用户名: 密码: 验证码:
TRC基本力学性能及其增强钢筋混凝土梁受弯性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维编织网增强混凝土(Textile Reinforced Concrete,简称TRC)是一种新的高性能水泥基复合材料,它是多轴纤维纺织物和精细混凝土的结合,具有良好的定向增强能力和限裂能力。由于所采用的纤维材料具有耐腐蚀性,防止化学侵蚀的混凝土保护层不再需要,从而TRC结构单元的厚度主要依赖于增强纤维必需的锚固厚度。这些特性使TRC可以广泛应用于薄壁轻质的结构或覆层材料,耐腐蚀构件,已有结构的修补增强及防治各种形式的混凝土开裂。但由于所用纤维本身的脆性特征,使TRC结构达到极限荷载时没有明显的破坏预兆;而普通钢筋混凝土结构则由于特殊保护层厚度的限制,具有较大的自重,且不能有效限制结构的主裂缝发展。为此,本文结合国家自然科学基金重点项目“混凝土结构裂缝的形成与发展机理及控制技术的研究(50438010)”中的关于混凝土结构裂缝控制新方法的研究,在对TRC相关材料性能和力学性能研究的基础上,提出一种采用纤维编织网和钢筋联合增强混凝土结构的新思路,并开展了一系列的试验和理论研究工作,主要内容总结如下:
     1.精细混凝土的弹性模量比相同抗压强度的普通混凝土低,但极限荷载处应变较大;当用试验得出的模型参数值替代同等强度普通混凝土的参数值,试验曲线和模拟曲线吻合得比较好。
     2.精细混凝土在断裂过程中也要经历一个裂缝稳定发展的过程才会达到失稳破坏,且其起裂韧度随试件尺寸的增大而减小而失稳断裂韧度基本保持不变;考虑荷载位移曲线的尾部曲线下的面积后,获得的断裂能几乎不存在尺寸效应,可认为是一个材料常数。
     3.单独拉伸纤维束获得的应力一应变曲线几乎是完全线性的。假定基体材料开裂后只有纤维编织网承担荷载,从而由TRC薄板试件单轴拉伸的荷载一变形关系获得的纤维束的应力一应变关系可合理简化为双线性的形式。
     4.在同样的保护层厚度下,纤维编织网表面粘砂,混凝土中掺加短切聚丙烯纤维及在纤维编织网上挂U型钩都有助于改善构件的受力性能,保护层厚度在3mm左右可满足纤维粘结锚固的要求。
     5.纤维束的表面处理与径向纤维对维编织网和精细混凝土间的界面粘结性能有着较为明显的影响。对于粘细砂处理纤维束,搭接长度不小于60mm可满足纤维束间应力传递的要求;在同样的搭接长度下,绑扎搭接纤维束的增强效果要优于胶接的。
     6.基于RC结构的抗弯设计理论,针对环氧树脂浸渍过的纤维编织网增强精细混凝土的抗弯计算理论进行了研究,结果表明:无论布设几层网,开裂之前,理论值和试验值几乎一致;开裂后,计算值和试验值的变化趋势基本一致。
     7.提出纤维编织网联合钢筋增强混凝土结构的设计思路,分析了这种结构适筋梁的受弯发展过程,基于平截面假定按非线性分析理论给出了整个受力过程不同阶段梁的承载力、M/φ关系和跨中挠度的解析计算公式。最后通过与试验结果的对比,验证公式的合理性。
     8.针对不同的纤维编织网用量给出了纤维编织网联合钢筋增强混凝土受弯梁的两种界限破坏状态,并给出了这两种状态分别对应的配网率与钢筋配筋率之间的关系。然后,基于平截面假定,给出了此构件在三种破坏形态下正截面极限承载能力的计算方法。结合试验数据说明了第一种破坏模式的不利性,且采用本文方法得到的承载力计算值与试验结果吻合得较好。
     9.TRC加固钢筋混凝土(RC)梁的弯曲性能的试验结果表明,纤维编织网的表面粘砂处理能更好地发挥其有效约束能力,从而充分发挥TRC增强层的限裂和增强作用;新老混凝土的界面植入U型抗剪销钉可以提高增强后RC梁的整体受力性能,而涂抹界面剂对其几乎没有影响。此外,精细混凝土中掺加聚丙烯纤维有助于提高构件的起裂荷载;在RC梁配筋率一定的情况下,提高TRC层中的配网率可以有效地延缓结构主裂缝的发展,减小裂缝的宽度和间距,明显地提高梁的屈服荷载和极限承载力。
     10.模拟了TRC加固RC梁的荷载与跨中位移曲线,计算值与试验结果吻合得较好;基于RC结构的裂缝间距和宽度计算理论,定性的分析了纤维编织网对RC结构的裂缝计算中控制参数的影响。
Textile-reinforced concrete (TRC) is a new high performance cementitious composite material consisting of multi-axial textile reinforcement made with advanced textile technology and fine-grained concrete. It has excellent ability of directional strengthening and delaying crack. Due to the wonderful corrosion resistance of fiber materials, the concrete cover is no longer needed as a chemical protection. The thickness of TRC members depends primarily on the necessary value to ensure a proper anchorage of the reinforcement and to avoid splitting failure. These features make TRC be widely used in the thin-walled structure with light weight or the cladding material, the corrosion-resistant components, retrofitting or strengthening the existing structure and treating various forms of cracks in the concrete. However, due to the brittle feature of fiber materials, the TRC structural member has no distinct failure symptom when it arrives at its ultimate load. At the same time, ordinary reinforced concrete (RC) elements have large dead weight and can not efficiently restrict the expansion of the main crack of structures because of the restriction of their special cover thickness. Therefore, in this study, combined with the research about the new method for crack control of concrete structures in the Key Program of the National Natural Science Foundation of China (No.50438010)"Research on the Mechanism of Crack Formation and Propagation in Concrete Structures and Crack Control Method", and based on the investigation on the related materials and mechanical properties of TRC, a new architecture reinforced with a combination of textile and steel bar in this study is proposed. Further, a series of tests and analytical work about this new architecture have been carried and the main contents are summarized as follows.
     1. Compared with ordinary concrete with similar compressive strength, the Young's modulus of fine grained concrete is lower, and the strain at ultimate load is higher. When the experimentally determined control parameters are used, experimental curves show very good agreement with the calculated curves.
     2. It also exists a nonlinear fracture process and a steady crack propagation stage before unstable fracture of fine grained concrete, and with the increase in beam depth the unstable toughness does not change, but the initial fracture toughness decreases. After the area under the tail of the load-deflection curve is taken into consideration, the fracture energy of fine grained concrete almost does not have size effect and therefore it may be considered as a material parameter.
     3. When the yarn is tensioned alone, its stress-strain relationship is almost linear. Assume that only the textile bears the load after matrix material cracking, thus the stress-strain relationship of the yarn, which is obtained from the curves of the load vs. deformation with uniaxial tensile test of TRC-thin plate specimens, can be reasonably simplified as the bilinear form.
     4. For the component with the same cover thickness, sticking sand on the surface of the textile, adding the short-cut polypropylene fiber into fine grained concrete and hanging U-shaped hooks upon the textile are helpful to improve its mechanical performance. The cover thickness of 3 mm or so is enough to meet the anchorage requirement of the reinforcement fiber.
     5. The warp yarns and the surface treatment of the textile have significant influences on the interfacial bond performance between the textile and the fine grained concrete. For the textile covered with fine sand, its splicing length, which is no less than 60mm, can meet the requirement of the stress transfer between yarns. At the same splicing length, the enhancement capacity of the textile using the binding splicing is better than that of the textile using the sticking splicing.
     6. Based on the bending design theory of RC elements, the flexural calculation theory of fine grained concrete reinforced with epoxy resin-impregnated textile is studied. The results show that before cracking, it can be obtained a well fit between the theoretical curves and the experimental curves regardless of the layers of textiles laid, and after cracking, comparison between the calculated and the experimental results reveals satisfactory agreement.
     7. A new architecture reinforced with textile-combined steel is proposed in this study. The flexural development process of the proper beam with this new structure is investigated and based on the plane section assumption, analytical equations are derived by using nonlinear analysis theory, including the load-carrying capacity at different stages and moment-curvature relationship and mid-span deflection during the entire loading process. Comparison between the calculated and the experimental results reveals satisfactory agreement and thus verifies the feasibility of the equations.
     8. Two kinds of limit failure state of flexural beam strengthened with textile-combined steel are presented for different amount of the textile, and for each state, the relation between the textile ratio and the steel reinforcement ratio is derived in this study. Afterward, based on the plane section assumption, the calculation methods for the ultimate bearing capacity of the normal section of this component at three kinds of failure mode are also presented. The experimental results show that the first failure mode is unfavorable to the component and the calculated values of ultimate bearing capacity coincide well with the experimental values.
     9. The experimental results of flexural performance of reinforced concrete (RC) beams strengthened with TRC show that sticking sand on the epoxy resin-impregnated textile can make its anti-crack ability better exert and thus the crack-control and reinforcing function of TRC layer can be fully utilized, and embedding U-shaped pins into the old concrete contributes to improve the whole mechanical behavior of RC beams strengthened with TRC, but smearing interfacial agent on the surface of the old concrete has almost no effect on the beams. In addition, mixing polypropylene fiber into fine grained concrete is helpful to enhance the initial cracking load of the component.And when the ratio of steel reinforcement is constant, increasing the ratio of textile reinforcement in TRC can effectively delay the development of main cracks of the structure, and decrease the crack width and the crack spacing and significantly improve the yield load and ultimate bearing capacity of the beams.
     10. Comparison between the calculated and the experimental load vs. deflection curves of RC beams strengthened with TRC reveals satisfactory agreement. Based on the calculation theory for the crack spacing and width of RC elements, the influences of the textile on the control parameters for the crack calculation of RC structures are qualitatively analyzed.
引文
and cement matrices [J]. Cement and Concrete Composites,1998,20(4):319-328.
    [78]Peled A, Bentur A, Yankelevsky D. Effects of woven fabric geometry on the bonding performance of cementitious composites:Mechanical performance [J]. Advanced Cement based Materials,1998, 7(1):20-27.
    [79]Curbach M, Jesse F. High-performance textile-reinforced concrete [J]. Structural engineering international,1999,9(4):289-291.
    [80]Hempel, R. Thin textile-reinforced concrete sheet material [J]. Concrete Precasting Plant and Technology (Betonwerk und Fertigteil-Technik),1998,64(3):140-146.
    [81]Wulfhorst, B. Textile structures as reinforcements for concrete [J]. Concrete Precasting Plant and Technology (Betonwerk und Fertigteil-Technik),1998,64(3):133-138.
    [82]RILEM, Technical Committee 201-TRC [EB/OL]. http://www.rilem.net/technicalCommittees.php.
    [83]Peled A, Sueki S, Mobasher B. Bonding in fabric-cement systems:Effects of fabrication methods [J]. Cement and concrete Research,2006,36(9):1661-1671.
    [84]Peled A, Mobasher B. Properties of fabric-cement composites made by pultrusion [J]. Materials and Structures,2006,39 (8):787-797.
    [85]Peled A, Mobasher B. Tensile behavior of fabric cement-based composites:pultruded and cast [J]. Journal of Materials in Civil Engineering, ASCE,2007,19(4):340-348.
    [86]Peled A, Mobasher B. Effect of processing on mechanical properties of textile-reinforced concrete [C]. In:Dubey A,ed. Textile-Reinforced Concrete, SP-250. Farmington Hills:American Concrete Institute, 2008, p.85-97.
    [87]Kriiger M. Vorgespannter textilbewehrter Beton (Prestressed textile reinforced concrete) [D]. PhD thesis. Germany:University of Stuttgart,2004.
    [88]Brockmann T, Brameshuber W. Matrix development for production technology of textile reinforced concrete (TRC) structural elements [C]. In:Hamelin P, Bigaud D, Ferrier E, et al, eds. Third International Conference on Composites in Construction (CCC 2005). Lyon, France:University Lyon, 2005:1165-1172.
    [89]Banholzer B. Bond behaviour of a multi-filament yarn embedded in a cementitious matrix [D]. PhD thesis. Germany:RWTH Aachen University,2004.
    [90]Zastrau B, Richter M, Lepenies I. On the analytical solution of pullout phenomena in textile reinforced concrete [J]. Journal of Engineering Materials and Technology,2003,125(1):38-43.
    [91]Ohno S, Hannant D J. Modelling the stress-strain response of continuous fibre reinforced cement composites [J]. ACI Materials Journal,1994,91(3):306-312.
    [92]Sejnoha M, Zeman J. Micromechanical analysis of random composites [R]. Prague:Czech Technical University,2002, CTU Reports,6 (1).
    [93]Beyerlein I J, Phoenix S L. Stress profiles and energy release rates around fiber breaks in a lamina with propagating zone of matrix yielding and debonding [J]. Composites Science and Technology, 1997,57(8):869-885.
    [94]Schorn H. An adhesive cross-linkage model for textile reinforcement in concrete [C]. In:Zingoni A, ed. 2nd International Conference on Structural Engineering, Mechanics and Computation SEMC. Cape Town,2004:1563-1567.
    [95]Chudoba R, Vorechovsky M, Konrad M. Stochastic modeling of multifilament yarns I:random
    properties within the cross section and size effect [J]. Journal of Solids and Structures,2006, 43(3-4):413-434.
    [96]Vorechovsky M, Chudoba R. Stochastic modeling of multifilament yarns II:random properties over the length and size effect [J]. Journal of Solids and Structures,2006,43(3-4):435-458.
    [97]Kruger M, Ozbolt J, Reinhardt H W. A discrete bond model for 3D analysis of textile reinforced and prestressed concrete [J]. Otto Graf Journal, Stuttgart,2002,13:111-128.
    [98]Kruger M, Ozbolt J, Reinhardt H W. A new 3D discrete bond model to study the influence of bond on the structural performance of thin reinforced and prestressed concrete plates [C]. In:Naaman A E, Reinhardt H W, eds. High Performance Fiber Reinforced Cement composites(HPFRCC4). France: RILEM Publication SARL,2003:49-63.
    [99]Konrad M, Chudoba R, Meskouris K, et al. Numerical simulation of yarn and bond behavior at micro-and meso-level. In:Curbach M, eds. Textile reinforced structures:Proceedings of the 2nd Colloquium on Textile Reinforced Structures (CTRS2). Dresden, Germany:Technische Universitat Dresden, Sonderforschungsbereich 528,2003:399-410.
    [100]Peled A, Bentur A. Quantitative description of the pull-out behavior of crimped yarns from cement matrix [J]. Journal of Materials in Civil Engineering, ASCE,2003,15(6):537-544.
    [101]Raupach M, Orlowsky J, Buttner T, et al. Epoxy-impregnated textiles in concrete-load bearing capacity and durability[C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1 st International RILEM Symposium. France:RILEM Publication SARL, 2006:77-88.
    [102]Keil A, Raupach M. Improvement of the load-bearing capacity of textile reinforced concrete by use of polymers [C]. In:Yeon K S, ed. Proceedings of 12th International Congress on Polymers in Concrete (ICPIC'07). Chuncheon:Kangwon National University,2007,2():873-881.
    [103]Dilthey,U., Schleser,M., Puterman,M. Investigation and Improvement of concrete reinforced with epoxy impregnated fabrics [C]. In:Yeon K S, ed. Proceedings of 12th International Congress on Polymers in Concrete (ICPIC'07). Chuncheon:Kangwon National University,2007,Vol 2:725-734.
    [104]Kruger M, Reinhardt H W, Fichtlscherer M. Bond behavior of textile reinforcement in reinforced and prestressed concrete [J]. Otto Graf Journal, Stuttgart,2001,12:33-49.
    [105]Mobasher B, Peled A, Pahilajani J. Distributed cracking and stiffness degradation in fabric-cement composites [J]. Materials and Structures,2006,39(3):317-331.
    [106]Peled A, Sueki S, Mobasher B. Mechanical properties of hybrid fabrics in pultruded composites[M]. In:Konsta-Gdoutos M S, ed. Measuring, Monitoring and Modeling Concrete Properties. Springer Netherlands,2007:749-761.
    [107]Peled A, Mobasher B, Cohen Z. Mechanical properties of hybrid fabrics in pultruded cement composites. Cement and Concrete Composites,2009,31(9):647-657.
    [108]Hegger J, Voss S, Scholzen A. Textile-reinforced concrete for light structures [C]. In:Aldea C M ed. Design and Applications of Textile-Reinforced Concrete, SP-251. Farmington Hills:American Concrete Institute,2008:97-108.
    [109]Dilthey U, Schleser M, Feldmann M, et al. Investigation of punctiform, plane and hybrid joints of textile-reinforced concrete parts [J]. Cement and Concrete Composites,2008,30(2):82-87.
    [110]Hauβler-Combe U, Hartig J. Uniaxial structural behavior of TRC—a one-dimensional approach
    considering the transverse direction by segmentation [C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1st International RILEM Symposium. France: RILEM Publication SARL,2006, p.203-212.
    [111]Hauβler-Combe U, Hartig J. Bond and failure mechanisms of textile reinforced concrete (TRC) under uniaxial tensile loading [J]. Cement and Concrete Composites,2007,29(4):279-289.
    [112]Hartig J, Hauβler-Combe U, Schicktanz K. Influence of bond properties on the tensile behavior of textile reinforced concrete [J]. Cement and Concrete Composites,2008,30(10):898-906.
    [113]Hegger J, Bruckermann O. Aspects of modeling textile reinforced concrete (TRC) in 2D [M]. In: Konsta-Gdoutos M S, ed. Measuring, Monitoring and Modeling Concrete Properties. Springer Netherlands,2006:769-776.
    [114]Hegger J, Bruckermann O, Voss S. AR-glass and carbon fibers in textile reinforced concrete—simulation and design [C].In:Aldea C M ed. Thin Fiber and Textile Reinforced Cementitious Systems, SP-244. Farmington Hills:American Concrete Institute,2007:141-156.
    [115]Konrad M, Chudoba R, Meskouris K. Numerical evaluation of damage parameters for textile reinforced concrete under cyclic loading [C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1st International RILEM Symposium. France:RILEM Publication SARL,2006:213-222.
    [116]Mombartz M, Peiffer F, Chudoba R, et al. Simulation evolving discontinuities in TRC using the extended finite element method [C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1st International RILEM Symposium. France:RILEM Publication SARL,2006:243-252.
    [117]Chudoba R, Peiffer F, Zakrzewski P, et al. Enriched finite element representation of 2D multi-cracking and debonding in textile reinforced concrete [M]. In:U.Grosse C ed. Advances in Construction Materials 2007. Springer Berlin Heidelberg,2007:131-138.
    [118]Chudoba R, Moller B, Meskouris K, et al. Numerical modeling of textile-reinforced concrete [C]. In: Dubey A, ed. Textile-Reinforced Concrete, SP-250. Farmington Hills:American Concrete Institute, 2008:149-160.
    [119]Holler S, Butenweg C, Noh S-Y, et al. Computational model of textile-reinforced concrete structures [J]. Computers and Structures,2004,82(23):1971-1980.
    [120]Graf W, Hoffmann A, Moller B, et al. Analysis of textile-reinforced concrete structures under consideration of non-traditional uncertainty models [J]. Engineering Structures,2007, 29():3420-3431.
    [121]Lepenies I, Richter M, Zastrau B. On the hierarchical material modeling of textile reinforced concrete [C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1st International RILEM Symposium. France:RILEM Publication SARL,2006:223-232.
    [122]Cuypers H, Wastiels J. Thin and strong concrete composites with glass textile reinforcement: modeling the tensile response [C]. In:Dubey A, ed. Textile-Reinforced Concrete, SP-250. Farmington Hills:American Concrete Institute,2008:131-148.
    [123]Cuypers H, Wastiels J. A stochastic cracking theory for the introduction of matrix multiple cracking in textile reinforced concrete under tensile loading [C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1st International RILEM Symposium. France: RILEM Publication SARL,2006:193-202.
    [124]Cuypers H, Wastiels J. Stochastic matrix-cracking model for textile reinforced cementitious composites under tensile loading [J]. Materials and Structures,2006,39(8):777-786.
    [125]Mobasher B, Pahilajani J, Peled A. Analytical simulation of tensile response of fabric reinforced cement based composites [J]. Cement and Concrete Composites,2006,28(1):77-89.
    [126]Richter M, W. Zastrau B. On the nonlinear elastic properties of textile reinforced concrete under tensile loading including damage and cracking [J]. Materials Science and Engineering A,2006, 422(l/2):278-284.
    [127]Voss S, Hegger J. Dimensioning of textile reinforced concrete structures [C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1st International RILEM Symposium. France:RILEM Publication SARL,2006:151-160.
    [128]Hegger J, Schneider H N, Voss S, Bergmann I. Dimensioning and application of textile-reinforced concrete [C]. In:Dubey A, ed. Textile-Reinforced Concrete, SP-250. Farmington Hills:American Concrete Institute,2008:69-84.
    [129]Tysmans T, Adriaenssens S, Cuypers H, et al. Structural analysis of small span textile reinforced concrete shells with double curvatures [J]. Composites Science and Technology,2009,69(11-12): 1790-1796.
    [130]De Bolster E, Cuypers H, Van Itterbeeck P, et al. Use of hypar-shell structures with textile reinforced cement matix composites in lightweight constructions [J]. Composites Science and Technology,2009, 69(9):1341-1347.
    [131]Cuypers H, Wastiels J, Van Itterbeeck P, et al. Durability of glass fibre reinforced composites experimental methods and results [J]. Composites Part A:applied science and manufacturing,2006, 37(2):207-215.
    [132]Orlowsky J, Raupach M. Modelling the loss in strength of AR-glass fibres in textile-reinforced concrete [J]. Materials and Structures,2006,39(6):635-643.
    [133]Purnell P, Short N R, Page C L.A static fatigue model for the durability of glass fibre reinforced cement [J]. Journal of Materials Science,2001 36 (22):5385-5390.
    [134]Schorn H.Mutual effects of stress and corrosion mechanisms in glass fibre reinforcement [C]. In: Zingoni A, ed. Proceedings of the 2nd International Conference on Structural Engineering, Mechanics and Computation (SEMC). Cape Town,2004:1587-1591.
    [135]Litherland K L, Oakley D R, Proctor B A. The use of accelerated ageing procedures to predict the long-term strength of GRC composites [J]. Cement and Concrete Research,1981,11(4):455-466.
    [136]Proctor B A, Oakley D R, Litherland K L. Developments in the assessment and performance of GRC over 10 years [J]. Composites,1982,13(2):173-179.
    [137]Purnell P, Short N R, Page C L, et al. Microstructural observations in new matrix glass fibre reinforced cement [J]. Cement and Concrete Research,2000,30(11):1747-1753.
    [138]Purnell P, Beddows J. Durability and simulated ageing of new matrix glass fibre reinforced concrete [J]. Cement and Concrete Composites,2005,27(9-10):875-884.
    [139]Schorn H, Sckiekel M, Hempel. Valuation of the durability of textile glass fibre reinforcement in concrete [C]. In:La Tegola A, Nanni A, eds. Proceedings of the 1st International Conference on Innovative Materials and Technologies for Construction and Restoration. Lecce, Italy,2004, 1():100-111.
    [140]Reinhardt H W, Kriiger M, Raupach M. Behavior of textile-reinforced concrete in fire [C]. In:Dubey A, ed. Textile-Reinforced Concrete, SP-250. Farmington Hills:American Concrete Institute, 2008:99-109.
    [141]张勤.织物增强混凝土(TRC)加固RC梁正截面抗弯性能试验研究[D].硕士学位论文.镇江:江苏大学,2009.
    [142]徐世烺,Reinhardt H W, Kruger M,等.高性能精细混凝土与碳纤维织物粘结性能研究[C].第十一届全国结构工程学术会议论文集.长沙:中国力学学会,2002:95-104.
    [143]徐世娘,李赫.碳纤维编织网和高性能细粒混凝土的粘结性能[J].建筑材料学报,2006,9(2):211-215.
    [144]Xu Shilang, Li He. Bond properties and experimental methods of textile reinforced concrete [J]. Journal of Wuhan University of Technology (Materials Science),2007,22(3):529-532.
    [145]李庆华,徐世娘,李赫.提高纤维编织网与砂浆粘结性能的实用方法[J].大连理工大学学报,2008,48(5):685-690.
    [146]李赫,徐世娘.纤维编织网增强混凝土(TRC)的基体开发和优化[J].水力发电学报,2006,25(3),72-76.
    [147]徐世娘,李赫.用于纤维编织网增强混凝土的自密实混凝土[J].建筑材料学报,2006,9(4):481-483.
    [148]尹世平,徐世娘.高性能精细混凝土单轴受压性能试验研究[J].大连理工大学学报,2009,49(6):919-925.
    [149]荀勇,孙伟,Reinhardt H W,等.碳纤维织物增强混凝土薄板的界面粘结性能试验[J].东南大学学报(自然科学版),2005,35(4):593-597.
    [150]杜玉兵.预应力织物增强混凝土薄板力学性能试验研究[D].硕士学位论文.南京:河海大学,2006.
    [151]潘永灿,荀勇.纤维织物与混凝土基体界面粘结性能试验研究[J].四川建筑科学研究,2008,34(1):130-132.
    [152]王照宇,荀勇,王洪霞,等.碳纤维与自密实混凝土的粘结性能试验研究[J].工业建筑,2008,38(12):99-101.
    [153]俞巧珍,熊杰.织物密度对水泥复合材料界面粘结的影响[J].纺织学报,2005,26(1):17-19.
    [154]俞巧珍,熊杰.尼龙束捻度对水泥砂浆界面粘结的影响[J].建筑材料学报,2003,6(4):421-425.
    [155]梁颜芳.水泥基增强用织物的研制及其复合材料的性能研究[D].硕士学位论文.苏州:苏州大学,2008.
    [156]李赫,徐世烺.纤维编织网增强混凝土薄板力学性能的研究[J].建筑结构学报,2007,28(4):117-122.
    [157]荀勇,孙伟,Reinhardt H W,等.短纤维和织物增强混凝土薄板试验研究[J].土木工程学报,2005,38(11):58-63.
    [158]潘永灿,荀勇.织物增强混凝土薄板受力性能试验初步研究[J].混凝土,2007,12:27-31.
    [159]潘永灿,荀勇.织物增强混凝土薄板四点弯曲抗弯性能试验[J].哈尔滨工业大学学报,2009,41(8):172-174.
    [160]杜玉兵,荀勇,刘小艳.碳纤维织物增强混凝土薄板抗海水侵蚀性能研究[J].混凝土,2008,9:53-57.
    [161]姚立宁.高性能纤维混凝土织物增强混凝土应用研究[J].广东工业大学学报,1999(4):17-21.
    [162]何军拥.编织纤维格栅增强混凝土增强机理的研究[D].硕士学位论文.广州:广东工业大学,2002.
    [163]姚立宁,何军拥,韩文博,等.编织纤维混凝土耗散能研究[J].中山大学学报(自然科学版),2008,47(S2).39-41.
    [164]俞巧珍.织物铺层铺设方式对水泥基复合材料力学性能的影响[J].建筑材料学报,2005,8(4):378-382.
    [165]徐世娘,李赫.纤维编织网增强混凝土的拉拔计算分析[J].铁道科学与工程学报,2005,2(3):15-21.
    [166]Engberts E. Large-size facade elements of textile reinforced concrete[C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1st International RILEM Symposium. France:RILEM Publication SARL,2006:309-318.
    [167]Mott R, Brameshuber W. Subsequently applied waterproof basements made of textile reinforced concrete using the spraying method[C]. In:Aldea C M ed. Design and Applications of Textile-Reinforced Concrete, SP-251. Farmington Hills:American Concrete Institute,2008:59-72.
    [168]Hinzen M, Brockmann T, Brameshuber W. Subsequent sealing of basements with a waterproof TRC construction[C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1st International RILEM Symposium. France:RILEM Publication SARL,2006:379-388.
    [169]Schneider H N, Bergmann I. The application potential of textile-reinforced concrete[C]. In:Dubey A, ed. Textile-Reinforced Concrete, SP-250. Farmington Hills:American Concrete Institute,2008:7-22.
    [170]Schneider H N, Schatzke C, Bergmann I. Textile reinforced concrete—Application and prototypes[C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1 st International RILEM Symposium. France:RILEM Publication SARL,2006:297-308.
    [171]Brameschuber W, Koster M, Hegger J, et al. Integrated formwork elements made of textile-reinforced concrete[C]. In:Dubey A, ed. Textile-Reinforced Concrete, SP-250. Farmington Hills:American Concrete Institute,2008:35-48
    [172]Lieboldt M, Helbig U, Engler T. Textile reinforced concrete multilayer composite pipes[C]. In: Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1st International RILEM Symposium. France:RILEM Publication SARL,2006:369-378.
    [173]Papanicolaou C G, Triantafillou T C, Karlos K, et al. Seismic retrofitting of unreinforced masonry structures with TRM [C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1st International RILEM Symposium. France:RILEM Publication SARL, 2006:341-350.
    [174]Weiland S, Ortlepp R, Bruckner A, et al. Strengthening of RC Structures with Textile Reinforced Concrete (TRC) [C]. In:Aldea C M, ed. Thin Fiber and Textile Reinforced Cementitious Systems, SP-244. Farmington Hills:American Concrete Institute,2007:157-172.
    [175]Jesse F, Weiland S, Curbach M. Flexural strengthening of RC structures with textile-reinforced concrete [C]. In:Dubey A, ed. Textile-Reinforced Concrete, SP-250. Farmington Hills:American Concrete Institute,2008:49-58.
    [176]Bosche A, Jesse F, Ortlepp R, et al. Textile-reinforced concrete for flexural strengthening of RC-structures—part1:Structural behavior and design model[C]. In:Aldea C M ed. Design and Applications of Textile-Reinforced Concrete, SP-251. Farmington Hills:American Concrete Institute, 2008:19-40.
    [177]Triantafillou T C, Papanicolaou C G. Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets [J]. Materials and structures,2006,39(l):93-103.
    [178]Papanicolaou C G, Triantafillou T C, Bournas D A, et al. TRM as strengthening and seismic retrofitting material of concrete structures [C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1st International RILEM Symposium. France:RILEM Publication SARL,2006:331-340.
    [179]Bruckner A, Ortlepp R, Curbach M. Anchoring of shear strengthening for T-beams made of textile reinforced concrete (TRC) [J]. Materials and structures,2008,41(2):407-418.
    [180]Papanicolaou C G, Triantafillou T C, Karlos K, et al. Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM walls:in-plane cyclic loading [J]. Materials and structures,2007, 40(10):1081-1097.
    [181]Aldea C M, Mobasher B, Singla N. Cement-based matrix-grid system for masonry rehabilitation [C].In:Aldea C M, ed. Thin Fiber and Textile Reinforced Cementitious Systems, SP-244. Farmington Hills:American Concrete Institute,2007:141-156.
    [182]Papanicolaou C G, Triantafillou T C, Papathanasiou M, et al. Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM walls:out-of-plane cyclic loading [J].Materials and Structures, 2008,41(1):143-157.
    [183]Peled A, Bentur A. Cement impregnated fabrics for repair and retrofit of structural concrete [C].In: Naaman A E, Reinhardt H-W, eds. Fourth International Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC4).France:RILEM Publications SARL,2003:313-324.
    [184]Triantafillou T C, Papanicolaou C G, Zissimopoulos P, et al. Concrete confinement with textile-reinforced mortar jackets [J]. ACI structural journal,2006,103(1):28-37.
    [185]Al-jamous A, Ortlepp R, Ortlepp, et al. Experimental investigations about construction members strengthened with textile reinforced [C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1st International RILEM Symposium. France:RILEM Publication SARL,2006:161-170.
    [186]Peled A. Confinement of damaged and non-damaged structural concrete with FRP and TRC sleeves [J]. ASCE Journal of composites for construction,2007,11 (5):514-522.
    [187]Bournas D A, Lontou P V, Papanicolaou C G, et al. Textile-reinforced mortar versus fiber-reinforced polymer confinement in reinforced concrete columns [J]. ACI Structural Journal,2007, 104(6):740-748.
    [188]Franzke G, Engler T H, Schierz, M, et al. Concrete mast restoration using multi-axial ar-glass structures[R]. Lecture No.333, Techtextil-Symposium. April 23-26,2001, Frankfurt/Main, Germany.
    [189]Weiland S, Ortlepp R, Hauptenbuchner B, et al. Textile-reinforced concrete for flexural strengthening of RC-structures—part2:Application on a concrete shell [C]. In:Aldea C M ed. Design and Applications of Textile-Reinforced Concrete, SP-251. Farmington Hills:American Concrete Institute, 2008:41-58.
    [190]荀勇,张勤.织物增强混凝土(TRC)加固技术研究进展[J].工业建筑(S),2008,38():986-992.
    [191]Ortlepp R, Curbach M. Bonding behavior of textile reinforced concrete strengthening[C]. In:Naaman A E, Reinhardt H-W, eds. Fourth International Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC4).France:RILEM Publications SARL,2003:517-527.
    [192]Ortlepp R, Ortlepp S, Curbach M. Stress transfer in the bond joint of subsequently applied textile reinforced concrete strengthening [C]. In:di Prisco M, Felicetti R, Plizzari G. A, eds. Proceedings of 6th International RILEM Symposium on Fibre Reinforced Concretes. France:RILEM Publications SARL,2004:1483-1494.
    [193]Ortlepp R, Hampel U, Curbach M. A new approach for evaluating bond capacity of TRC strengthening [J]. Cement and concrete composites,2006,28(7):589-597.
    [194]张勤,荀勇,余斌,等.TRC加固构件抗剪粘结强度试验研究[J].河北工程大学学报(自然科学版),2009,26(1):29-33.
    [195]Moller B, Beer M, Graf W, et al. Time-dependent reliability of textile-strengthened RC structures under consideration of fuzzy randomness [J]. Computers and Structures,2006,84(8-9):583-603.
    [196]Steinigen F, Moller B, Graf W, et al. Numerical simulation of textile reinforced concrete considering dynamic loading processes [C]. In:Hegger J, Brameshuber W, Will N eds. Textile Reinforced Concrete, Proceedings of the 1st International RILEM Symposium. France:RILEM Publication SARL,2006:275-284.
    [197]过镇海.混凝土的强度和变形—试验基础和本构关系[M].北京:清华大学出版社,1997.
    [198]过镇海.混凝土的强度和本构关系—原理与应用[M].北京:中国建筑工业出版社,2004.
    [199]Comite Euro-International du Beton, CEB-FIP Model Code 1990-Design Code [S]. UK:Redwood Books,1993.
    [200]徐世娘,朱榆,张秀芳.水泥净浆和水泥砂浆的1型断裂韧度的测定[J].水利学报,2008,39(1):41-46.
    [201]Shilang Xu, Yu Zhu. Experimental determination of fracture parameters for crack propagation in hardening cement paste and mortar [J]. International Journal of Fracture,2009,157(1-2):33-43.
    [202]郭向勇,方坤和,冷发光.混凝土断裂能的理论分析[J].哈尔滨工业大学学报,2005,37(9):1119-1222.
    [203]钱觉时,范英儒,袁江.三点弯曲法测定混凝土断裂能的尺寸效应[J].重庆建筑大学学报,1995,17(2):1-8.
    [204]张东,刘娟淯,陈兵,吴科如.关于三点弯曲法确定混凝土断裂能的分析[J].建筑材料学报,1999,2(3):206-211.
    [205]康清梁.钢筋混凝土有限元分析[M].北京:中国水利水电出版社,1996.
    [206]李义强,王新敏,陈士通.混凝土单轴受压应力—应变曲线比较[J].公路交通科技,2005,22(10):75-78.
    [207]GB 50010--2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [208]Xu Shilang, Reinhardt H W. Determination of double-K criterion for propagation in quasi-brittle materials, part I:experimental investigation of crack propagation [J]. International Journal of Fracture,1999,98(2):111-149.
    [209]Xu Shilang, Reinhardt H W. Determination of double-K criterion for propagation in quasi-brittle materials, part Ⅱ:analytical evaluating and practical measuring methods for three-point bending notched beams [J]. International Journal of Fracture,1999,98(2):151-177.
    [210]Xu Shilang, Reinhardt H W. A simplified method for determining double-K fracture parameters for three-point bending tests [J]. International Journal of Fracture,2000,104:181-209.
    [211]RILEM Technical Committee 50-FMC. Determination of the fracture energy of mortar and concrete by means of three-point bend tests of notched beams, proposed RELIEM draft recommendation [J] RILEM, Materials and Structures,1985,18(106):285-290.
    [212]GB/T 3362-2005.碳纤维复丝拉伸性能试验方法[S].北京:中国标准出版社,2005.
    [213]GB/T 1446-2005.纤维增强塑料性能试验方法总则[S].北京:中国标准出版社,2005.
    [214]Dilthey U, Schleser M, Hegger J, et al. Load-bearing behavior of polymer-impregnated textiles in concrete [C]. In:Reinhardt H W, Naaman A E, eds. Proceedings of the fifth international RILEM workshop (HPFRCC5 PRO53). France:RILEM Publications SARL,2007:183-192.
    [215]王清湘,赵顺波.大保护层钢筋混凝土受弯构件裂缝控制的试验研究[J].大连理工大学学报,1993,33(5):566-575.
    [216]李志华,赵勇,尚世仲.钢筋混凝土受弯构件裂缝宽度计算方法的比较[J].四川建筑科学研究,2007,33(2):11-14.
    [217]龙驭球、包世华.结构力学(上册)第二版[M].北京:高等教育出版社,1994.
    [218]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.上海:同济大学出版社,1997.
    [219]马士忠.钢筋混凝土梁的非线性有限元分析和变形能力计算.硕士学位论文.长沙:湖南大学,2008.
    [220]徐世娘,李庆华.超高韧性复合材料控裂功能梯度复合梁弯曲性能理论研究.中国科学E辑:技术科学,2009,39(6):1081-1094.
    [221]徐世娘,张秀芳.钢筋增强超高韧性水泥基复合材料RUHTCC受弯梁的计算理论与试验研究.中国科学E辑:技术科学,2009,39(5):878-896.
    [222]卜良桃.高性能复合砂浆钢筋网(HPF)加固混凝土结构新技术[M].北京:中国建筑工业出版社,2007:168-174.
    [223]马芹永.混凝土结构基本原理[M].北京:机械工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700