用户名: 密码: 验证码:
非线性跳变系统的调度控制与故障检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大多数工程实际系统都会面临干扰以及环境变化等因素所带来的随机扰动,从而导致系统参数随机变化。Markov跳变系统的提出,对控制领域解决此类随机问题起到了极大的推动作用,该模型可以很好的描述实际中的网络系统,通信系统以及经济系统等等,Markov跳变系统的广泛应用,推动了学者们对其理论的研究和探索。另一方面,理想的线性系统是不存在的,自然界中的系统都是非线性的,随着工控规模的扩大,控制系统中的非线性特性越发明显,这导致了控制问题的复杂性。因此,研究非线性Markov跳变系统控制问题,是一个富有挑战性的课题,且理论和实践意义重大。
     本文针对非线性Markov跳变系统,使用连续调度方法,分析了系统的随机稳定性,控制,滤波以及故障诊断等问题。本文的主要工作包括以下几个方面:
     1)针对带有时滞的非线性Markov跳变系统,使用连续调度的方法,研究了其PI跟踪问题和滤波问题。同时,针对周期中立系统,将时间作为调度变量,实现了调度滤波,最终保证了滤波误差为零。
     2)考虑到部分实际系统对状态轨迹暂态响应的要求,本文基于有限时间稳定理论,讨论了非线性Markov跳变系统的有限时间控制问题,并且设计了连续调度控制器,解决了状态可测以及不可测系统的有限时间控制问题。
     3)当理论结果应用于实际时,我们遇到了执行器饱和这一限制因素。因此本文针对带有饱和输入的非线性Markov跳变系统,基于椭圆不变集理论,设计了连续调度控制器,最终,保证系统在输入非线性的情况下,系统是随机稳定的。
     4)本文基于系统的解析模型,分别借助观测器和滤波器,研究了非线性Markov跳变系统的故障检测问题,设计了连续调度故障检测观测器和滤波器。该方法,保证了系统对故障的快速响应性能,同时也提高了系统对干扰的抑制作用。
     5)由于实际中,存在一类符合非齐次跳变过程的随机系统,因此,本文应用多面体不变集,代替时变转移概率矩阵,结合凸集合的性质,分析了非线性非齐次Markov跳变系统的控制问题,实现了连续调度控制器的设计。
     6)最后,给出了本论文的成果总结和对以后研究方向的展望,同时也指出了该方向亟待解决的问题。
In practice, many enginerring systems often exhibit random abrupt changes due to factors,such as environment changes or disturbances. These abrupt changing phenomena areobserved in many real practical systems, such as network systems, communication systems,and economic systems. They can be modelled as Markov jump systems. Furthermore, for areal practical problem, it is unrealistic to model it as a pure linear system because of factors,such as disturbances and possible input saturation. Thus, an accurate model of a real practicalcontrol problem tends to be complex and nonlinear. Therefore, the study of nonlinear Markovjump systems is both theoretically challenging and practically significant.
     In this thesis, our concerns are on stability, control, filtering and fault detection problemsinvolving nonlinear Markov jump systems are being considered.The main contributions of the thesis are given below:
     (i) PI tracking and filtering problems involving time delay nonlinear Markov jumpsystems are considered, using gain-scheduling approach. This tracking controller willensure the convergence of the tracking error. For cycle-neutral system, a filtering isrealised by taking the time as a scheduling variable such that the convergence of thefiltering error is achieved.
     (ii) Finite time control problem, where the state of the nonlinear Markov jump systemis either measurable or unmeasurable. Based on the finite time stability theory, thegain scheduling approach is used to design controllers under which the closed-loopsystem is finite time stable.
     (iii) In a real production process, each controller has its own working limitation. Here,we introduce input saturation into the nonlinear Markov jump system. Then, by virtueof the ellipsoid invariant set, a continuous scheduling control is designed under whichthe closed-loop system is stable.
     (iv) Based on the system model, fault detection observer and filtering are used torealize the fault detection problem for nonlinear Markov jump systems. Then, thegain-scheduled fault detection observer and filter are designed under which both therobustness and sensitivities are guaranteed.
     (v) By using the polyhedral set to characterize the time-varying transition probabilities,a continuous gain-scheduled controller is designed for the non-homogeneousnonlinear Markov jump system. Our simulation results show that the proposedapproach is effective.
     (vi) Finally, we give a summary of the thesis and make some suggestions for futureresearch directions of the area. Some interesting problems, which are yet to besolved, are also given.
引文
1. M. Kac. Discrete Thoughts: Essays on Mathematics, Science and Philosophy [M]. Birkhauser,1992
    2. Krasovskii N M, Lidskii E A, Analytical design of controllers in systems with random attributes [J].Automation and Remote Control,1961, v22(I, II, III):1021-2025
    3. Costa O L V, Fragoso M D, Marques R P. Discrete time Markovian jump linear systems [M]. London:Springer-Verlag,2005
    4. Kushner H. Stochastic Stability and Control [M]. New York: Academic,1967
    5. Sworder D, Feedback control of a class of linear systems with jump parameters [J]. IEEE Transactionson Automatic Control,1969,14(1):9-14
    6. Wonham W M. Random differential equations in control theory [J]. Probabilistic Methods in AppliedMathematics,1971,2:131-212
    7. Mariton M. Jump linear quadratic control with random state discontinuities [J]. IEEE Transactions onAutomatic Control,1987,32(12):1094-1097
    8. Mariton M. Jump linear quadratic control with random state discontinuities [J]. Automatica,1987,23(2):237-240
    9. Ji Y, Chizeck H J, Controllability, stability and continuous-time Markovian jump linear quadratic control[J]. IEEE Transactions on Automatic Control,1990,35(7):777-788
    10. Feng X, Loparo K A, Ji Y, Chizeck H J, Stochastic stability properties of jump linear systems [J]. IEEETransactions on Automatic Control,1992,37(1):38-53
    11. Hartman P. Ordinary differential equation [M], Boston,1982
    12. Black H S. Inventing the negative feedback amplifier [J]. IEEE Spectrum,1927,14:54-60
    13. Pearson, J B, Stats, P W. Robust controllers for linear regulators [J]. IEEE Transactions on AutomaticControl,1974,19:231-234
    14. Zames G. Feedback and optimal sensitivity: model reference transformation, multiplicative seminormsand approximate inverses [J]. IEEE Transactions on Automatic Control,1981,26:301-320
    15. Shi P, Boukas E K. H-infinity control for Markovian jumping linear systems with parametricuncertainties [J]. J. Optimization Theory and Applications,1997,95(1):75-99
    16. Dragan V, Shi P, Boukas E K. Control of singularly perturbed systems with Markovian jumpparameters: an H∞approach [J]. Automatica,1999,35(8):1369-1378
    17. Nguang S K, Assawinchaichote W, Shi P. Robust H-infinity control design for fuzzy singularlyperturbed systems with Markovian jumps: an LMI approach [J]. IET Control Theory&Applications,2007,1(4):893-908
    18. Zhang L, Shi P. Stability, L2-Gain and asynchronous H∞control of discrete-time switched systems withaverage dwell time [J]. IEEE Transastions on Automatic Control,2009,54(9):2193-2200
    19. Boukas E K, Shi P. Stochastic stability and guaranteed cost control of discrete-time uncertain systemswith Markovian jumping parameters [J]. International Journal of Robust and Nonlinear Control,1998,8(13):1155-1167
    20. Boukas E K, Shi P, Benjelloun K. On stabilization of uncertain linear systems with jump parameters [J].International Journal of Control,1999,72(9):842-850
    21. Shi P, Xia Y, Liu G, Rees D. On designing of sliding mode control for stochastic jump systems [J].IEEE Transastions on Automatic Control,2006,51(1):97-103
    22. Hu L, Shi P, Frank P. Robust sampled-data control for Markovian jump linear systems [J]. Automatica,2006,42(11):2025-2030
    23. Chen, Xu J, Guan Z. Guaranteed cost control for uncertain Markovian jump systems with mode-dependent time-delays [J]. IEEE Transactions on Automatic Control,2003,48(12):2270-2276
    24. Costa O L V, Boukas E K. Necessary and sufficient condition for robust stability and stabilization ofcontinuous-time linear systems with Markovian jumps [J]. Journal of Optimization Theory andApplications,1998,99(2):359-379
    25. Costa O L V, Do Val J B R, Geromel J C. Continuous-time state-feedback H2control of Markovianjump linear system via convex analysis [J]. Automatica,1999,35(2):259-268
    26. Costa O L V, Marques R P. Robust H2control for discrete-time Markovian jump linear systems [J].International Journal of Control,2000,73(1):11-21
    27. De Farias D P, Geromel J C, Do Val J, Costa O L V. Output feedback control of Markov jump linearsystems in continuous-time [J]. IEEE Transactions on Automatic Control,2000,45(5):944-949
    28. Kang Y, Shang W K, Xi H S. Estimating the delay-time for the stability of Markovian jump bilinearsystems with saturating actuators [J]. Acta Automatica Sinica,2010,36(5):762-767
    29. Park B G, Lee J W, Kwon W H. Receding horizon control for linear discrete systems with jumpparameters [C]. Proceedings of the36th IEEE Conference on Decision and Control,1997,4:3956-3957
    30. Park B G, Kwon W H. Robust one-step receding horizon control of discrete-time Markovian jumpuncertain systems [J]. Automatica,2002,38(1):1229-1235
    31.陈娇蓉,刘飞.具有饱和执行器跳变系统的鲁棒模型预测控制[J].系统工程与电子技术,2008,30(4):696-699
    32.刘飞,蔡胤.基于终端不变集的Markov跳变系统约束预测控制[J].自动化学报,2008,34(4):496-499
    33. Fei, Z, Gao H, Shi P. New results on stabilization of Markovian jump systems with time delay [J].Automatica,2009,45(10):2300–2306
    34. De Souza C E. Robust stability and stabilization of uncertain discrete-time Markovian jump linearsystems [J]. IEEE Transactions on Automatic Control,2006,51(5):836-841
    35. Costa E F, Do Val J B R. On the detectability and observability of discrete-time Markov jump linearsystems [J]. Systems and Control Letters,2001,44(2):135-145
    36. Gao J, Huang B, Wang Z. LMI-based robust H∞control of uncertain linear jump systems with timedelays [J]. Automatica,2001,37(7):1141-1146
    37. Do Val J B R, Geromel J C, Goncalves A P C. The H2control for jump linear systems: clusterobservations of the Markov state [J]. Automatica,2002,38(2):343-349
    38. Li L, Ugrinovskii V A, Orsi R. Decentralized robust control of uncertain Markov jump parametersystems via output feedback [J]. Automatica,2007,43(11):1932-1944
    39. Dong J, Yang G. Robust H2control of continuous-time Markov jump linear systems [J]. Automatica,2008,44(5):1431-1436
    40. Xiao N, Xie L, Fu M. Stability of Markov jump linear systems using quantized state feedback [J].Automatica,2010,46(10):1696-1702
    41. Costa O L V, Fragoso M D. Discrete-time LQ-optimal control problems for infinite Markov jumpparameter systems [J]. IEEE Transactions on Automatic Control,1995,40(12):2076-2088
    42. Shi P, Xia Y, Liu G P, Rees D. On designing of sliding-mode control for stochastic jump systems [J].IEEE Transactions on Automatic Control,2006,51(1):97-103
    43. Li L, Ugrinovskii V A. On necessary and sufficient conditions for H∞output feedback control ofMarkov jump linear systems [J]. IEEE Transactions on Automatic Control,2007,52(7):1287-1292
    44. Xia Y, Fu M, Shi P, Wu Z, Zhang J. Adaptive backstepping controller design for stochastic jumpsystems [J]. IEEE Transactions on Automatic Control,2009,54(12):2853-2859
    45. Wu Z, Xie X, Shi P, Xia Y. Backstepping controller design for a class of stochastic nonlinear systemswith Markovian switching [J]. Automatica,2009,45(4):997-1004
    46.张利军,李春文,程代展.参数不确定马尔科夫跳变系统的鲁棒适应控制[J].控制与决策,2005,20(9):1030-1037
    47.刘飞,张曦煌. L2增益约束下跳变系统鲁棒控制[J].控制理论与应用,2006,23(3):373-377
    48.徐琰恺,陈曦.模态跳变概率可控的Markov跳变线性跳变系统的优化[J].控制与决策,2008,23(3):246-250
    49. Dorato P. Short time stability in linear time-varying systems [C]. Proceeding of the InternationalConvention Record, New York,1961,4:83-87
    50. Dorato P. Short-time stability [J]. IRE Transactions on Automatic Control,1961,6(1):86-86
    51.洪奕光,王剑魁.一类非线性系统的非光滑有限时间镇定[J].中国科学E辑,2005,35(6):663-672
    52.李世华,丁世宏,田玉平.一类二阶非线性系统的有限时间状态反馈镇定方法[J].自动化学报,2007,33(1):101-104
    53. Amato F, Ariola M, Abdallah C T, Dynamic output feedback finite-time control of LIT systems subjectto parametric uncertainties and disturbances [C]. Proceeding of the European Control Conference, Berlin,Springer,1999:1176-1180
    54. Amato F, Ariola M, Dorato P. Finite-time control of linear systems subject to parametric uncertaintiesand disturbances [J]. Automatica,2001,37(9):1459-1463
    55. Amato F, Ariola M, Cosentino C. Finite-time stabilization via dynamic output feedback [J]. Automatica,2006,42(2):337-342
    56. Amato F, Ariola M, Finite-time control of discrete-time linear systems [J]. IEEE Transactions onAutomatic Control,2005,50(5):724-729
    57. Amato F, Ariola M, Cosentino C. Finite-time control of linear time-varying systems via outputfeedback [C]. Proceeding of the2005American Control Conference, Portland, USA,2005:4722-4726
    58. Amato F, Ambrosino R, Ariola M, Cosentino C. Finite-time stability of linear time-varying systemswith jumps [J]. Automatica,2009,45(5):1354-1358
    59. Amato F, Ambrosino R, Cosentino C, De Tommasi. Input-output finite-time stability of linear systems[J]. Automatica,2010,46(9):1558-1562
    60. He S, Liu F. Robust finite-time H∞control of stochastic jump systems [J]. International Journal ofControl, Automation and System,2010,8(6):1336-1341
    61. Luan X, Liu F, Shi P. Robust finite-time H∞control for nonlinear Jump systems via neural networks [J].Circuits System Signal Process,2010,29:481-498
    62.栾小丽,刘飞.随机系统输出概率密度函数有限时间镇定[J].控制与决策,2009,24(8):1161-1166
    63. He S, Liu F. Stochastic finite-time stabilization for uncertain jump systems via state feedback [J].Journal of Dynamic Systems, Measurement, and Control,2010,132(2):0345-0414
    64.Shen Y, Li C. LMI-based finite-time boundedness analysis of neural networks with parametricuncertainties [J]. Neurocomputing,2008,71(4-6):502-507
    65. Frank P M, Ding S X, Survey of robust residual generation and evaluation methods in observer-basedfault detection systems [J]. Journal of Process Control,1997,7(6):403-424
    66. Patton R J, Chen J. On eigenstructure assignment for robust fault diagnosis [J]. International Journal ofRobust and Nonlinear Control,2000,10(12):1193-1208
    67. Gertler J. Fault detection and isolation using parity relations [J]. Control Engineer Practice,1997,5(5):653-661
    68. Henry D, Zolghadri A. Design of fault diagnosis filters: a multi-objective approach [J]. Journal of theFranklin Institute,2005,342(4):421-426
    69. Gu Z, Wang D, Yue D. Fault detection for continuous-time networked control systems with non-IdealQoS [J]. International Journal of Innovative Computing, Information and Control,2010,6(8):3631-3640
    70. Zhang Y, Wang Z, Zhang J, Ma J. Fault detection based on discriminant Analysis Theory in PowerSystems [J]. ICIC Express Letters,2010,4(3A):809-814
    71. Yusof R, Rahman R Z A, Khalid M. Fault detection and diagnosis for process control rig using artificialintelligent [J]. ICIC Express Letters,2010,4(5B):1811-1816
    72. Zhong M, Ye H, Shi P. Fault detection for Markovian jump systems, IEE Process on Control Theoryand Application,2005,152(4):397-402
    73. Kalman R E. A new approach to linear filtering and predication problem [J]. Journal of BasicEngineering,1960,82(1):35-45
    74. Kalman R E. New method in Wiener filtering theory [C]. Proc. Eng. Appl. of Random FunctionsTheory and Probability, New York,1993
    75. De Souza C E, Fragoso M D. H∞filtering for Markov jump linear systems [C]. Proceedings of the35thIEEE Conference on Decision and Control,1996:4814-4818
    76. De Souza C E, Fragoso M D. Robust H∞filtering for uncertain Markov jump linear systems [C].Proceedings of the35th IEEE Conference on Decision and Control,1996:4808-4813
    77. Wang Z, Lam J, Burnham K J. Nonlinear filtering for state delayed systems with Markovian switching[C]. Proceedings of the4th World Congress on Intelligent Control and Automation,2002:231-235
    78. Wang Z, Lam J, Liu X H. Robust filtering for discrete-time Markovian jump delay systems [J]. IEEESignal Processing Letters,2004,11(8):659-662
    79. Seiler P, Sengupta R. A bounded real lemma for jump systems [J]. IEEE Transactions on AutomaticControl,2003,48(9):1651-1654
    80. Shi P, Mahoud M, Nguang S K, Ismail A. Robust filtering for jumping systems with mode-dependentdelays [J]. Signal Processing,2006,86(1):140-152
    81.刘飞.不确定跳变系统鲁棒L2-L∞滤波[J].控制与决策,2005,20(1):32-35
    82. Mehra R K, Peschon J. An innovations approach to fault detection and diagnosis in dynamic systems[J]. Automatica,1971,7(5):637-640
    83. Hammouri H, Kinnaert M, El Yanngoubi E H. Observer-based approach to fault detection and isolationfor nonlinear systems [J]. IEEE Transactions on Automatic Control,1999,44(10):1879-1884
    84. Nguang S K, Shi P, Ding S. Fault detection for uncertain fuzzy systems: an LMI approach [J]. IEEETransactions on Fuzzy Systems,2007,15(6):1251-1262
    85. Tarantino R, Szigeti F, Colina-Morles E. Generalized Luenberger observer-based fault detection filterdesign: an industrial application [J]. Control Engineering Practice,2000,8(6):665-671
    86. Wang J, Yang G, Liu J. An LMI approach to H2index and mixed H2-H∞fault detection observerdesign [J]. Automatica,2007,43(9):1656-1665
    87. Zhong M, Ding S, Lam J, Wang B. An LMI approach to design robust fault detection filter foruncertain LTI systems [J]. Automatica,2003,39(3):543-550
    88. Wang Y, Wang W, Wang D. LMI Approach to design fault detection filter for discrete-time Switchedsystems with state delays [J]. International Journal of Innovative Computing, Information and Control,2010,6(1):387-398
    89. Ding Q, Zhong M. On Designing H∞Fault detection filter for Markovian jump linear systems withpolytopic uncertainties [J]. International Journal of Innovative Computing, Information and Control,2010,6,3(A):995-1004
    90. Nguang S K, Assawinchaichote W, Shi P, et al. H∞fuzzy filter design for uncertain nonlinear systemswith Markovian jumps: an LMI approach [C]. Proceedings of the2005American Control Conference,Portland, OR, USA,2005,3:1799-1804
    91. Atlans M. Command and control theory: a challenge to control science [J]. IEEE Transactions onAutomatic Control,2006,32(4):286-293
    92. Kawka P A, Alleyne A G. Robust wireless servo control using a discrete-time uncertain Markovianjump linear model [J]. IEEE Transactions on Control Systems Technology,2009,17(3):733-742
    93. Arrifano N S D, Olivera V A. Robust H∞fuzzy control approach for a class of Markovian jumpnonlinear systems [J]. IEEE Transactions on Fuzzy Systems,2006,14(6):738-754
    94. Wu H, Cai K. Mode-independent robust stabilization for uncertain Markovian jump nonlinear systemsvia fuzzy control [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2006,36(3):509-519
    95. Boyd S P, El Ghaoui L, Feron E. Linear Matrix inequalities in system and control theory [M]. Societyfor Industrial and Applied Mathematics, Philadelphia: Academic Press,1994.
    96. Zhao Y, Gao H J, James L, Du B Z. Stability and stabilization of delayed T–S fuzzy systems: a delaypartitioning approach [J]. IEEE Transactions on Fuzzy Systems,2009,17(4):750-762
    97. Li H, Chen B, Zhou Q, Qian W Y. Robust stability for uncertain delayed fuzzy Hopfield neuralnetworks with Markovian jumping parameters [J]. IEEE Transactions on Systems, Man, and Cybernetics-B:Cybernetics,2009,39(1):94-102
    98. Xia Y, Zhu Z, Li C M, Yang H J, Zhu Q M. Robust adaptive sliding mode control for uncertaindiscrete-time systems with time delay [J]. Journal of the Franklin Institute,2010,347(1):339-357
    99. Hien L V, Phat V N. Exponential stability and stabilization of a class of uncertain linear time-delaysystems [J]. Journal of the Franklin Institute,2009,346(6):611-625
    100. Zhang J, Shi P, Qiu J. Non-fragile guaranteed cost control for uncertain stochastic nonlinear time-delay systems [J]. Journal of the Franklin Institute,2009,346(7):676-690
    101. Mahmoud M S, Shi Y, AL-Sunni F M. Dissipativity analysis and synthesis of a class of nonlinearsystems with time-varying delays [J]. Journal of the Franklin Institute,2009,346(6):570-592
    102. Liu L, Han Z, Li W. H∞non-fragile observer-based sliding mode control for uncertain time-delaysystems [J]. Journal of the Franklin Institute,2010,347(2):567-576
    103. Sen M D L, On the excitability of a class of positive continuous time-delay systems [J]. Journal of theFranklin Institute,2009,346(7):705-729
    104. Qiu J, Lu K. New robust passive stability criteria for uncertain singularly Markov jump systems withtime delays [J]. ICIC Express Letters,2009,3(B):651-656
    105. Wang M, Chen B, Liu X, Shi P. Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems, Fuzzy Sets and Systems,2008,159(8):949-967
    106. Zhang D, Yu L. H∞output tracking control for neutral systems with time-varying delay and nonlinearperturbations [J]. Communications in Nonlinear Science and Numerical Simulation,2010,15(11):3284-3292
    107. Li Q, Zhao J, Dimirovski G M, Tracking control for switched time-varying delays systems withstabilizable and unstabilizable subsystems [J]. Nonlinear Analysis: Hybrid Systems,2009,3(2):133-142
    108. Tang G, Sun H, Pang H, Approximately optimal tracking control for discrete time-delay systems withdisturbances [J]. Progress in Natural Science,2008,18(2):225-231
    109. Chen W, Li J. Backstepping tracking control for nonlinear time-delay systems [J]. Journal of SystemsEngineering and Electronics,2006,17(4):846-852
    110. Na J, Ren X, Gao Y, Robert G, Ramon C C, Adaptive neural network state predictor and trackingcontrol for nonlinear time-delay systems [J]. International Journal of Innovative Computing, Informationand Control,2010,6(2):627-640
    111. Li Q, Liu X, Zhao J, Sun X. Observer based model reference output feedback tracking control forswitched linear systems with time delay: constant delay case [J]. International Journal of InnovativeComputing, Information and Control,2010,6(11):5047-5060
    112. Zhang L, Boukas E K. H∞control for discrete-time markovian jump linear systems with partlyunknown transition probabilities [J]. International Journal of Robust and Nonlinear Control,2009,19(8):868-883
    113. Yin Y, Shi P, Liu F. Gain scheduled PI tracking control on stochastic nonlinear systems with partiallyknown transition probabilities [J]. Journal of the Franklin Institute,2011,348(4):685-702
    114. Zhang L, Boukas E K. Stability and stabilization of Markovian jump linear systems with partlyunknown transition probabilities [J]. Automatica,2009,45(2):463-468
    115. Zhang L, Boukas E K, Lam J. Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities [J]. IEEE Transastions on Automatic Control,2008,53(10):2458-2464
    116. Zhang L, Boukas E K. Mode-dependent H∞filtering for discrete-time Markovian jump linear systemswith partly unknown transition probabilities [J]. Automatica,2009,45(6):1462-1467
    117. Xiong J, Lam J, Gao H, Ho D W C. On robust stabilization of Markovian jump systems with uncertainswitching probabilities [J]. Automatica,2005,41(5):897-903
    118. Zhang L. H∞estimation of discrete-time piecewise homogeneous Markov jump linear systems [J].Automatica,2009,45(11):2570-2576
    119. Krtolica R, Ozguner U, Chan H, Goktas H, Winkelman J, Liubakka M. Stability of linear feedbacksystems with random communication delays [J]. International Journal of Control,1994,59(4):925-953
    120. Seiler P, Sengupta R. An H∞approach to networked control [J]. IEEE Trans on Automatic Control,2005,50(3):356-364
    121. Internet traffic report [EB/OL]. http://www.internettrafficreport.com,2008
    122. Wredenhagen G F, Belanger P R. Piecewise-linear L2control for systems with input constraints [J].Automatica,1994,30:403–416
    123. Turner M C, Postlethwaite I. Guaranteed stability regions of linear systems with actuator saturationusing the low-and-high gain technique [J]. International Journal of Control,2001,74(14):1425–1434
    124. Lin Z. Low Gain Feedback [M]. Lecture Notes in Control and Information Sciences, Springer,1998
    125. Lin Z, Saberi A. Semi-global exponential stabilization of linear systems subject to input saturation vialinear feedbacks [J]. Systems&Control Letters,1993,21(3):225–239
    126. Pittet C, Tarbouriech S, Burgat C. Stability regions for linear systems with saturating controls viacircle and popov criteria [C], Proceedings of the36th IEEE Conference on Decision and Control,1997
    127. Arcak M, Larsen M, Kokotovic P. Nonlinear observer:a circle criterion design and robustnessanalysis [J]. Automatica,2001,37(12):1923-1930
    128. Da Silva J M G, Tarbouriech S. Local stabilization of discrete-time linear systems with saturatingcontrols: an LMI-based approach [J]. IEEE Transactions on Automatic Control,2001,46(1):119–125
    129. Hu T, Lin Z. Control Systems with Actuator Saturation: Analysis and Design [M]. Birkhauser,2001
    130. Cao Y, Lin Z, Shamash Y. Set invariance analysis and gain-scheduling control for LPV systemssubject to actuator saturation [J], Systems and Control Letters,2002,46(2):137-151
    131. Hu T, Lin Z, and Chen B. An analysis and design method for linear systems subject to actuatorsaturation and disturbance [J], Automatica,2002,38(2):351-359
    132. Hu T, Lin Z, and Chen B. An analysis and design for discrete-time linear systems subject to actuatorsaturation and disturbance [J], Systems and Control Letters,2002,45(2):97-112
    133. Liu H, Boukas E K, Sun F, Daniel W. Controller design for Markov jumping systems subject toactuator saturation [J], Automatica,2006,42(3):459-465
    134. Zhang L, Boukas E K, Haidar A. delay-range-dependent control synthesis for time-delay systems withactuator saturation [J]. Automatica,2008,44(10):2691-2695
    135. Zhou B, Duan G R. A novel nested nonlinear feedback law for global stabilization of linear systemswith bounded controls [J]. International Journal of Control,2008,81(9):1352–1363
    136. Zhou B, Duan G R. Global stabilization of linear systems with bounded controls by nonlinearfeedback [J]. IET Control Theory&Applications,2008,2(5):409–419
    137. Hu T, Lin Z, Shamash Y. On maximizing the convergence rate for linear systems with input saturation[J]. IEEE Transactions on Automatic Control,2003,48(7):1249–1253
    138. Aliyu M D S, Boukas E K. H∞control for Markovian jump nonlinear systems [C]. Proceedings of the37th IEEE Conference on Decision and Control, Tampa, FL,1998,1:766-771
    139. Nguang S K, Assawinchaichote W, Shi P, et al. Robust H∞control design for uncertain fuzzy systemswith Markovian jumps: an LMI approach [C]. Proceedings of the2005American Control Conference,Portland, OR, USA,2005,3:1805-1810
    140. Dong J X, Yang G H. An LMI-based approach for state feedback controller design of Markovian jumpnonlinear systems [C]. Proceedings of the16th IEEE International Conference on Control Applications,Singapore,2007,1516-1521
    141. Zhang Y, Xu S, Zou Y, Lu J. Delay-dependent robust stabilization for uncertain discrete-time fuzzyMarkovian jump systems with mode-dependent time delays [J]. Fuzzy Sets and Systems,2011,164(1):66-81
    142. Balasubramaniam P, Lakshmanan S. Delay-range dependent stability criteria for neural networks withMarkovian jumping parameters [J]. Nonlinear Analysis: Hybrid Systems,2009,3(4):749-756
    143. Liu Y, Wang Z, Liang J, Liu X. Stability and synchronization of discrete-time Markovian jumpingneural networks with mixed mode-dependent time delays [J]. IEEE Transactions on Neural Networks,2009,20(7):1102-1116
    144.尹燕燕.复杂系统鲁棒调度分析与综合[D].[硕士论文].江苏无锡:江南大学,2009
    145. Yin Y, Shi P, Liu F. H∞scheduling control on stochastic neutral systems subject to actuatornonlinearity [J]. International Journal of System Science, DOI:10.1080/00207721.2012.684907
    146. Yin Y, Liu F, Shi P. Finite-time gain-scheduled control on stochastic bioreactor systems with partiallyknown transition jump rates [J]. Circuits, Systems, and Signal Processing,2011,30(3):609-627
    147. Astrom K J, Wittenmark B. Adaptive Control [M].北京:科学出版社,2003.390-417
    148. Shamma J S, Athans M. Analysis of nonlinear gain scheduled control systems [J]. IEEE Transactionson Automatic Control,1990,35(8):898-907
    149. Shamma J S, Athans M. Gain scheduling: Potential hazards and possible remedies [J]. IEEE ControlSystem Magazine,1992,12(3):101-107
    150. Jiang J. Optimal gain scheduling controller for a diesel engine [J]. IEEE Control System Magazine,1994,14(4):42-48
    151.黄祖毅.增益调度控制方法及其在热工对象中的应用[D].[硕士论文].北京:清华大学热能工程系,2004
    152. Shamma J S, Cloutier J R. Trajectory scheduled missile autopilot design [C]. Proceedings of the1stIEEE conference on Control Applications, Dayton, OH,1992:237-242
    153. Sureshbabu N, Rugh W J. Output regulation with derivative information [J]. IEEE Transactions onAutomatic Control.1995,40(10):1755-1766
    154. Tan H, Rugh W J. Nonlinear overtaking optimal control: sufficiency, stability, and approximation [J].IEEE Transactions on Automatic Control.1998,43(12):1703-1718
    155. Leonessa A, Haddad W M, Chellaboina V. Nonlinear system stabilization via stability-basedswitching [C]. Proceedings of the37th IEEE Conference on Decision and Control, Tampa, FL,1988:2983-2996
    156. McConley M W, Appleby B D, Dahleh M A. Control Lyapunov function approach to robuststabilization of nonlinear systems [C]. Proceedings of the American control conference, Albuquerque, NM,1997:416-419
    157. Cloutier J R, D'Souza C N, Mracek C P. Nonlinear regulation and nonlinear H-infinity control via thestate-dependent Riccati equation technique [C]. Proceedings of the1st International Conference onNonlinear Problems in Aviation and Aerospace, Daytona, FL,1996:117-130
    158. Apkarian P, Tuan H D, Bernussou J. Continuous-time analysis, eigen structure assignment and H2synthesis with enhanced linear matrix inequalities (LMI) characterizations [J]. IEEE Trans on AutomaticControl,2001,46(12):1941-1946
    159. Apkarian P, Becker G, Gahinet P. Self-scheduled H-infinity control of missile via linear matrixinequalities [J]. Journal of Guidance, Control, and Dynamics,1995,18(3):532-538
    160. Apkarian P, Gahinet P. A Convex characterization of gain-scheduled H-infinity controllers [J]. IEEETransactions on Automatic Control,1995,40(5):853-864
    161. Polyak B T, Tempo R. Probabilistic robust design with linear quadratic regulators [J]. Systems andControl Letters,2001,43(5):343-353
    162. Yasumasa F, Fabrizio D, Roberto T. Probabilistic design of LPV control systems [J]. Automatica,2003,39(8):1323-1337
    163. Lu B, Wu F. Switching LPV control designs using multiple parameter-dependent Lyapunov functions[J]. Automatica,2004,40(11):1973-1980
    164. Cao Y, Lin Z, Shamash Y. Set invariance analysis and gain-scheduling control for LPV systemssubject to actuator saturation [C]. Proceedings of the American Control Conference,2002,1:668-673
    165. De Souza C E, Alexandre T. Gain-scheduled H2controller synthesis for linear parameter varyingsystems via parameter-dependent Lyapunov functions [J]. International Journal of Robust and NonlinearControl,2006,16(5):243-257
    166. Zhou S, Zhang B, Zheng W. Gain-scheduled H∞filtering of parameter-varying systems [J].International Journal of Robust and Nonlinear Control [J].2006,16(8):397-411
    167. Montaganer V F, Peres P L. State feedback gain scheduling for linear systems with time-varyingparameters [C]. Proceeding of the2004American control conference,2004,2:2004-2009
    168. Montaganer V F, Peres P L. H∞parameter-varying sate feedback control of linear time-varyingsystems in polytopic domains [C]. Proceeding of the44th IEEE Conference on Decision, and the EuropeanControl Conference2005,2:5006-5011
    169. Pellegrinetti G, Bentsman J. Nonlinear control oriented boiler modeling: A benchmark problem forcontroller design [J]. IEEE Transactions on Circuits and Systems,1996,4(1):57-63
    170. Georgiou T T, Smith M C, Robustness analysis of nonlinear feedback systems: an input-outputapproach [J]. IEEE Transactions on Automatic Control,1997,43(9):1200–1221
    171. James M R, Smith M C, Vinnicombe G. Gap metrics, representations, and nonlinear robust stability[C]. Proc.39th IEEE Conf. on Decision and Control. Sydney,2000:2936–2941
    172. Georgiou T T, Differential stability and robust control of nonlinear Systems [J]. Math Control SignalsSystem.1993,10(3):289–306
    173. Johanssson L, and Koivo H N. Inverse nyquist array technique in the design of a multivariablecontroller for a solid-fuel boiler [J]. Int. J. Control,1984,40,1077–1088
    174. Cori R, Maffezzoni C. Practical optimal control of a drum boiler power plant [J]. Automatica,1984,20,163–173.
    175. Kwon W H, Kim S W. Park P G. On the multivariable robust control of a boiler-turbine system [J]. InIFAC Symposium on Power Systems and Power Plant Control, Seoul, Korea,1989,219–223
    176. Pellegrinetti G, Bentsman J. H∞controller design for boilers [J]. Int. J. Robust and Nonlinear Control,1994,4:645–671
    177. Petrovic T B, Ivezic D D, Debeljkovic D L J. Robust IMC controllers for a solid-fuel boiler.Engineering Simulation,2000,17(2):211–224
    178. Hogg B M, Rabaie N M E. Multivariable generalized predictive control of a boiler system [J]. IEEETrans.on Energy Conversion,1991,6(2):282–288
    179. Doyle, J. C. Structured uncertainty in control system design [C]. Poc. Conf. Dec. Contr.,1985,260-265
    180. Henson M A, Seborg D E. Input-output linearization of general nonlinear processes [J]. AIChEJournal,1990,36(11):1753–1757
    181. Doyle F J, Kwatra H S, Schwaber J S. Dynamic gain scheduled process control [J]. Chem. Eng. Sci.,1998,53(15):2675–2690
    182. Marcelo C M T, Stanislaw H Z. Stabilizing controller design for uncertain nonlinear systems usingfuzzy models [J]. IEEE Transactions on fuzzy systems,1999,7(2):133-142
    183. Yin Y, Liu F, Shi P. Finite-time continuous gain-scheduled control on stochastic hyperchaotic systems[J]. Proceedings of the IMechE, Part I: J. of Systems and Control Engineering,2010,224(6):679-688
    184. Yin Y, Shi P, Liu F, Pan J S. Gain-scheduled fault detection on stochastic nonlinear systems withpartially known transition jump rates [J]. Nonlinear Analysis Series B: Real World Applications,2012,13(1):359-369
    185. Narendra K S, Tripathi S S. Identification and optimization of aircraft dynamics [J]. Journal ofAircraft,1973,10(4):193-199
    186. Gahinet P, A Nemirovski, Chilali M. LMI control toolbox-for use with Matlab [M]. The MATH worksInc,1995
    187.俞立.鲁棒控制—线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.97-105
    188.梅生伟,申铁龙.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2008
    189. Mao X. Stability of stochastic differential equations with Markovian switching [J]. StochasticProcesses and Their Applications1999,79(1):45-67
    190. R ssler O. An equation for hyperchaotic [J]. Phys Lett A.,1979,71,155-157
    191. Sira-Ramirez H, Angulo-Nunez M I. Passivity-based control of nonlinear chemical processes [J]. Int. J.of Control,1997,68(5):971-996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700