.王海彬,刘建仁,樊粤光.中药治疗大鼠去卵巢骨质疏松症的蛋白质组学分析.四川中医,2006,24:9-13.
    45.工家乡.非洲雏鸵鸟消化管的发育及Ghrelin在其中分布规律的研究.[博士学位论文].武汉:华中农业大学动物医学院,2010,112-134.
    46.王利民,李绪刚,赵云蛟,孙泽威.鸵鸟的呼吸系统.吉林畜牧兽医,2002,3:24-26.
    47.工维平,王成英.蛋白质组学技术在细菌和真菌研究中的应用.医学信息,2010,10:27-34.
    48.工文静.鸵鸟营养性胚胎病的发病原因.河南畜牧兽医,2002,23:42.
    49.王小康,王桂霞,张会丰.糖皮质激素影响小儿长骨发育的研究.临床荟萃,2007,22:531-533.
    50.吴译夫,田士诚.非洲鸵鸟.天津畜牧兽医,1995,12:6-7.
    51.吴永祥.骨科的蛋白质组学研究技术与进展.微创医学,2009,4:48-51.
    52.徐学笛.空气-乙炔火焰原子吸收光谱法测定头发中钙元素含量的方法及研究.化工时刊,2008,22:37-39.
    53.徐亚平,肖传斌,李奎.非洲鸵鸟主要消化器官的观测.畜牧与兽医,2005,37:44-46.
    54.杨浩民.欧洲鸵鸟肉市场考察报告.中国家禽,2004,26:37-38.
    55.姚纪元,孙泽威,姜怀志,李绪刚.鸵鸟骨骼观察.畜牧兽医杂志,2006,25:11-12.
    56.叶创兴,周昌清,王金发.2011.生命科学基础教程第三篇:结构功能与发育生物学(http://jpkc.sysu.edu.cn/2006/xdsmkx/netcourse/ch9/1-2.htm).
    57.袁缨,吕林.添加硼对肉仔鸡组织器官中硼的富集和铁、铜、锰、锌含量的 影响.沈阳农业大学学报,2002,33:53-56.
    58.张贵友,白文彬,曹玮,周静.鸵鸟饲养繁殖技术.北京:中国农业科技出版社,1999.
    59.张华.冷眼回首鸵鸟热.市场前沿,2006,6:36.
    60.张芹,曾福海,邹增丁,程时军.耐热植酸酶对肉鸡生产性能、血液及骨骼钙磷含量的影响.中国饲料,201O,3:57-61.
    61.张骁,束梅英,张韬.瘦素及其在相关领域的研究进展.中国制药信息,2006,22:24-26.
    62.赵慧英,龙敏,孙健红,李义书,刘根胜,马夜肥.雌性鸵鸟生殖器官解剖学和组织学观察.中国兽医杂志,2006,42:23-25.
    63.周圣涛,刘锐,赵霞,黄灿华,魏于全.病毒蛋白质组学:病毒学研究前沿.中国科学:生命科学,2010,40:767-777.
    64.周双玄,徐灏达,迟亚云,张熙,王磊,左及.瘦素的生物学功能.中国优生与遗传杂志,2004,12:7-9.
    65.周振雷,侯加法,陶庆树,胡丹.大豆黄酮对产蛋后期蛋鸡内分泌及骨代谢的影响.中国兽医学报,2007,27:363-365.
    66.百度图片.2011.骨组织.(http://www.jxtcmstc.com/Embryology/bookPower/feizhangjie/gu/zuzhixue3b-2 .htm).
    67.百度知道.2007.鸵鸟属(http://baike.baidu.com/view/681675.html).
    68. Aire TA, Soley JT, Groenewald H B. A morphological study of simple testicular cysts in the ostrich (Struthio camelus). Research in Veterinary Science,2003,74: 153-162.
    69. Akcakus M, Kurtoglu S, Koklu E, Kula M, Koklu S. The relationship between birth weight leptin and bone mineral status in newborn infants. Neonatology, 2007,91:101-106.
    70. Armitage M. Scanning electron microscope study of mummified collagen fibers in fossil tyrannosaurus rex bone. Creation Research Society Quarterly Journal, 2001,38:61-66.
    71. Armstrong TA, Flowers WL, Spears JW, Nielsen F. Long-term effects of born supplementation on reproductive characteristics and bone mechanical properties in gilts. J.Anim.Sci.,2002,80:154-161.
    72. Bacha WJ, Bacha LM. Color Atlas of Veterinary Histology (Second Edition). 2007, Beijing:China Agricultural University Press,24-32.
    73. Bajoria R, Sooranna SR, Chatterjee R. Leptin and bone turnover in monochorionic twins complicated by twin-twin transfusion syndrome. Osteoporosis International,2007,18:193-200.
    74. Bergh GV, Arckens L. Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol,2004,15:38-43.
    75. Bronner F, John PB, Lawrence GR, Gideon AR. Metals in Bone:Aluminum, Boron, Cadmium, Chromium, Lead, Silicon, and Strontium. Principles of Bone Biology (Second Edition). San Diego,2002, Academic Press:359-369.
    76. Carola X.1992. Bone tissue. (http://www.surin.muti.ac.th/agtcha/teacher/anatomy/bone.htm).
    77. Ceuninck F, Marcheteau E, Berger S. Assessment of some tools for the characterization of the human osteoarthritic cartilage proteome. J Biomol Tech, 2005,16:256-265.
    78. Checovich MM, Kiratli BJ, Smith EL. Dual photon absorptiometry of the proximal tibia. Calcified Tissue International,1989,45:281-284.
    79. Cilliers SC, Hayes JP, Chwalibog A, Sales J, Du Preez JJ. Determination of energy, protein and amino acid requirements for maintenance and growth in ostriches. Animal Feed Science and Technology,1998,72:283-293.
    80. Cooper C, Fall C, Egger P. Growth in infancy and bone mass in later life. Ann Rheum Dis,1997,56:17.
    81. Cooper C, Cawley M, Bhalla A. Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res,1995,10:940.
    82. Cooper C, Stakkestad JA, Radowicki S, Hardy P, Pilate C, Dain MP, Delmas PD. Matrix Delivery Transdermal 17β-Estradiol for the Prevention of Bone Loss in Postmenopausal Women. Osteoporosis International,1999,9:358-366.
    83. Dan P. Concept Osteoporosis.2008, (http://www.wikinvest.com/concept/Osteoporosis).
    84. Devirian T, Volpe S. The physiological effects of dietary Boron. Critical Review in Food Science and Nutrition,2003,43:219-231.
    85. DiSilvio L, Jameson J, Gamie Z, Giannoudis PV, Tsiridis E. In vitro evaluation of the direct effect of estradiol on human osteoblasts (HOB) and human mesenchymal stem cells (h-MSCs). Injury,2006,37:S33-S42.
    86. Duppe H, Cooper C, Gardsell P, Johnell O. The relationship between childhood growth, bone mass, and muscle strength in male and female adolescents. Calcif Tissue Int,1997,60:405.
    87. Duran MC, Mas S, Martin-ventura JL. Proteomic analysis of human vessels: Application to atherosclerotic plaques. Proteomics,2003,3:973-978.
    88. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards W G, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature,2005, 434:514-520.
    89. Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton R E, Boyce B F, Lee B. Dimorphic effects of Notch signaling in bone homeostasis. Nature Medicine,2008, (Published online) doi:10.1038/nm1712.
    90. Fail P, Chapin R, Price C, al. e. General, reproductive, developmental, and endocrine toxicity of Boronated compounds. Rep rod Toxicol,1998,12:1-18.
    91. Fan YG, Liu JR, Wang SY, Wang HB, Shi FL, Xiong LH, He W, Peng XX. Functional proteome of bones in rats with osteop rosis following ovariectomy. Life Sciences,2005,76:2893-2901.
    92. Fort DJ, Propst TL, Stover EL, Strong PL, Murray FJ. Adverse reproductive and developmental effects in Xenopus from insufficient boron Biological Trace Element Research 1998,66:237-259.
    93. Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS. Leptin Levels Reflect Body Lipid-Content in Mice-Evidence for Diet-Induced Resistance to Leptin Action. Nature Medicine,1995,1:1311-1314.
    94. Gallardo-Williams MT, Maronpot RR, Turner CH, Johnson CS, Harris MW, Jayo MJ, Chapin RE. Effects of boric acid supplementation on bone histomorphometry, metabolism, and biomechanical properties in aged female F-344 rats Biological Trace Element Research,2003,93:155-169.
    95. Garn S. Continuing bone expansion and increasing bone loss over a two-decade period in men and women from a total community sample. Am J Hum Biol, 1992,4:57.
    96. Gartner LP, Hiatt JL. Color Atlas of Histology. Beijing:Chemical Industry Press, 2008,113-129.
    97. Google-A.2011. Lamellae Bone Definition. (http://images.google.com.hk/imglanding?q=cortbone2&hl=zh-CN&newwindo w=1&safe=strict&sa=G&biw=1366&bih=579&tbs=isch:1&tbnid=oYVX6YxH CaZyjM:&imgrefurl=http://www.engin.umich.edu/class/bme456/bonestructure/ bonestructure.htm&imgurl=http://www.engin.umich.edu/class/bme456/bonestru cture/cortbone2.gif&ei=i5cxTf6vBITsuAPuzsmwCw&zoom=1&w=1613&h=14 36&iact=hc&oei=i5cxTf6vBITsuAPuzsmwCw&esq=1&page=1&tbnh=141&tb nw=158&start=0&ndsp=1&ved=1t:429,r:0,s:0).
    98. Hakki SS, Bozkurt BS, Hakki EE. Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol,2010,24:243-50.
    99. Hamrick MW, Pennmgton C, Newton D. Leptin deficiency produces cont rasting phenotypes in bones of t he limb and spine. Bone,2004,34:376-383.
    100. Hinton PS, Rector RS, Thomas TR. Weight-bearing, aerobic exercise increases markers of bone formation during short-term weight loss in overweight and obese men and women. Metabolism-Clinical and Experimental,2006,55: 1616-1618.
    101. Ishii M, Egen JG, Klauschen F, Meier-Schellersheim M, Saeki Y, Vacher J, Proia RL, Germain RN. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature advance online publication, 2009, doi:10.1038/nature07713.
    102. Iwamoto I, Fujino T, Douchi T. The leptin receptor in human osteoblast s and t he direct effect of leptin on bone metabolism. Gynecol Endocrinol,2004,19: 97-104.
    103. Kawka M, Horbanczuk JO, Sacharczuk M, Zieba G, Lukaszewicz M, Jaszczak K, Parada R. Genetic characteristics of the ostrich population using molecular methods. Poultry Science,2007,86:277-281.
    104. Kim H, Page GP, Barnes S. Proteomics and mass spectrometry in nutrition research. Nutrition,2004,20:155-165.
    105. Ku WW, Chapin RE, Wine RN, Gladen BC. Testicular toxicity of boric acid (BA):relationship of dose to lesion development and recovery in the F344 rat. Reprod Toxicol,1993,7:305-319.
    106. Kubota K, Wakabayashi K, Matsuoka T. Proteome analysis of secreted proteins during osteoclast differentiation using two different methods: two2dimensional electrophoresis and isotope2cord affinity tags analysis with two2dimensional chromatography. Proteomics,2003,3:616-626.
    107. Lanza M, Fasone V, Galofaro V, Barbagallo D, Bella M, Pennisi P. Citrus pulp as an ingredient in ostrich diet:effects on meat quality. Meat Science,2004,68: 269-275.
    108. Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, Kang JS, Miyamoto T, Suda T, Lee SK, Pignolo RJ, Koczon-Jaremko B, Lorenzo J, Choi Y. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nature Medcine,2006,12:1403-1409.
    109. Li A, Yang Z, Li Z, Ma Y, Zhang L, Zheng C, Qiu W, Wu X, Wang X, Li H, Tang J, Qian M, Li D, Wang P, Luo J, Liu M. Maslinic acid suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss by regulating RANKL-mediated NF-κB and MAPK signaling pathways. Journal of Bone and Mineral Research,2010, (Pulished Online) doi:10.1002/jbmr.242.
    110. Liu Z D, Aronson J, Wahl EC, Liu LC, Perrien DS, Kern PA, Fowlkes JL, Thrailki KM, Bunn RC, Cockrell GE, Skinner RA, Lumpkin CK. A novel rat model for the study of deficits in bone formation in type-2 diabetes. Acta Orthopaedica,2007,78:46-55.
    111. Liu ZD, Aronson J, Wahl EC, Liu LC, Perrien DS, Kern PA, Fowlkes JL, Thrailki K M, Bunn R C, Cockrell G E, Skinner R A, Lumpkin C K. A novel rat model for the study of deficits in bone formation in type-2 diabetes. Acta Orthopaedica,2007,78:46-55.
    112. Macdougald OA, Hwang CS, Fan HY, Lane MD. Regulated Expression of the Obese Gene-Product (Leptin) in White Adipose-Tissue and 3t3-L1 Adipocytes. Proceedings of the National Academy of Sciences of the United States of America,1995,92:9034-9037.
    113. Madekurozwa MC. Progesterone and oestrogen receptor immunoreactivity in the vagina of the immature ostrich, Struthion camelus. Br Poult Sci.,2002,43: 450-456.
    114. Mak KK, Bi Y, Wan C, Chuang PT, Clemens T, Young M, Yang Y. Hedgehog Signaling in Mature Osteoblasts Regulates Bone Formation and Resorption by Controlling PTHrP and RANKL Expression. Developmental Cell,2008,14: 674-688.
    115. Martin A, David V, Lafage-Proust M, Alexandre C, Vico L, Thomas T. Central regulation of bone by leptin in rats may be related to alteration of energetic status and IGF-I pathway. Journal of Bone and Mineral Research,2006,21: S61-S61.
    116. McCoy H, Kenney M, Montgomey C. Relation of boron to the composition and mechanical properties of bone. Environ Health Perspect,1994,102:49-53.
    117. Meister X. Control of food intake via leptin receptors in the hypothalamus. Vitam Horm,2000,59:265-304.
    118. Milton L. Awakening the Silent Osteoporosis Market. Medical Marketing & Media,2002, (http://findarticles.com/p/articles/mi_hb3272/is_200204/ai_n7972338).
    119. Morrow CJ, Browne AP, O'Donnell CJ, Thorp BH. Hypophosphataemic rickets and nephrocalcinosis in ostrich chicks brooded and reared on limestone sand. Vet Rec,1997,140:531-532.
    120. Napoli N, Faccio R, Shrestha V, Bucchieri S, Rini GB, Armamento-Villareal R. Estrogen Metabolism Modulates Bone Density in Men Calcified Tissue International,2007,80:179-183.
    121. Nielsen FH, Stoecker BJ. Boron and fish oil have different beneficial effects on strength and trabecular microarchitecture of bone. J Trace Elem Med Biol, 2009,23:195-203.
    122. Organ CL, Schweitzer MH, Zheng W, Freimark LM, Cantley LC, Asara JM. Molecular Phylogenetics of Mastodon and Tyrannosaurus rex. Science,2008, 320:499.
    123. Peng Z, Su-min H, Hai-ying T, Fu Q, Yang J, Gao XM, Zhang JJ. Preliminary Study on Effect of Chinese Herb Medicine Compound on Bone-muscle System in Rats under Simulated Weightlessness. Journal of Traditional Chinese Medicine,2008,15:24-27.
    124. Pereira FA, de Castro JAS, dos Santos JE, Foss MC, Paula FJA. Impact of marked weight loss induced by bariatric surgery on bone mineral density and remodeling. Brazilian Journal of Medical and Biological Research,2007,40: 509-517.
    125. Poet JL, Galinier PA, Tonolli SI, Conte DB, Roux H. Lumbar bone mineral density in anorexia nervosa Clinical Rheumatology,1993,12:236-239.
    126. Qin LP, Zhang QY, Tian YP, Zheng HC, Huang M, Huang BK. Total coumarins from fruitsof Cnidium monnieri inhibit formation and differentiationof multinucleated osteoclasts of rats. Acta Pharmacol Sin,2003, 24:181-186.
    127. Qin X, Klandorf H. Effect of dietary Boron supplementation on egg production, shell quality, and calcium metabolism in aged broiler breeder hens. Poult Sci,1991,70:2131-2138.
    128. Quick DE, Ruben JA. Cardio-pulmonary anatomy in theropod dinosaurs: Implications from extant archosaurs. Journal of Morphology,2009,32:117-121.
    129. Rainey C, Nyquist L. Relationships between boron concentrations and trout in the firehole river, wyoming Biological Trace Element Research 1998,66: 167-184.
    130. Rossi A, Mile RD, Damron BL. The effect of boronsupplemention to broilers fed a practical com-soybean meal diet. Poultry science,1989,68:202.
    131. Sabuncuoglu BT, Kocaturk PA, Yaman O, Kavas GO, Tekelioglu M. Effects of subacute boric acid administration on rat kidney tissue. Clin Toxicol (Phila), 2006,44:249-53.
    132. Schinke T, Schilling AF, Baranowsky A, Seitz S, Marshall RP, Linn T, Blaeker M, Huebner AK, Schulz A, Simon R, Gebauer M, Priemel M, Kornak U, Perkovic S, Barvencik F, Beil FT, Fattore AD, Frattini A, Streichert T, Pueschel K, Villa A, Debatin KM, Rueger JM, Teti A, Zustin J, Sauter G, Amling M. Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nature Medicine,2009,15:674-681.
    133. Shen Y, Shi P, Sun YB, Zhang YP. Relaxation of selective constraint on avian mitochondrial DNA following the degeneration of flight ability. Genome Research,2009, (Published Online) doi:10.1101/gr.093138.109.
    134. Shen Y, Zhang ZM, Jiang SD, Jiang LS, Dai LY. Postmenopausal women with osteoarthritis and osteoporosis show different ultrastructural characteristics of trabecular bone of the femoral head. BMC Musculoskeletal Disorders,2009,10: 35.
    135. Sheng MHC, Taper LJ, Veit H, Thomas EA, Ritchey SJ, Lau KHW. Dietary boron supplementation enhances the effects of estrogen on bone mineral balance in ovariectomized rats Biological Trace Element Research,2001,81:29-45.
    136. Sheng MHC, Taper LJ, Veit H, Thomas EA, Ritchey SJ, Lau KHW. Dietary boron supplementation enhances the effects of estrogen on bone mineral balance in ovariectomized rats Biological Trace Element Research 2001,81:29-45.
    137. Slemenda CW, Reister TK, Hui SL. Influences on skeletal mineralization in children and adolescents:evidence for varying effects of sexual maturation and physical activity. J Pediatr,1994,125:201-207.
    138. Smink JJ, Begay V, Schoenmaker T, Sterneck E, Vries TJd, Leutz A. Transcription factor C/EBP isoform ratio regulates osteoclastogenesis through MafB. The EMBO Journal advance,2009, (online publication) doi:10.1038/ emboj.2009.127.
    139. Sowers MR, Finkelstein JS, Ettinger B, Bondarenko I, Neer RM, Cauley JA, Sherman S, Greendale G A. The association of endogenous hormone concentrations and bone mineral density measures in pre- and perimenopausal women of four ethnic groups:SWAN. Osteoporosis International 2003,14: 44-52.
    140. Srisomsap C, Subhasitanont P, Otto A. Detection of cathepsin B up-regulation in neoplastic thyroid tissues by proteomic analysis. Proteomics,2002,2: 706-712.
    141. Steppan C, Crawford DT, Chidsey-Frink KL. Leptin is a potent stimulator of bone growth in ob mice. Regulatory Peptides,2000,92:73-78.
    142. Stidham TA, Brophy JK. Relative dating of South African Middle Stone Age (MSA) sites using variation in ostrich eggshell morphology. American Journal of Physical Anthropology,2007,2:225-226.
    143. Sugiarto H, Yu PL. Mechanisms of action of ostrich beta-defensins against Escherichia coli. Fems Microbiology Letters,2007,270:195-200.
    144. Syversen U, Westbroek I, Stunes A, Gustafsson B, Waarsing E, van Leeuwen H, Weinans H, Reseland J. Leptin administration to female rats maintains bone mineral density and mechanical strength in spite of significant weight loss. Journal of Bone and Mineral Research,2006,21:S204-S204.
    145. Toshitaka N. Concept of osteoporosis and its change (Japan). Current Therapy, 2000,18:180-184.
    146. Ullrey DE, Allen ME. Nutrition and feeding of ostriches. Animal Feed Science and Technology,1996,59:27-36.
    147. Uysal T, Ustdal A, Sonmez MF, Ozturk F. Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod, 2009,79:984-990.
    148. Vazquez E, Song L, Dawson B. Precision of Bone Mineral Density Scans at the Proximal Tibia. Journal of Clinical Densitometry,2004,7:222.
    149. Volpe S, Taper L. The relationsh ip between boron and magnesium status and bone mineral density in the human:a review. Meacham SM agnes Res,1993, 2:291-296.
    150. Wang DW, Sivagurunathan N, Atkinson SA. Early life leptin status as a predictor of bone and fat composition in children at pre-puberty. Osteoporosis International,2006,17:S280-S280.
    151. Wang SY, Li HQ, Yang XQ, Zhai P, Zhu J. Bone growth disorder in vitamin D deficient, calcium deficient elder chicken. Acta Universitatis Scientiae Medicinae Chongqing,1999,24:142-145.
    152. Wang Y. The Mechanical Research About the Influnence of Boron to The Hypothalamic-Pituitary-Ovary Axis of Ostrich Chicks. [Docter Degree] Wuhan: College of Animal Science and Veterinary Medicin, Huazhong Agricultural University,2008,81-122.
    153. Wester RC, Hui X, Maibach HI, Bell K, Schell MJ, Northington DJ, Strong P, Culver BD. In vivo percutaneous absorption of boron as boric acid, borax, and disodium octaborate tetrahydrate in humans Biological Trace Element Research 1998,66:101-109.
    154. Wilson J, Ruszler P. Long term effects of boron on layer bone strength and product ion parameters. B r Poult Sci,1998,16:11-15.
    155. Wu W, Tang X, Hu W. Identification and validation of metastasis-associated proteins in head and neck cancer cell lines by two-dimensional electrophoresis and mass spectrometry. Clin Exp Metastasis,2002,19:319-326.
    156. Xiong ZW, Huang Y, Hu HX. Application study of Microwave-EDTA decalcification in immunohistochemistry staining. Medical Journal of National Defending Forces in North China,2003,15:10.
    157. Yamaguchi M, Kitajima T. Effect of estrogen on bone metabolism in tissue culture:enhancement of the steroid effect by zinc. Res Exp Med,1991,191: 145-154.
    158. Yan JX, Devenish AT, Wait R. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics,2002,2:1682-1698.
    159. Yeh F, Grant AM, Williams SM, Goulding A. Children who experience their first fracture at a young age have high rates of fracture. Osteoporos Int,2006, 17:267.
    160. You SA, Archacki SR, Angheloiu G. Proteomic approach to coronary atherosclerosis shows ferritin light chain as a significant marker:Evidence consistentwith iron hypothesis in atherosclerosis. Physiol Genomics,2003,13: 25-30.
    161. Zhang F, Zhou Z, Xu X, Wang X, Sullivan C. A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature,2008,455:1105-1108.
    162. Zhang G, Liu X, Chen Z, Ma J, Shi S. A correlative study on the activity of serum interleukin-6 and bone mineral density in senile women. Chinese Jounal of Geriatrics,1998,2:57-58.
    163. Zhang Y, Liu Y. The comparison between demineralized bone production and traditional bone grinding. Acta Academiae Medicinae Qingdao Universitatis, 2003,39:209-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700