用户名: 密码: 验证码:
钢—轻骨料混凝土组合梁设计与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合吉林省科技发展计划项目“钢-轻骨料混凝土组合梁的理论与试验研究”(20050531),开展了以下几方面的研究工作:
     1、从理论上探讨轻骨料混凝土配合比的设计方法,明确了配合比的设计过程。通过室内试验的方法,对轻骨料混凝土的物理力学性能试验进行研究。给出了以东北地区材料为基础的LC40、LC35轻骨料混凝土的最佳配合比。
     2、基于弹性理论,采用能量变分法分析了不同荷载作用条件下的钢-轻骨料混凝土组合梁翼缘板的剪力滞效应。对剪力滞效应分析结果进行扩展,形成了基于变分方法的钢-轻骨料混凝土翼缘板有效宽度的计算方法。
     3、利用有限元方法对具有不同柔性剪力连接件的钢-轻骨料混凝土组合料进行非线性分析。基于非线性结果,评价栓钉、槽钢和弯筋三种柔性剪力连接件对钢-轻骨料组合梁受力性能的影响,明确栓钉剪力连接件强度和连接程度系数对钢-轻骨料组合梁受力性能的影响规律。
     4、制作了两片体外预应力钢-轻骨料混凝土简支组合梁,实测静力荷载作用下轻骨料混凝土组合梁关键部位的力学参数。从中分析组合梁的受力规律,从而研究体外预应力钢-轻骨料混凝土组合梁的实际承载能力以及在各个加载阶段的受力特点。
     5、考虑到组合梁的滑移效应,形成计算钢-轻骨料混凝土组合梁变形计算方法。
     6、基于塑性理论建立钢-轻骨料混凝土组合梁的承载能力计算公式。基于建立的钢-轻骨料混凝土组合梁的承载能力计算公式,通过数值计算的方法,分析各设计参数对钢-轻骨料混凝土组合梁承载能力的影响。
With the rapid economical and social development, modern architecture is developing rapidly, the orientation of the development are large span and high-level, which requires to reduce the self weight of high-level and large-span structure, and increase the thermal insulation properties of the structure, improve the seismic performance of buildings. The requirements on material are light-weight and high-strength. However, the disadvantage of ordinary concrete, such as heavy self weight and poor insulation performance, influence its application value in engineering, and limits its applications in some engineering. To meet such engineering requirements, the lightweight aggregate concrete structures are given rise.
     Steel-lightweight aggregate concrete composite beam is a new type of composite beam developed on the basis of the steel-concrete composite beam and lightweight aggregate concrete structure. Composite beam is able to make rational use of materials, gives full play to respective material properties of steel and concrete. Compared with steel structures, it can save steel by 20%~40%, and can save concrete than reinforced concrete beams, reduce self weight and the height of cross-section. The composite beam has good overall stability, shear performance and seismic performance. Steel-lightweight aggregate concrete beam inherits and plays the characteristics of composite beam more reasonable. Because light weight aggregate concrete has a light self weight, it can further reduce the dead load of the upper structure and the overall cross-section height, improve the load characteristics of beam and the high-span ratio of composite beam, increase headroom under the bridge, save the steel volume of steel girder, reduce the scale of substructure. It can reach the purpose of saving space, reducing costs and improving the overall economic benefits of the bridge.
     At the same time, from the construction point of view, steel- lightweight aggregate concrete composite girder bridge is facilitate to factory production, has a high quality of on-site installation, low construction cost and high construction speed, and can be applied to the situation which traditional masonry and concrete structure is difficult to apply. Based on the above advantages, steel-lightweight aggregate concrete beam can be widely used in bridge and building works. The study on lightweight aggregate concrete composite beam is at the initial stage, the research results are few. Although the "Technical Specification for Lightweight Aggregate Concrete" (JGJ51-2002) gives provisions for lightweight aggregate concrete, there isn’t clear reference for calculation and test methods of lightweight aggregate concrete of composite beam. In engineering practice, because lightweight aggregate concrete has some differences with ordinary concrete distinction on many technical aspects, technical personnel either directly adopts the calculating formula derived by the test of medium and low-intensity shale haydite concrete structure, or uses the calculating formula with reduction or amplification by experience, which has larger blindness and is lack of theoretical basis. At present, there isn’t a complete calculation theory and design methods of steel-lightweight aggregate concrete composite beam, deeply research on steel-lightweight aggregate concrete composite girder bridge is very necessary.
     This paper combined the scientific development plan project of Jilin province“Experimental Study on steel-lightweight Aggregate Concrete Composite Girder”(20050531), carried out the following research work:
     1. The design method of lightweight aggregate concrete mix from the theory is explored. The mix design process is identified. The physical and mechanical properties of lightweight aggregate concrete are studied by tests. The impact factors of physical and mechanical properties of lightweight aggregate concrete are analyzed by using regression analysis and probability and statistics and other modern math means.
     2. Based on elasticity theory, the shear lag effect of steel - lightweight aggregate concrete composite beam flange plate under different loads conditions is analyzed using the energy variational method. In order to simplify the analysis process of steel - lightweight aggregate concrete, on the basis of deep analysis of national norms calculation method of effective width ,the analysis results of shear lag effect is expanded to form the calculation method of effective width of the steel-lightweight aggregate concrete flange plate based on the variational method.
     3. The non-linear analysis of steel - lightweight aggregate concrete composite beam with different flexible shear connectors has been carried on using finite element method. Based on nonlinear results, the effects of three flexible shear connectors, i.e. stud, channel steel and bent up bars, on the performance of steel-lightweight aggregate beam performance are evaluated. The impact law of the strength and connect degree coefficient of stud to the performance of steel - lightweight aggregate composite beams was identified.
     4. Two pre-stressed steel-lightweight aggregate concrete simply supported beams ware produced, which ware tested by applying a concentrated and symmetric bending load. The strain distribution along the beam of cross-medium and 1/4 cross section, the relationship between the deformation of control cross-section and load, the shear lag of concrete slab, the shear slip strain difference between the steel and concrete, the stress increment, as well as strand steel flange under the strain distribution near the loading point, etc were measured. composite beams by a series of acts of force. From the measurements, the load law of composite beam was analyzed, the actual load carrying capacity of prestressed steel-lightweight aggregate concrete composite beam, as well as loading characteristics at various loading stage ware studied.
     5. The energy theory method for calculating the deformation of steel -lightweight aggregate concrete composite beam was formed by taking account of the slip effect of composite beams and using energy principle. From another theoretical point of view, according to the force balance of micro-element body on the interface of composite beams, and considering the slip as well as the curvature relationship between interfaces of composite beams, a steel - lightweight aggregate concrete composite beam deformation numerical algorithm was formed.
     6. Based on the plasticity theory, the load carrying capacity calculation formula of steel-lightweight aggregate concrete composite beam has been set up. The theoretical values and experimental values were compared and analyzed. Based on the load carrying capacity calculation formula of steel-lightweight aggregate concrete composite beam, by numerical calculation methods, the effects of various design parameters on load carrying capacity of steel-lightweight aggregate concrete beams ware analyzed.
引文
[1]秦福华,邵永健,许佳修.高强轻骨料混凝土梁裂缝和刚度的试验与分析[J].工业建筑,2006,36(8):82-85.
    [2]轻骨料混凝土技术规程(JGJ51-2002).中华人民共和国行业标准,北京2002,15-17,67-71.
    [3]杨秋玲,马可栓.轻骨料混凝土的现状与发展[J].铁道建筑,2006,(6):104~106.
    [4]孙新光,刘建军,何伟.轻骨料及其混凝土的应用研究[J].石河子大学学报(自然科学版),1999,13(2):151~154.
    [5]任志刚,王发洲.高强轻骨料混凝土大跨径桥梁结构设计参数分析[J].国外建材科技,2005,2(3):105-108.
    [6]葛琪.钢—轻骨料混凝土简支组合梁承载及变形能力研究[D].吉林:吉林大学交通学院,2007.
    [7]FIP.FIP.manual of lightweight aggregate concrete[M].2nd edition.London: Surrey University Press,1983.
    [8]Holm T A.Ries J P. Benefits of lightweight HPC.HPC bridge views,2001,17:317.
    [9]Euroligcon. LWAC materials properties state-of-the-art[M].1998:12-16.
    [10]宋绍明.轻骨料混凝土在高层建筑及大跨桥梁工程上的应用及其发展前景[J].江苏建筑,2003,92:77-84.
    [11]朱聘儒,邓景纹,高永孚.轻骨料混凝土工程实例简述[J].苏州科技学院学报(工程技术版),2003,16(1):53-57.
    [12]Haug A,K.Fjeld S. A floating concrete platform hull made of lightweight aggregate concrete[J].Engineering Structures,1996,18(11):831-836.
    [13]Melby K,Jordet E A,Hansvold C. Long-span bridges in Norway constructed in high- strength LWA concrete[J].Engineering Structures,1996,18(11):845-849.
    [14]龚洛书.积极研究与开发高性能轻集料混凝土[J].混凝土,1999,3:8-12.
    [15]Zhang M H , Gjorv O E. Mechanical properties of high-strength lightweight concrete[J].ACI Materials Journal,1981,88(3):240-247.
    [16]刘数华,阎培渝.高性能轻骨料混凝土在桥梁工程中应用的研究进展[J].公路,2006,8:176-180.
    [17]聂建国,余志斌.钢-混凝土组合梁在我国的研究及应用[J].土木工程学报,1999,32(2):3–81.
    [18]Jacques Brozzetti.Design development of steel-concrete composite bridges in France[J].Journal of Constructional Steel Research 55,2000.
    [19]胡夏闽.高华杰组合结构在欧洲的新进展[J].工业建筑,2002,32(5):75-79.
    [20]蔡国宏.国外桥梁建设与发展的新动态[J].国外公路,1998,18(2):9-15.
    [21]胡夏闽,高华杰.组合结构在欧洲的新进展[J].工业建筑,2002,32(5):75-80.
    [22]杨义东,李涛.钢-混凝土组合结构桥在日本的发展趋势[J].国外桥梁,1998,4:39-42.
    [23]Newmark N. M., Siess, C. P., Viest, I.M. Test and analysis of composite beams with incomplete interaction[J]. Experimental Stress Analysis, 1951,9(6):896-901.
    [24] Viest I.M. Investigation of stud shear connector for composite concrete and steel T-beams[J].Journal of ACI,1956,27(8):875-891.
    [25]OllgardJG,SlutterRG,FisherJW. Shear strength of stud connectors in Lightweight and normal weight concrete[J]. Engineering journal of American Institute of steel Construction,1971:55-64.
    [26]Johnson R P. Partial-interaction design of composite beams[J]. The Structural Engineer,1975,53(8):305-311.
    [27]Li W L,AlbreehtP,Saadatmanesh H. Strengthening of composite steel-concrete bridges[J]. Journal of Structural Engineering,1995,121(12):1842-1849.
    [28]Dekker N W, Kemp A R, Trinchero P. Factors influencing the strength of continuous composite beams in negative bending[J]. Journal of Constructional Steel Research,1995,34(2):165-185.
    [29]Gattesco N, Giuriani E. Experimental study on stud shear connectors subjected to cyclic loading[J]. Journal of Constructional Steel Research,1996,38(1):1-21.
    [30]Li T Q,Choo B S, Nethercot D A. Determination of rotation capacity requirements for steel and composite beams[J]. Journal of Constructional Steel Research,1995,32(3):303-332.
    [31]Richard J Y, Lin Y C, Lai M T. Composite beams subjected to static and fatigue loads[J]. Journal of Structural Engineering,1997,123(6):765-771.
    [32]Wang Y C. Defleetion of steel-concrete composite beams with partial shear interaction[J]. Journal of Structural Engineenng,1998,124(10):1159-1165.
    [33]Ayoub A,FiliPPou F C. Mixed formulation of nonlinear steel-concrete composite beam element[J]. Journal of Structural Engineering,2000,126(3):371-381.
    [34]Deric J O, Rudolf S, Michael F Y. Effect of friction on shear connection in composite bridge beams[J]. Journal of Bridge Engineering,2000,5(2):91-98.
    [35]Jing J, Mark A B. Strength and ductility of composite beams with partial shear connection[J]. Journal of South China University of Technology(Natural Science Edition),2000,28(12):143-148.
    [36]Mohammad R S, Enrico S. Finite element formulations of one-dimensional elements with bond-slip[J]. Engineering Structures,2001,23(7):815-826.
    [37]Faalla C,Martinelli E,NigroE. Shear connection nonlinearity and deflections of steel concrete composite beams: a simplified method[J]. Joumal of structural Engineering,2003, 129(l):12-20.
    [38]Chrigtopher H, Heath M. Behavior of composite bridge decks with alternative shear connectors[J]. Journal of Bridge Engineering,2001,6(1):17-22.
    [39]Park J W, Kim C H, Yang S C. Ultimate strength of ribbed slab composite beams with web openings[J]. Journal of Structural Engineering,2003,129(6):810-817.
    [40]Boksun K, Howard D W, Roy C. The behavior of through-deck welded shear connectors an experimental and numerial study[J]. Journal of Constructional Steel Research,2001,57(12):1359-1380.
    [41]Scott A C, Prabhjeet S[J]. Behavior of shear studs subjected to fully reversed cyclic loading[J]. Journal of Structural Engineering,2003,129(11):1466-1474.
    [42]Loh Y H,Bfadford M A. The effects of Partial connection in the hogging moment regions of composite beams Part I-ExPerimental study[J]. Joumal of Constructional Steel Research,2004,60:897-919.
    [43]Loh Y H,Bradford M A. The effects of Partial connection in the hogging momentregions of composite beams Part II-Analytical study[J]. Journal of Constructional Steel Research,2004,60:921-962.
    [44]聂建国,孙国良.钢-混凝土组合梁槽钢剪力连接件的试验研究[J].郑州工学院学报,1985,6(2):10-17.
    [45]朱聘儒,李铁强,陶惫治.钢与混凝土组合梁弯筋连接件的抗剪性能工业建筑[J].1985(10):17-22.
    [46]张少云.栓钉剪力连接件的试验研究[D].郑州:郑州工学院,1988.
    [47]聂建国,沈聚敏.滑移效应对钢-混凝土组合梁抗弯强度的影响及其计算[J].土木工程学报,1997,30(1):31-36.
    [48]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995,28(6).
    [49]聂建国.钢-混凝土组合梁的长期变形及其计算[J].建筑结构,1997,(1):42-45.
    [50]聂建国,王洪全.钢-混凝土组合梁纵向抗剪的试验研究[J].建筑结构学报,1997,18(2):13-19.
    [51]钢结构设计规范(GB 50017-2003).北京:中国计划出版社,2003,108-112.
    [52]胡少伟,聂建国,朱林森.复合弯扭下钢-混凝土组合梁连接件的设计方法[J].土木工程学报,2004,37(10):28-32.
    [53]樊健生,聂建国,吴道闻.钢混凝土组合梁弹性屈曲的力学性能[J].清华大学学报(自然科学版),2004,44(6):786-788.
    [54]胡少伟,聂建国,熊辉.钢-混凝土组合梁的受扭试验与分析[J].建筑结构学报,2006,27(4):301+401+501+601+701+801+901.
    [55]胡少伟,聂建国,朱林森.钢-混凝土组合梁复合弯扭作用下非线性分析[J].工程力学,2005,22(2):1-5+26.
    [56]聂建国,余洲亮,袁彦声,米观,林伟.钢—混凝土组合梁恢复力模型的研究[J].清华大学学报(自然科学版),1999,39(6):121-123.
    [57]田春雨,聂建国.简支组合梁混凝土翼缘剪力滞后效应分析[J].清华大学学报(自然科学版),2005,45(9):1166-1169.
    [58]聂建国,朱红超,罗玲,周建军,朱林森.开口截面钢-混凝土组合梁受扭的试验分析[J].建筑结构学报,2002,23(2):48-54.
    [59]聂建国,唐亮.开口截面钢-混凝土组合梁弯扭性能非线性分析[J].土木工程学报,2006,39(6):28-34.
    [60]刘寒冰,刘文会,张云龙.用变分法分析预应力钢-混凝土组合T梁的剪力滞效应[J].公路交通科技,2004,21(5):65-66+73.
    [61]刘寒冰,刘文会,张云龙.集中荷载作用下组合梁剪切滑移计算分析[J].应用数学和力学,2005,26(6):776-781.
    [62]Liu Han-bing,Liu Wen-hui,Zhang Yun-long. Test contrast study of shearing slip Influence for steel-concrete composite beam[C].conference manager 15th IRFword meeting,2005.
    [63]夏樟华,葛继平,林传金,宗周红.低矮型钢—混凝土组合梁桥方案设计与分析[J].福州大学学报(自然科学版),2005,33(3):345-350.
    [64]宗周红,D.Z.Huang,T.L.Wang.钢-混凝土组合桥损伤诊断[J].土木工程学报,2004,37(5):59-64.
    [65]宗周红,车惠民.剪力连接件静载和疲劳试验研究[J].福州大学学报(自然科学版),1999,27(6):61-66.
    [66]宗周红,车惠民.预应力钢-混凝土组合梁的疲劳性能[J].铁道学报,2000,22(3):92-95.
    [67]宗周红,车惠民,房贞政.预应力钢—混凝土组合梁有限元非线性分析[J].中国公路学报,2000,13(2):93-96.
    [68]蒋秀根,剧锦三,傅向荣.考虑滑移效应的钢-混凝土组合梁弹性应力计算[J].工程力学,2007,24(1):143-146.
    [69]蒋秀根,孟石平,剧锦三.基于整体-局部弯曲模型的钢-混凝土组合梁界面滑移及其效应分析[J].工程力学,2008,25(5):85-90.
    [70]樊建生,聂建国.钢-混凝土组合桥梁研究及应用新进展[J].建筑钢结构进展,2006,8(5):35-39.
    [71]刘殿忠.钢-轻骨料混凝土组合梁计算方法与试验研究[D].吉林:吉林大学交通学院,2008.
    [72] Roderick, J W,Hawkins, N M Lim, L C. The behaviour of composite steel and lightweight concrete beams[J].Inst Engrs Civil Eng Trans,1967,9(2):265-275.
    [73]Ollgaard J.G., Slutter R. G., Fisher J. W. Shear Strength of Stud Connectors in Lightweight and Normal Weight Concrete[J].Engineering Journal of AISC, 1971, 8(2):55-64.
    [74]H.D.Basche a, I.Rhee b, K.J.Willam c, P.B. Shing. Analysis of shear capacity of lightweight concrete beams[J].Engineering Fracture Mechanics,2007,74(2):179-193.
    [75]Karl F,Meyer,P.E,et al. Lightweight Concrete Reduces Weight and Increases Span Length of Pretensioned Concrete Bridge Girders[J]. PCI Journal January-February 2002.
    [76]王连广,刘之洋.钢与轻骨料混凝土组合梁[M].成都:西南交通大学出版社,1998.
    [77]王连广,刘之洋,曹阅.钢-火山渣组合梁连接件及交接面滑移分析[J].工业建筑,1995,25(3):18-23.
    [78]王连广,刘之洋.钢-轻骨料混凝土组合梁变形理论与实验研究[J].工业建筑,1997,27(9):13-16.
    [79]王连广,许伟,朱浮声,刘之洋.钢板与轻骨料混凝土组合梁试验研究[J].东北大学学报(自然科学版),2002,23(12):1193-1196.
    [80]王连广,许伟,张岩.钢板与轻骨料混凝土组合梁滑移性能研究[J].沈阳建筑工程学院学报(自然科学版),2004,20(3):183-185.
    [81]刘殿忠,刘寒冰.钢-轻骨料混凝土组合梁的有效宽度分析[J].哈尔滨工业大学学报,2007,39(sup.2):232-236.
    [82]刘寒冰,刘殿忠.钢-轻骨料混凝土组合梁考虑滑移的有效宽度分析[J].建筑结构学报,2007,28(6):581-586.
    [83]代艳杰,刘寒冰,葛琪.钢-轻骨料混凝土简支组合梁承载及变形能力研究[J].公路交通科技,2008,25(11):60-65.
    [84]杨勇,聂建国,杨文平,周丕健.钢-闭口型压型钢板轻骨料混凝土组合梁受力性能试验研究[J].建筑结构学报,2008,29(6):56-62.
    [85]龚洛书,柳春圃.轻集料混凝土[M].北京:中国铁道出版社,1996.
    [86]龚洛书.对<轻集料混凝土技术规程>中提高强度登记的认识和建议[J].混凝土,2002,(1):15-16.
    [87]龚洛书.国内外轻集料混凝土配合比设计方法评述[J].建筑技术,1991,18(8):48-52.
    [88]陈建奎.混凝土外加剂的原理与应用[M].北京:中国计划出版社,1997.
    [89]H.Al-Khaiat, M.N.Haque. Effect of initial Curing on early Strength and Physical Properties of a Lightweight Concrete[J]. Cement and ConcreteResearch,1998,28(6):859-866.
    [90]《混凝土使用手册》.中国建筑科学研究院混凝土研究所主编.
    [91]张士铎.箱形薄壁梁剪力滞效应[M].北京:人民交通出版社,1997.
    [92]李运生,王元清,石永久等.组合梁桥有效翼缘宽度国内外规范的比较分析[J].铁道科学与工程学报,2006,3(2):34-38.
    [93]何畏,强士中.板桁组合结构中混凝土桥面板有效宽度计算分析[J].中国铁道科学,2002,23(4):55-61.
    [94]胡夏闽.欧洲规范4钢-混凝土组合梁设计方法(2) [J].工业建筑,1995,25(10):47-52.
    [95]程海根,强士中.弯曲分析时考虑剪力滞后的效应[J].西南交通大学学报,2002,37(4):362-366.
    [96]李运生,王元清,石永久,张彦玲.组合梁桥有效宽度国内外规范的比较[J].铁道科学与工程学报,2003,3(2):52-56.
    [97]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2005.
    [98]聂建国.钢-混凝土组合梁结构[M].北京:科学出版社,2005.
    [99]聂建国,刘明,叶列平.钢-混凝土组合结构[M].北京:中国建筑工业出版社,2005.
    [100]陈忠汉,胡夏闽.组合结构设计[M].北京:中国建筑工业出版社,2000.
    [101]张霞.钢-混凝土组合梁剪力连接件的受力性能研究[D].重庆:重庆交通学院,2005.
    [102]王连广.栓钉和方钢连接件在火山渣混凝土中的性能分析[J].东北大学学报,1998.
    [103]Mirza A, Hyttinen V, Hyttinen E. Physical tests and analyses of composite steel-concrete beam-columns [J]. Journal of Structural Engineering,1996.
    [104]周明杰.钢-混凝土组合结构设计与工程应用[M].北京:中国建筑工业出版社,2005.
    [105]许伟.钢与高强混凝土组合梁力学行为研究[D].辽宁:东北大学,2004.
    [106]李勇,陈宜言,聂建国,陈宝春.钢-混凝土组合桥梁设计与应用[M].北京:科学出版社,2002.
    [107]陈宏.钢与混凝土组合梁的剪力连接件及性能分析[D].辽宁:东北大学,1993.
    [108]Bradford M A, Gilbert R I.Composite Beams with partial interaction under sustained loads[J]Journal of Structural Engineering,1991.
    [109]林宗凡.钢-混凝土组合结构[M].上海:同济大学出版社,2004.
    [110]黄侨.桥梁钢-混凝土组合结构设计原理[M].北京:人民交通出版社,2004.
    [111]胡少伟.钢-混凝土组合结构[M].郑州:黄河水利出版社,2005.
    [112]胡夏闽,刘子同,赵国藩.钢与混凝土组合梁栓钉连接件的设计承载力[J].南京建筑工程学院学报,2000
    [113]聂建国,崔玉萍,石中柱,刘冲,郭绍斌.部分剪力连接钢-混凝土组合梁受弯极限承载力的计算.工程力学,2000,17(3):37-42.
    [114]李雷.钢-轻骨料混凝土组合梁剪力滞效应研究[D].吉林:吉林大学交通学院.2007.
    [115]叶梅新,郑钧雅.钢-混凝土组合梁剪切变形的研究[J].山西建筑,2004,30(22):26-27.
    [116]Johnson R. P., Molenstra I. N. Partial Shear Connection in Composite Beams for Buildings[J]. Proc. Instn. Civ. Engrs, Part 2, 1991, 91(12):679-704.
    [117]R.Seracino, D.J.Oehlers, M.F.Yeo. Partial-interaction flexural stresses in composite steel and concrete bridge beams[J]. Engineering Structures, 2001,23(3):1186-1193.
    [118]V.A.Oven, I.W.Burgess, R.J.Plank, et.al. An Analytical Model for the Analysis of Composite beams with partial interaction[J]. Computer & Structures,1997,62(3),493-504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700