用户名: 密码: 验证码:
稻米外观品质相关性状QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻的外观品质是水稻的育种目标之一。外观品质主要包括粒形、垩白等性状,不仅影响稻米品质,而且影响水稻的产量和市场价值。本实验通过构建水稻分子遗传图谱,对粒形、垩白等相关性状进行QTL定位,并对垩白性状初定位结果进行进一步验证。实验结果如下:
     1、本实验以YZD为母本,Ⅱ-32B为父本构建了一个由243个株系组成的F_2群体,从中随机选择192个株系用于连锁图谱的构建,并将94个SSR标记整合到连锁图谱上,覆盖水稻基因组1351.6cM区域,平均图距为13.25cM。
     2、利用WinQTL Cartographer2.5软件,对粒长、粒宽、长宽比、垩白率、垩白大小等开展了QTL定位研究,在杭州和海南两地实验中,共检测到16个具有显著加性效应QTLs,其中只有qGL3杭州和海南两地都检测到QTLs。控制粒长的主效QTLs位于第3和第7号染色体上,LOD值为19.8和19.6,贡献率41.89%和26.37%,垩白性状的QTLs位于第6号染色体RM1369-RM510标记位点处,LOD值为6.5,贡献率是19.12%。
     3、利用两个BC_2F_2回交群体对qPGWC6进行进一步验证。标记开发,在初定位标记的基础上加密标记,进一步将目标区间定位在RM190-RM510区间内。将两个回交群体分别种植在试验田和人工气候箱中,分别对两个群体进行性状考查和QTL分析,在高温种植下检测到一个控制垩白率的主效QTL,贡献率40.56%。
     4、对两亲本Wx基因上游基因组中的(CT)重复序列进行测序,研究两亲本Wx基因差异位点。(CT)n的微卫星重复序列和第一内含子区的5’端的序列测序结果分别为:YZD,(CT)18,AGGTATA;Ⅱ-32B,(CT)11,AGTTATA。这说明亲本垩白表型的差异与其直链淀粉含量有很大关系,并且容易受温度影响,与实验结果相符。
Appearance quality, one of primary targets of rice breeding, includes grain shape and chalkiness.They affect not only rice yield, but also the quality and the market value. In the present study, wecarried out QTL mapping of some traits including grain shape, chalkiness after constructing a ricegenetic linkage map.
     1. A rice F_2population consisting192lines which derived from a cross between YZD andⅡ-32Bwas utilized for constructing a rice linkage map. The linkage map including94simple sequence repeat(SSR) markers covered1351.6cM on total12chromosomes, with an average interval length of13.25cM.
     2. QTL analysis was performed using the software WinQTL Cartographer2.5.16QTLs whichhave significant additive effects were indentified, only qGL3was found in two years. The main-effectQTLs, qGL3, qGL7, qPGWC6explained41.89%,26.37%,19.12%of the phenotypic variance,respectively.
     3. Two rice BC_2F_2populations were used for verifying qPGWC6, which were planted ingreenhouse and field. A QTL was mapped on the same location as qPGWC6under greenhousecondition.which is grown in greenhouse, explained40.56%of phenotypic variance.
     4. There is microsatellite polymorohism in wx gene at5′-untranslated region, and YZD andⅡ-32B had (CT)18and (CT)11. There is a SNP site (AGT/GTATA), at the putative leader intron5′splice site, and YZD and Ⅱ-32B were AGGTATA and AGTTATA, respectively.
引文
1.苪重庆,赵安常.籼稻粒重及粒形性状F1遗传特性的双列分析.中国农业科学,1983,5,14—20
    2.范燕萍,唐启源,等.稻米胚乳淀粉细胞结构与米质关系的研究.作物研究,1988,2(1):18-20.
    3.方宣钧,吴为人,等.作物DNA标记辅助育种.科学出版社,2001.
    4.高用明,朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179.
    5.高志强,占小登,等.水稻粒形性状的遗传及相关基因定位与克隆研究进展.遗传,2011,33(4):314-321.
    6.贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10.
    7.贾志宽.稻米垩白形成的气候生态基础研究.应用生态学报,1992,3(4):321-326.
    8.姜树坤,徐正进,等.水稻QTL图位克隆的特征分析.遗传,2008,30(9):1121-1126.
    9.金田蕴,李辉.水稻稳定高垩白率突变体的获得与理化特性分析.作物学报,2010,6(1):121-132.
    10.澜万煌,萧浪涛,等.早籼稻籽粒灌浆动态与稻米垩白形成关系的研究.中国农学通报,2002,8(1):13-23.
    11.李建雄,余四斌,等.“汕优63"的产量及其构成因子的数量性状基因位点分析.作物学报,2000,26(6):892-898.
    12.李维明,唐定中,等.用籼/籼交重组自交系群体构建的分子遗传图谱及其与籼/粳交群体的分子图谱的比较.中国水稻科学,2000,14(2):71-78.
    13.林鸿宣,黄宁.应用RFLP图谱定位分析籼稻粒形数量性状基因座位.中国农业科学,1995,28(004):1-7.
    14.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25(003):317-321.
    15.卢瑶,杨正林,等.分子标记增效座位在不同生长环境下预测籼型杂交稻籽粒外观性状的效应.分子植物育种,2008,6(001):41-48.
    16.孟亚利,周治国.结实期温度对稻米品质的影响.中国水稻科学,1997,1l(l):51-54.
    17.穆平,张洪亮,等.利用水旱稻DH系定位产量性状的QTL及其环境互作分析.中国农业科学,2005,38(9):1725-1733.
    18.彭勃,陈光辉.稻米垩白形成的研究进展.作物研究,2009,23(5):310-313.
    19.石春海,申宗坦,等.籼稻粒形及产量性状的加性相关和显性相关分析.作物学报,1996,22(001):36-42.
    20.谭耀鹏,李兰芝,等.利用DH群体定位水稻谷粒外观性状的QTL.分子植物育种,2005,3(3):314-322.
    21.吴长明,孙传清.应用RFLP图谱定位分析稻米粒形的QTL.吉林农业科学,2002,27(005):3-7.
    22.吴春赞,叶定池,等.栽插密度对水稻产量及品质的影响.中国农学通报,2005,21(9):190-191.
    23.吴为人,李维明.建立一个重组自交系群体所需的自交代数.福建农业大学学报,1997,26(2):129-132.
    24.谢立勇,马占云.CO2浓度与温度增高对水稻品质的影响.东北农业大学学,2009,40(3):1-6.
    25.邢永忠,谈移芳.利用水稻重组自交系群体定位谷粒外观性状的数量性状基因.植物学报,2001,43(008):840-845.
    26.徐国伟.种植方式秸秆还田与实地氮肥管理对水稻产量与品质的影响及其生理的研究.中国农业科学,2009,42(8):2736-2746.
    27.徐建龙,薛庆中,等.水稻粒重及其相关性状的遗传解析.中国水稻科学,2002,16(1):6-10.
    28.严长杰,梁国华,等.利用籼粳回交群体分析水稻粒形性状相关QTLs.遗传学报,2003,30(8):711-716.
    29.袁玲,祝莉莉.稻米品质性状基因的SSR标记定位.武汉大学学报,2002,48(4):507-510.
    30.曾瑞珍,Talukdar.A,等.利用单片段代换系定位水稻粒形QTL.中国农业科学,2006,39(4):647-654.
    31.张光恒,张国平,等.不同环境条件下稻谷粒形数量性状的QTL分析.中国水稻科学,2004,18(001):16-22.
    32.朱军.运用合线性模型定位复杂数量性状基因的方法.浙江大学学报(自然科学版),1999,33(3):327.
    33. Ayres N, McClung A, et al.Microsatellites and a single-nucleotide polymorphism differentiateapparentamylose classes in an extended pedigree of US rice germ plasm.Theoretical andApplied Genetics,1997,94(6-7):773-781.
    34. Azevedo R A, Damerval C, et al.Regulation of maize lysine metabolism and endosperm proteinsynthesis by opaque and floury mutations. Biochem,2003,270(24):4898-4908.
    35. Baba T, Arai Y. Structural characterization of amylopectin and intermediate material inamylomaize starch granules. Agric Biol Chem,1984,48(7):1763-1775.
    36. Bao J S, Corke H, et al.Microsatellites single nucleotide polymorphisms and a sequence taggedsite in starch-synthesizing genes in relation to starch physicochemical properties in nonwaxyrice (Oryza sativa L.). Theor Appl Genet.2006,113(7):1185-1196.
    37. Bergman C J, Delgado J T, et al.An improved method for using a microsatellite in the rice waxygene to determine amylose class. Cereal Chem,2001,78(3):257–260.
    38. Cai X L, Wang Z Y, et al. Alteration of RNA secondary structure of rice waxy intron1causedby naturally ocurred mutations. Acta Photophysiologica Sinica,2000,26(1):59-63.
    39. Darvasi A, Soller M. Selective DNA pooling for determination of linkage between a molecularmarker and a quantitative trait locus. Genetics,1994,138(4):1365-1373.
    40. Donini P, Koebner R, et al. AFLP fingerprinting reveals pattern differences between templateDNA extracted from different plant organs. Genome,1997,40(4):521-526.
    41. Fan C C, Xing Y Z, et al. GS3, a major QTL for grain length and weight and minor QTL forgrain width and thickness in rice, encodes a putative transmembrane protein. Theoretical andApplied Genetics,2006,112(6):1164-1171.
    42. Fujita N, Satoh R, et al.Starch biosynthesis in rice endosperm requires the presence of eitherstarch synthase I or IIIa. Journal of Experimental Botany,2011,62(14):4879-4831
    43. Fujita N, Yoshida M, et al. Characterization of SSIIIa-Deficient Mutants of Rice: The functionof SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm.Plant Physiology,2007,144(4):2009-2023.
    44. Fulton T M, Beck-Bunn T, et al. QTL analysis of an advanced backcross of Lycopersiconperuvianum to the cultivated tomato and comparisons with QTLs found in other wild species.Theoretical and Applied Genetics,1997,95(5-6):881-894.
    45. He P, Li S G, et al. Genetic analysis of rice grain quality.Theor Appl Genet,1999,98(3-4):502-508.
    46. Hirano H Y, Sano Y. Enhancement of Wx gene expression and the accumulation of amylase inresponse to cool temperature during seed development in rice. Plant Cell Physiol,1998,39:807-812.
    47. Hittalmani S, Shashidhar H E, et al. Molecular mapping of quantitative trait loci for plantgrowth, yield and yield related traits across three diverse locations in a doubled haploid ricepopulation. Euphytica,2002,125(2):207-214.
    48. Huang N, Parco A, et al. RFLP mapping of isozymes, RAPD and QTLs for grain shape,brownplanthopper resistance in a doubled haploid rice population.Molecular Breeding,1997,3(2):105-113.
    49. Isshiki M, Nakajima M, et al. Dull: rice mutants with tissue-specific effects on the splicing ofthe waxy pre-mRNA. Plant J,2000,23(4):451-460.
    50. Ritsert J, John W, et al. Mapping multiple QTL of different effects: comparison of a simplesequential testing strategy and multiple QTL mapping. Molecular Breeding,2000,6:11–24.
    51. Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) andtwo marker gene loci. Theoretical and Applied Genetics,1989,78(5):613-618.
    52. Jobling S A, Schwall G P, et al. A minor form of starch branching enzyme in potato (Solanumtubersum L.) ubers has a major effect on starch structure: loning and characterization ofmultiple forms of SBE A. The Plant Joural,999,8(2):63–171.
    53. Kang H G, Park S, et al. An White-core endosperm floury endosperm-4in rice is generated byknockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). ThePlant Journal,2005,42(6):901-911
    54. Keeling P L, Myers A M. Biochemistry and genetics of starch synthesis. Annu Rev Food SciTechnol,2010,1:271-303.
    55. Keightley P D, Bulfield G. Detection of quantitative trait loci from frequency changes ofmarker alleles under selection.Genetical research,1993,62(3):195-203.
    56. Knapp S J, Bridges W C, et al. Mapping quantitative trait loci using molecular marker linkagemaps.Theoretical and Applied Genetics,1990,79(5):583-592.
    57. Koh H J, Heu M H.Agronomic characteristics of a mutant for genic male sterility-chalkyendosperm and its utilization on F1hybrid breeding system in rice.Korean J. Crop Sci,1995,40(6):684-696.
    58. Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLPlinkage maps. Genetics,1989,121(1):185-199.
    59. Larkin P D, Park W D. Transcript accumulation and utilization of alternate and non-consensussplice sites in rice granule-bound starch synthase are temperature-sensitive and controlled by asingle-nucleotide polymorphism. Plant Mol Bio,1999,40(4):719-727.
    60. Li H, Chen Z, et al. Different effects of night versus day high temperature on rice quality andaccumulation profiling of rice grain proteins during grain filling. Plant Cell Rep.2011,30(9):1641-1659
    61. Li J M, Xiao J H, et al. QTL detection for rice grain quality traits using an interspecificbackcross population derived from cultivated Asian(Oryza sativa L.) and African(O.glaberrimaS.) rice. Genome,2004,47(4):697-704(8).
    62. Li Z F, Wan J M, et al.Mapping quantitative trait loci underlying appearance quality of ricegrains (Oryza sativa L.).Acta Genetica Sinica,2003,30(3):251-259.
    63. Lin K S, Chang M C, et al. Proteomic analysis of the expression of proteins related to ricequality during caryopsis development and the effect of high temperature on expression.Proteomics,2005,5(8):2140-2156.
    64. Lincoln S M, Lander E, et al. Constructing genetic maps with MAPMAKER/EXP3.0.Whitehead Institute Technical Report. Whitehead Institute,1992.
    65. Liu X L, Guo T, Wan X Y, et al. Transcriptome analysis of grain-filling caryopses revealsinvolvement of multiple regulatory pathways in chalky grain formation in rice. BMC Genomics,2010,11:1-15.
    66. Martin C, Smith A M. Starch biosynthesis. Plant Cell,1995,7(7):971-985.
    67. McCouch S R, Teytelman L, et al. Development and mapping of2240new SSR markers forrice (Oryza sativa L.). DNA research,2002,9(6):199-207.
    68. Moons A, Valcke R, et al. Low-oxygen stress and water deficit induce cytosolic pyruvateorthophosphate dikinase (PPDK) expression in roots of rice, a C3plant. Plant J,1998,15(1):89-98.
    69. Nakamura Y. Towards a better understanding of the metabolic system for amylopectinbiosynthesis in plants: Rice endosperm as a model tissue. Plant Cell Physiol,2002,43:718-725.
    70. Nishi A, Nakamura Y, et al. Biochemical and genetic analysis of the effects ofamylose-extender mutation in rice endosperm. Plant Physiol,2001,127(2):459-472.
    71. Olson M, Hood L, et al. A common language for physical mapping of the human genome.Science (Washington),1989,245(4925):1434-1434.
    72. Prathepha P, Baimai V. Variation of Wx microsatellite allele, waxy allele distribution anddifferentiation of chloroplast DNA in a collection of Thai rice(Oryza sativa L.). Euphytica,2004,140(3):231-237.
    73. Rabiei B, Valizadeh M, et al. Identification of QTLs for rice grain size and shape of Iraniancultivars using SSR markers. Euphytica,2004,137(3):325-332.
    74. Raju G N, Srinivas T. Effect of physical physiological and chemical factors on the expressionof chalkiness in rice. Cereal Chem,1991,68(2):210-211.
    75. Reddy K R, Ali S Z, et al. The fines structure of rice starch amylopectin and its relation to thetexture of cooked rice. Carbohydr Polym,1993,22:267-275.
    76. Redona E, Mackill D, et al. Quantitative trait locus analysis for rice panicle and graincharacteristics. Theoretical and Applied Genetics,1998,96(6):957-963.
    77. Sano Y. Differential regulation of waxy gene expression in rice endosperm. Theor Appl Genet,1984,68:467-473.
    78. Satoh H, Nishi A, et al. Isolation and characterization of starch mutants in rice. J.Appl.Glycosci,2003,50(2):225-230
    79. Satoh H, Nishi A, et al. Starch branching enzymeI-deficient mutation specifically affects thestructure and properties of starch in rice endosperm. Plant Physiol,2003,133:1111-1121.
    80. Satoh H, Shibahara K, et al. Mutation of the plastidial a glucan phosphorylase gene in riceaffects the synthesis and structure of starch in the endosperm. The Plant Cell,2008,20:1833-1849.
    81. Schupp J M, Keim P, et al. A high-density soybean genetic map based on AFLP markers. CropScience,1997,37(2):537-543.
    82. Schwall G P, Safford R, et al. Production of very high-amylose potato starch by inhibition ofSBE A and B. Nature Biotechnol,2000,18:551-554.
    83. Septiningsih E, Trijatmiko K, et al. Identification of quantitative trait loci for grain quality in anadvanced backcross population derived from the Oryza sativa variety IR64and the wild relativeO.rufipogon. Theoretical and Applied Genetics,2003,107(8):1433-1441.
    84. She W K-C, Kusano H, et al. A novel factor FLOURY ENDOSPERM2is involved in regulationof Rice grain size and starch quality. The Plant Cell,2010,22:3280-3294.
    85. Shen Y J, Jiang H, et al. Development of genome-wide DNA polymorphism database formap-based cloning of rice genes. Plant Physiology,2004,135(3):1198-1205.
    86. Shomura A, Izawa T, et al. Deletion in a gene associated with grain size increased yields duringrice domestication. Nature genetics,2008,40(8):1023-1028.
    87. Simpson S. Detection of linkage between quantitative trait loci and restriction fragment lengthpolymorphisms using inbred lines. Theoretical and Applied Genetics,1989,77(6):815-819.
    88. Smith A M, Denyer K, et al. The synthesis of the starch granule. Annu.Rev.Plant Physiol. PlantMol Biol,1997,48:67-87.
    89. Soller M, Beckmann J, et al. Marker-based mapping of quantitative trait loci using replicatedprogenies. Theoretical and Applied Genetics,1990,80(2):205-208.
    90. Soller M, Brody T, et al. On the power of experimental designs for the detection of linkagebetween marker loci and quantitative loci in crosses between inbred lines. Theoretical andApplied Genetics,1976,47(1):35-39.
    91. Song X J, Huang W, et al. A QTL for rice grain width and weight encodes a previouslyunknown RING-type E3ubiquitin ligase.Nature genetics,2007,39(5):623-630.
    92. Spiegelman J I, Fankhauser C M, et al. Cloning of the Arabidopsis RSFl gene by using amapping strategy based on high–density DNA arrays and denaturing high–performance liquidchromatography. Plant Cloning,2000,12(12):2485–2498.
    93. Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development,growth and carbon partitioning. Trends Plant Sci,1999,4(10):401-407.
    94. Su Y, Rao Y, et al. Map-based cloning proves qGC-6, a major QTL for gel consistency ofjaponica/indica cross, responds by Waxy in rice (Oryza sativa L.). Theor Appl Genet,2011,123:859–867.
    95. Takano-Kai N, Doi K, et al. GS3participates in stigma exsertion as well as seed length in rice.Breeding science,2011,61(3):244-250.
    96. Takano-Kai N, Jiang H, et al. Evolutionary history of GS3, a gene conferring grain length inrice. Genetics,2009,182(4):1323-1334.
    97. Tan Y F, Xing Y Z, et al. Genetic bases of appearance quality of rice grains in Shanyou63, anelite rice hybrid. Theor Appl Genet,2000,101(5-6):823-829.
    98. Tanaka N, Fujita N, et al. The structure of starch can be manipulated by changing theexpression levels of starch branching enzyme IIb in rice endosperm. Plant BiotechnologyJournal,2004,2(6):507-516.
    99. Tanksley S, Nelson J, et al. Advanced backcross QTL analysis: a method for the simultaneousdiscovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.Theoretical and Applied Genetics,1996,92(2):191-203.
    100. Temnykh S, Park W D, et al. Mapping and genome organization of microsatellite sequences inrice (Oryza sativa L.). Theoretical and Applied Genetics,2000,100(5):697-712.
    101. Terada R, Nakajima M, et al. Antisense Waxy genes with highly active promoters effectivelysuppress Waxy gene expression in transgenic rice. Plant Cell Physiol,2000,41(7):881-888.
    102. Tomlinson K, Denyer K. Starch synthesis in cereal grains. Adv Bot Res,2003,40:1-61.
    103. Wan X Y, Wan J M, et al. Stability of QTLs for rice grain dimension and endosperm chalkinesscharacteristics across eight environments. Theor Appl Genet,2005,110(7):1334-1346.
    104. Wan X, Wan J, et al. Stability of QTLs for rice grain dimension and endosperm chalkinesscharacteristics across eight environments. Theoretical and Applied Genetics,2005,110(7):1334-1346.
    105. Wang C, Chen S, et al. Functional markers developed from multiple loci in GS3for finemarker-assisted selection of grain length in rice. Theoretical and Applied Genetics,2011,122(5):905-913.
    106. Wang D, Zhu J, et al. Mapping QTLs with epistatic effects and QTL×environment interactionsby mixed linear model approaches. Theoretical and Applied Genetics,1999,99(7):1255-1264.
    107. Wang E T, Wan J J, et al. Control of rice grain-filling and yield by a gene with a potentialsignature of domestication. Nature gentics,2008,40:137-141.
    108. Wang S, Zeng Z B. WinQTL Cartographer2.5.Department of Statistics. North Carolina StateUniversity, Raleigh, USA,2006.
    109. Wang Y H, Ren Y L, et al. OsRab5a regulates endomembrane organization and storage proteintrafficking in rice endosperm cells. Plant Journal,2010,64(5):812-824
    110. Wang Z Y, Wu Z L, et al. Nucleotide sequence of rice waxy gene. Nucl Acids Res,1990,18(19):5898.
    111. Weng J, Gu S, et al. Isolation and initial characterization of GW5, a major QTL associated withrice grain width and weight. Cell research,2008,18(12):1199-1209.
    112. Woo M K, Ham T H, et al. Inactivation of the UGPase1gene causes genic male sterility andendosperm chalkiness in rice (Oryza sativa L.). The Plant Journal,2008,54(2):190-204.
    113. Xie X, Song M H, et al. Fine mapping of a grain weight quantitative trait locus on ricechromosome8using near-isogenic lines derived from a cross between Oryza sativa and Oryzarufipogon. Theoretical and Applied Genetics,2006,113(5):885-894.
    114. Yamakawa H, Hirose T, et al. Comprehensive expression profiling of rice grain filling-relatedgenes under high temperature using DNA microarray. Plant Physiology,2007,144(3):258-277.
    115. Yamanouchi H, Nakamura Y. Organ specificity of isoforms of starch branching enzyme(Q-enzyme) in rice. Plant Cell Physiol,1992,33(7):985-991.
    116. Yang Q, Kim S M, et al. Genetic analysis and QTL mapping for grain chalkiness characteristicsof brown rice (Oryza sativa L.). GENES and GENOMIC,2009,31(2):155-164.
    117. Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNAfingerprinting. European Patent Application,1993, publ. no. EP.0534858.
    118. Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mappingquantitative trait loci. Proceedings of the National Academy of Sciences,1993,90(23):10972-10976.
    119. Li Z F, Wan J M, et al. Mapping quantitative trait loci underlying appearance quality of ricegrains (Oryza sativa L.). Acta Genetica Sinica,2003,30(3):251-259.
    120. Zhang G F, Wang S H, et al. Efect of higher temperature in diferent filling stages on ricequalities. Acta Agron Sin,2006,32(2):283-287.
    121. Zhang G Y, Cheng Z J, et al. Double repression of soluble starch synthase genes SSIIa andSSIIIa in rice (Oryza sativa L.) uncovers interactive effects on the physicochemical propertiesof starch. Genome,2011,54(6):448-459.
    122. Zhong X H, Huang N R. Rice grain chalkiness is negatively correlated with root activity duringgrain filling. Rice Science,2005,12(3):192-196.
    123. Zhou L J, Chen L M, et al. Fine mapping of the grain chalkiness QTL qPGWC-7in rice (Oryzasativa L.). Theor Appl Genet,2009,118(3):581-590.
    124. Zhou L Q, Wang Y P, et al. Genetic Analysis and Physical Mapping of Lk-4t, a Major GeneControlling Grain Length in Rice, with a BC2F2Population. Acta Genetica Sinica,2006,33(1):72-79.
    125. Zhu J, Weir B S.. Mixed model approaches for genetic analysis of quantitative traits. In:Advanced Topics in Biomathematics. World Scientific Publishing Co, Singapore,1998,321-330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700