用户名: 密码: 验证码:
钢—轻骨料混凝土组合梁计算方法与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文依托建设部研究开发项目(05-k5-10)“钢-轻骨料混凝土组合梁试验研究”,主要探讨了钢-轻骨料混凝土组合梁的抗弯性能,开展了了如下的研究工作:探讨钢-轻骨料混凝土组合梁抗弯工作性能,建立了各受力阶段的计算方法,完成了10个推出试验和2根组合梁的抗弯试验。
     全文共分为10章。第1章介绍了本文研究的意义、研究背景以及研究内容与方法。第2章采用变分法分别推导了不考虑界面滑移和考虑界面滑移影响的钢-轻骨料混凝土组合梁翼缘板的有效宽度计算公式,探讨了翼缘板有效宽度的分布规律。第3章至第5章介绍了在轻骨料混凝土中的栓钉推出试验,探讨了栓钉承载力和变形的计算方法。第6章至第8章介绍了钢-轻骨料混凝土组合梁的模型试验,研究了影响钢-轻骨料混凝土组合梁承载力的因素,给出了钢-轻骨料混凝土组合梁承载力的计算方法。第9章利用弹性理论建立了钢-轻骨料混凝土组合梁滑移位移模型,推导了考虑界面滑移效应影响的轻骨料混凝土组合梁挠度方程、界面滑移方程以及附加弯矩方程,研究了影响钢-轻骨料混凝土组合梁挠度的因素,给出了钢-轻骨料混凝土组合梁挠度计算方法。第10章对全文进行了总结,提出还需进一步研究的问题。
The steel-concrete composite bridge after the steel bridge and the reinforced concrete bridge is accepted by the engineering field, and is quickly developing of bridge structure form. Composite beam can well develop the mechanics characteristic of steel material and concrete, and have construction convenience, significant general benefits, is important development one of the directions of bridge engineering and applying foreground vast.
     Steel-lightweight aggregate concrete composite structure has been developed as a kind of new composite structure based on the steel-concrete composite structure and lightweight aggregate concrete structure. The steel-lightweight aggregate concrete composite beam has a saving steel, section reasonable, section height small, better member stability, ductility good, economy etc.. Steel-light bone's anticipating a concrete combination structure be the foundation which combines structure and light bone to anticipate concrete structure in the steel-concrete up develop of a kind of new combination structure. The steel-lightweight aggregate concrete composite beam has an economy steel material and section reasonable, lightening structure weight, better member stability, ductility good, economy good, increasing structure span or story high, lower foundation processing expenses, acquiring better economic benefit and social benefit Using a lightweight aggregate to replace a natural aggregate concrete batching in the meantime, can reduce the depletion of resources to natural aggregate, and realize the construction targets of environmental protection and sustainable development. The steel-lightweight concrete composite structure is suitable development for the building higher and higher, and the span larger and larger. Therefore, the steel-light aggregate concrete composite structure is a kind of ideal structure system and has a good development foreground.
     Experiment research and theories analytical enunciation, the steel-lightweight aggregate concrete composite beam is a kind structure form of safety, efficiently, economy and construction convenient, and applicable to large span bridge structures and multi-storey building structures. The steel-lightweight aggregate concrete composite beam in comparison with steel beam can save to invest 10-40%.Compared with the reinforced concrete beam composite beam, the beam has light weight, section height small, better the anti-vibration performance and quick construction. The steel-lightweight aggregate concrete composite beam has very strong competition ability in the long-span bridge construction, market foreground vast. Knowing to all, the north is in the cold region, construction the work period is shorter, the steel-lightweight aggregate concrete composite beam has quick construction and lower to construction the machine requirement, for speeding up highway, railroad construction and building construction have important meaning.
     The steel-lightweight aggregate concrete composite beam research only is in beginning stage in the domestic, the local Northeast University, Shenyang Jianzhu University etc. did some foundation work and established for aftertime's research bases of theory and experiment. In fundamental research, theoretical storage and creative structure system etc. of the steel-lightweight aggregate concrete composite beam still have a margin with international level in our country. And for that realm, domestic and international development are still very insufficiency. This item will do the thorough research of mechanics behavior and work performance, calculating theory and design analyzing method of the establishment and expanding its application range. The study results may push and carry out bridge structure, construct structure...etc. to long-span, big space, heavy carry a direction development, simplification construction work preface with lower engineering price, have bigger theoretical meaning, applied foreground and considerable economic benefit. In the meantime, it can also push a big development of lightweight aggregate building material. This is exact selection original intention for the steel-lightweight aggregate concrete composite beam bridge to carry on thorough theoretical analysis, calculation and experiment research. Along with the quick development of economic construction, amount of steel-lightweight aggregate concrete composite structure buildings will continuously increase, but currently our country still have not a set of calculation theory and design method, opening the steel-lightweight aggregate concrete composite beam bridge research work is very necessary.
     The steel-lightweight aggregate concrete composite beam bridge bending performance and mechanics behavior are discussed in the text, mainly opened a following several research works:
     1. According to the elastic theory, adopting energy variational principle method analyzed the effective width of flange slab for the steel-lightweight aggregate concrete composite beam, respectively deduced the computing formula for the effective width of the concrete flange slab, which were to take no account of slip influence and considering slip influence, studied the distributed regulation of flange slab effective width along the beam span direction, provided a basis for the elastic theory analysis of the steel-lightweight aggregate concrete composite beam.
     2. Established a steel-lightweight aggregate concrete composite beam slippery model using the elastic theory analysis method, deduced flexivity and slippery control the differential equation to consider the interface slippery effect influence of the lightweight aggregate concrete composite beam. The text got flexural equations and interface slippery analytic equations of the lightweight aggregate concrete composite beam to consider the interface slippery effect influence. Considered slippery effect influence, curvature and moment of the lightweight aggregate concrete composite beam were not the relation of elementary beam theories, but increased additional moment. The text deduced the additional moment equations to consider slippery effect. Using the additional moment equations, can expediently adopt the calculation formula of the material mechanics to calculate flexivity to consider slippery influence of the composite beam
     3. Established a mechanical model calculated stud, adopting according to the analytical method of measured stud transformation put on stud analyzed transformation and load carrying capacity of stud, studied the influence stud load carrying capacity factor in lightweight aggregate concrete, and gave the relationship between load and slippage of stud in lightweight aggregate concrete composite beam, computed a result and actually measured result fitted together better.
     4. Analyzed the influence factor of stud shearing load carrying capacity, carried on comparison of the computing stud shearing load carrying capacity and actually measured value, result showing, the current criterion computed formula of stud shearing load carrying capacity can directly used for design of the lightweight aggregate concrete composite beam in our country, criterion computing value with push out test value are more close, and to be partial to at the safety.
     5. Analyzed influence factor of bending load carrying capacity for the steel-lightweight aggregate concrete simply supported composite beam, pointed out to adopt a current criterion calculated bending load carrying capacity for the steel-lightweight concrete simply supported composite beam, particularly the bending load carrying capacity calculating value at regular service ultimate limit state is too big and the structure is partial to at the insecurity. There is necessity to make a further research to calculating additional bending load carrying capacity lower value to consider slip influence for the steel-lightweight aggregate concrete composite beam.
     6. Analyzed influence factor of deflection for steel-lightweight aggregate concrete simply supported composite beam, pointed out to adopt lowered rigidity method calculated deflection of the current criterion for the steel-lightweight concrete simply supported composite beam at regular service ultimate limit state is too small and the structure is partial to at the insecurity.
     7. Carried on 10 stud to push out test in the lightweight aggregate concrete and analyzed the interface slippage effect of the steel-lightweight aggregate concrete composite beam, introduced a few kinds typical load slippage curve of stud, gave the load slippage curve of stud suitable for the steel-lightweight aggregate concrete composite beam.
     8.Carried on 2 load carry experiment of the steel-lightweight aggregate concrete simply supported composite beam, at two point symmetrical concentration loading, studied on shearing slippage between the steel beam and lightweight aggregate concrete flange slab, shear lag effects of the concrete flange slab and strain variational regulation, got some worthy conclusions.
引文
[1] 王连广著,钢与混凝土组合结构理论与计算, 北京,科学出版社,2005,1-66;
    [2] 聂建国著,钢―混凝土组合梁结构:试验、理论与应用,北京,科学出版社,2005,1-75,298-315;
    [3] CEB 欧洲国际混凝土委员会,1990CEB—FIP 模式规范(混凝土结构),中国建筑科学研究院结构所规范室译,北京,1991;
    [4] 蔡国宏,国外桥梁建设与发展的新动态,国外公路,1998,18(2):9-15;
    [5] 胡夏闽,高华杰,组合结构在欧洲的新进展,工业建筑,2002,32(5):75-80;
    [6] 杨义东,李涛,钢-混凝土组合结构桥在日本的发展趋势,国外桥梁,1998,4:39-42;
    [7] Newmark N. M., Siess, C. P., Viest, I.M,Test and analysis of composite beams with incomplete interaction. Experimental Stress Analysis, 1951, 9(6):896-901;
    [8] Viest I.M,Investigation of stud shear connector for composite concrete and steel T-beams,Journal of ACI,1956,27(8):875-891;
    [9] U. S. DOC,Catalog of Highway bridge Plans,U. S. Department of Commerce, Bureau of Public Roads,Washington, D., 1990;
    [10] Taly N,Design of modern highway bridges,McGraw-Hill Companies,Inc., New York, 1998;
    [11] Brozzetti J,Design development of steel-concrete composite bridges inFrance, Journal of Constructional Steel Research,2000, 55:229-243;
    [12]范旭红,石启印,马波,钢-混凝土组合梁的研究与展望,江苏大学学报(自然科学版),2004,25(1):89-92;
    [13] Johnson R. P., Cafolla J,Corrugated webs in plate girders for bridges,Structures and Buildings, 1997, 123(5):157-164;
    [14]樊建生,聂建国,钢-混凝土组合桥梁研究及应用新进展,建筑钢结构进展,2006,8(5):35-39;
    [15]公路桥涵钢结构及木结构设计规范(JTJ025-86),人民交通出版社,1986,45-47;
    [16]铁路组合桥设计规定(TBJ24-89),中国铁道出版社,1989,51-53;
    [17]钢结构设计规范(GBJ17-88),北京,中国计划出版社,1988,94-98;
    [18]钢结构设计规范(GB 50017-2003),北京,中国计划出版社,2003,108-112;
    [19]宋绍铭,轻骨料混凝土在高层建筑和桥梁工程上的应用及其发展前景,江苏建筑,2003 年增刊:77-84;
    [20]聂建国,余志武,钢-混凝土组合梁在我国的研究及应用,土木工程学报,1999,32(2):3-7;
    [21]王福春,钢-混凝土组合结构在沈阳市东西快速干道工程中的应用,城市道桥与防洪,2002(2):32-35;
    [22]王元清,石永久,大连新世纪大厦钢-混凝土组合结构方案的设计与分析,钢结构,1997,12(1):56-59;
    [23]伊藤矿一,海外结合梁的技术现状及展望,桥梁与基础,1992,2:49-52;
    [24] 舒赣平,吕志涛,预应力钢结构与组合结构的应用和发展,工业建筑,1997,27(7):1-3;
    [25]刘文会,预应力钢-混凝土组合梁桥结构行为研究,博士学位论文,吉林大学,2005,1-7;
    [26]轻骨料混凝土技术规程(JGJ 51-2002),中华人民共和国行业标准,北京,2002,15-17,67-71;
    [27]胡曙光,王发洲,轻集料混凝土,北京,化学工业出版社,2006,1-6;
    [28]丁建彤,郭玉顺,木村薰,结构轻骨料混凝土的现状与发展趋势,混凝土,2000,9:23-26;
    [29]杨秋玲,马可栓,轻骨料混凝土的现状与发展,铁道建筑,2006,6:104-106;
    [30]戴竞,轻骨料混凝土桥的现状与发展,公路,2002,12:7-10;
    [31]Stein Fergestad and Sturla Rambjoer,Raftsundet Bridge,Concrete Engineering International, Vol.2,No.1,Jan-Feb 1998;
    [32]Ollgaard J.G., Slutter R. G., Fisher J. W.,Shear Strength of Stud Connectors in Lightweight and Normal Weight Concrete,Engineering Journal of AISC, 1971, 8(2):55-64;
    [33]D.Lam,Beng,Mphil,PhD,et al, Experiments on composite steel beams with precast concrete hollow core floor slabs,Structures and Buildings,May 2000;
    [34]Karl F.Meyer,P.E. et al, Lightweight Concrete Reduces Weight and Increases Span Length of Pretensioned Concrete Bridge Girders, PCI Journal January-February 2002;
    [35] Rigoberto Burgueno, et al, Flexural Behavior of Hybrid Fiber-Reinforced Polymer/Concrete Beam/Slab Bridge Component,ACI Structural Journal, March-April 2004;
    [36]王连广, 刘之洋,钢板-火山渣混凝土组合梁的理论分析和试验研究,工业建筑, 1994,24(5):26-32;
    [37]王连广, 刘之洋, 曹阅,钢-火山渣组合梁连接件及交接面滑移分析,工业建筑, 1995,25(3):18-23;
    [38]王连广,刘之洋,钢-轻骨料混凝土组合梁变形理论与实验研究,工业建筑,1997,27(9):13-16;
    [39]王连广, 许伟,朱浮声,刘之洋,钢板与轻骨料混凝土组合梁实验研究,东北大学学报(自然科学版), 2002, 23(12):1193-1196;
    [40]李帼昌,常春等,压型钢板-煤矸石混凝土组合楼板的力学性能研究,辽宁工程技术大学学报,2003,22(1):61-63;
    [41]CESAR R. VALLENILLA, REIDAR BJORHOVDE, Effective Width Criteria of Composite Beams, American Institute of Construction, 1985. 4:169-175;
    [42]ADEKOLA, A. O., Effective widths of composite beams of steel and concrete, Structural Engineer, 1968, 46 (9):285-289;
    [43]P. ANSOURIAN, M. I. E. AUST, The Effective Width of Continuous Composite Beams, Civil Engineering Transitions, 1983. 1:63-69;
    [44]S. ELKELISH , HUGH ROBINSON, Effective widths of com-posite beams with ribbed metal desk, Can. J. Civ. Eng. 13, 1986. 2:66-75;
    [45]E. H. FAHMY, HUGH ROBINSON, Analyses and test to the effective widths of beams in unbraced multistory frames, Can. J. Civ. Eng. 13, 1986:575-582;
    [46] CEN, 1992. Commission of the European Communities,ENV 1994-1-1,Eurocode 4-Design of composite steel and concrete structures-Part 1-1:General rules and rules for buildings,Revised Draft:March,1994,Part2:Bridge, Third Draft:January,1997;
    [47] British Standard Institution, 1982,BS 5400, Parts 3, 4, 5. Steel Concrete and Composite Bridges,London;
    [48]钢-混凝土组合结构设计规程,中华人人民共和国电力行业标准,1999,32-34;
    [49]易海波,钢-混凝土组合梁翼板有效宽度的试验与分析,硕士学位论文,湖南大学,2005;
    [50]郭杰华,钢-混凝土组合梁有效翼缘宽度研究,硕士学位论文,哈尔滨工程大学,2003;
    [51]Aribert J M. Slip and uplift measurements along the steel and concrete interface of various types of composite beams,Proceedings of the International Workshop on Needs in Testing Metals Testing of Metals for Structures,1992,395-407;
    [52]李运生,王元清,石永久等,组合梁桥有效翼缘宽度国内外规范的比较分析,铁道科学与工程学报,2006,3(2):34-38;
    [53]何畏,强士中,板桁组合结构中混凝土桥面板有效宽度计算分析,中国铁道科学,2002,23(4):55-61;
    [54]胡夏闽,欧洲规范 4 钢-混凝土组合梁设计方法(2),工业建筑,1995,25(10):47-52;
    [55]程海根,强士中,弯曲分析时考虑剪力滞后的效应,西南交通大学学报,2002,37(4):362-366;
    [56]CESAR R. VALLENILLA, REIDAR BJORHOVDE, Effective Width Criteria of Composite Beams, American Institute of Construction, 1985. 4:169~175;
    [57]聂建国,刘明,叶列平,钢-混凝土组合结构,中国建筑工业出版社,2005,51-108;
    [58]英国标准 5400 第 5-10 篇,成都,西南交通大学出版社,1986;
    [59]美国公路桥梁设计规范,北京,人民交通出版社,1998;
    [60]张士铎,邓小华,王文州,箱形薄壁梁剪力滞效应,人民交通出版社,1998,19-26;
    [61]刘世忠,吴亚平,夏晏等,薄壁箱梁剪力滞剪切变形双重效应分析的矩阵方法,工程力学,2001,18(4):140-144;
    [62]吴幼明,罗旗帜,岳珠峰,薄壁箱梁剪力滞效应的能量变分法,工程力学,2003,20(4):161-166;
    [63]聂建国,沈聚敏,滑移效应对钢-混凝土组合梁弯曲强度的影响及其计算, 土木工程学报,1997,30(1):31-36;
    [64]王连广,许 伟,李立新,滑移效应影响下的组合梁变形计算公式,沈阳建筑工程学院学报,2000,16(4):254-255;
    [65] C. Amadio, Fragiacomo M,Effective width evaluation for steel-concrete composite beams,Journal of Constructional Steel Research, 2002,58:373-388;
    [66]蒋丽忠,余志武,李 佳,均布荷载作用下钢-混凝土组合梁滑移及变形的理论计算,工程力学,2003,20(2):133-137;
    [67]倪元增,钱寅泉,弹性薄壁梁桥分析,人民交通出版社,2000,7-23;
    [68]许伟,王连广,许峰,钢与混凝土组合梁交接面滑移及掀起的计算分析,沈阳建筑工程学院学报,2001,17(1):24-26;
    [69]赵鸿铁,钢与混凝土组合结构,北京,科学出版社,2001,35-40;
    [70] SLUTTER R G,DRISCOLL G C,Flexural strength of steel-concrete composite beams[J].Journal of the Structural Division,ASCE,1965,91(2):71-99;
    [71]张少云,钢-混凝土组合梁栓钉剪力连接件抗剪强度及性能研究,硕士学位论文,郑州工学院, 1987;
    [72] Jorgen G. Ougaord Roger G. Slutter AND John W. Fisher,Shear Strength and Steel Connectors in Lightweight and Normal weight Concrete, AISC Engieering Journal, Apr,1971;
    [73]王刚,王福建,杨忠宝,组合梁滑移特性分析及连接单元改进,江南大学学报(自然科学版),2004,3(2):179-183;
    [74]Colin Davies , Small-Scale Push-Out Tests on Welded Stud Shear Connectors,Concrete,Sept.,1967;
    [75]Slutter R. G.,Shear Strength of Stud Connectors in Lightweight and Normal-Weight Concrete,AISC,Sept.,1971;
    [76]胡夏闽,刘子彤,赵国藩,钢与混凝土组合梁栓钉连接件的设计承载力,南京建筑工程学院学报,2000,4:1-10;
    [77]崔玉萍,部分剪力连接钢-混凝土叠合板组合梁强度和变形的试验研究,硕士学位论文,北京市政工程研究, 1996;
    [78]王力, 杨大光, 孙世钧,钢-混凝土组合梁滑移及掀起理论分析方法,哈尔滨建筑大学学报,1998, 31(1):37-42;
    [79]聂建国, 沈聚敏, 袁彦声,钢-混凝土简支组合梁变形计算的一般公式,工程力学, 1994, 11(1):21-27;
    [80]聂建国, 沈聚敏, 袁彦声等,钢-混凝土组合梁中剪力连接件实际承载力的研究,建筑结构学报, 1996, 17(2):21-28;
    [81]聂建国,钢-混凝土组合梁强度、变形和裂缝的研究, 清华大学博士后研究报告,1994;
    [82]余志武,蒋丽忠,李佳,集中荷载作用下钢-混凝土组合梁界面滑移及变形,建筑结构学报,2003(8):1-6;
    [83]聂建国,崔玉萍,钢-混凝土组合梁在单调荷载下的变形及延性,建筑结构学报,1998,19(2):30-36;
    [84]过镇海,钢筋混凝土原理和分析,北京,清华大学出版社,2003;
    [85]王振宇,丁建彤,郭玉顺,结构轻骨料混凝土应力-应变全曲线,混凝土,2005,185(3):39-41;
    [86]王聚厚,聂建国,卫军等,用普通钢筋混凝土叠合板作受压翼缘的钢-混凝土组合梁,工业建筑,1992,22(2):6-9;
    [87]季天,简支钢-混凝土组合梁作短期静载作用下的试验研究和性能分析,硕士学位论文,郑州工学院,1984;
    [88] Chapman J. C.,Balakrishnan S. Experiments on composite beams,The Structural Engineer, 1964, 42(11);
    [89]Davies C.,Tests on half-scale steel-concrete composite beams with welded stud connectors,The Structural Engineer, 1969, 47(1);
    [90]葛琪,钢-轻骨料混凝土简支组合梁承载及变形能力研究,硕士学位论文,吉林大学,2006;
    [91]李蕾,钢-轻骨料混凝土组合梁剪力滞效应研究,硕士学位论文,吉林大学,2007;
    [92]公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004),北京,人民交通出版社,2004;
    [93]聂建国,田春雨,钢混凝土简直组合梁板体系塑性阶段有效宽度分析,铁道科学与工程学报,2004,1(1):1-7;
    [94]聂建国,田春雨,简支组合梁板体系有效宽度分析,土木工程学报,2005,38(2):8-12;
    [95]孙文彬,王龙南,简支钢-混凝土组合梁考虑滑移效应的曲率分布分析,南昌水专学报,2000,19(2):25-28;
    [96]彭桂林,陈瑞生,简支组合梁弹性变形及极限抗弯承载力计算,结构工程师,2004,1:19-22;
    [97]张梨华,考虑滑移效应的钢-混凝土组合梁的挠度计算,结构工程师,1998,4:21-23;
    [98]聂建国,沈聚敏,余志武,考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法,土木工程学报,1995,28(6):11-17;
    [99]聂建国,李勇,余志武,钢-混凝土组合梁刚度的研究,清华大学学报(自然科学版),1998,38(10):38-41;
    [100] Johnson R. P., Molenstra I. N.,Partial Shear Connection in Composite Beams for Buildings,Proc. Instn. Civ. Engrs, Part 2, 1991, 91(12):679-704;
    [101]R.Seracino, D.J.Oehlers, M.F.Yeo,Partial-interaction flexural stresses in composite steel and concrete bridge beams,Engineering Structures, 2001,23(3):1186-1193;
    [102]V.A.Oven, I.W.Burgess, R.J.Plank, et.al, An Analytical Model for the Analysis of Composite beams with partial interaction,Computer & Structures,1997,62(3),493-504。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700