用户名: 密码: 验证码:
尾矿坝渗流场分析及其水土交互作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是矿业大国,冶金、有色、化工、核工业、建材和轻工业等行业的矿山都有尾矿设施。尾矿坝是其中最主要的组成部分,尾矿坝的安全问题直接关系到环境和人类的安全。渗流是影响尾矿坝安全性的重要因素,因此,更精确的尾矿坝渗流场模拟,更准确的致灾机理模型,具有重要的理论和实践意义。
     尾矿坝中的渗流问题是复杂的饱和—非饱和非稳定流固耦合渗流问题,文中推导了尾矿坝中饱和—非饱和渗流微分方程、控制方程及定解条件,阐述了边界条件类型与选择,并探讨了模型计算中有关参数的获取方法。
     尾矿是由固、液(水)、气三相组成的复杂多孔介质,各相的状态及其相互作用对尾矿的物化性质及土体强度都有重要影响,其中最主要的作用发生在水—土之间。水土交互作用与尾矿坝渗流场密不可分,本文基于尾矿的多孔介质特性,主要研究了尾矿坝渗流场内的水土交互作用,将水土作用理论应用于尾矿坝的渗流场分析,并概括为水土化学作用、水土物理作用、渗流作用及化学、物理—渗流耦合作用四方面,综合归纳分析了各自的作用类型、特点及主控因素。在尾矿坝稳定性分析方面,首次尝试从微观机理分析入手,并考虑了化学场的影响,根据化学动力学及相关试验,提出了化学作用对尾矿坝工程有重要影响。
     和尚峪尾矿坝是一个典型的上游式堆筑坝,本文收集整理了和尚峪尾矿坝的地形、地质及水文资料,各堆积层的渗透系数、容重、粘聚力、摩擦角、孔隙比等基本物理力学参数,提出了水土交互作用下的尾矿土吸力(包括基质吸力和渗透吸力)的变化问题,在此基础上,利用传统的土—水特征曲线,结合工程实际资料,建立了考虑水土交互作用影响的渗透系数函数模型,并利用此模型运用Phase岩土工程有限元软件进行了尾矿坝渗流场模拟。
     本文在渗流场中水土的交互作用机理方面进行了有益的尝试,为渗流场中尾矿颗粒的微观作用机理提供了参考,为尾矿坝的致灾机理研究提供了新的思路。尾矿坝渗流场内水土交互作用机理,对完善尾矿坝工程的结构安全性与环境稳定性耦合分析具有重要的参考价值,对改进尾矿坝设计和灾害治理也具有重要的理论意义和实用价值。
Our country is that great power of mining industry, the industry mine such as the metallurgy industry, nonferrous metals industry, chemical industry, nuclear industry, building material and light industry all has tails facilities. Thereinto, the tailing dam is the most important part, whose safety is related to the environment and human being's safety directly. Seepage play an important role in the safety of the tailing dam, thus, the more precise computation of seepage field and the more accurate model of disaster-causing mechanism in tailings dam have important theoretical and practical significance.
     The analysis of the seepage in tailings dam is a complicated saturated-unsaturated question of coupling seepage-consolidation. The article deduces saturated-unsaturated seepage differential equation, control equation and definite conditions in tailings dam, and explains the types of boundary conditions and the selection method, and discusses the acquisition of related parameters in model calculation.
     Tailing is complicated porous material made up of three phases, solid, liquid (water), and gas, whose states and interactions have important influences on the physicochemical properties and strengths of the tailing. Among them, the uppermost interaction happens between water and solid. Water-solid interaction and dam seepage field are inseparable. On the basis of the characteristic of porous materials, the paper studies the water-soil interaction between the tailing particles, and introducing the theory of water-soil interaction into the tailing dam seepage analysis, the interaction is classified into four types, water-soil physical interaction, water-soil chemical interaction, seepage action, and the modals of physical, chemical and seepage coupling action, then introduces the types, characteristics and the control factors of their respective action. As for the dam stability, first attempting to start off from micro mechanism, and considering the effect of chemical fields, proposes the mechanism of chemical interaction on the basis of chemical kinetics and relevant experiments.
     Heshangyu tailing dam is a typical upstream dam, the author collects the relevant data of terrain, geology and hydrology, the relevant parameters of permeability coefficient, bulk density, cohesion, friction angel, void ratio and so on, and then proposes the problem of tailing suction under the condition of water-soil interaction. Coupling the effect of interaction into the tailing suction, applying the representative soil-water characteristic curve (SWCC), the permeability coefficient function under water-soil interaction is established based on the engineering practical data. Applying the function modal, the seepage field simulation is made by the geotechnical engineering finite element software Phase.
     Beneficial discussions on the aspect of water-soil interaction in the seepage field gives theoretical reference for the micro effect mechanism of the tailing particles, and provide a new train of thought on disaster-causing mechanism of the tailing dam. In China, the relevant study is in its first stage, the systemic research is of great reference value to the perfect coupling analysis of structure safety and environment stability in tailing dam engineering, and is of great theoretical significance and practical value to development of dam design and hazard control.
引文
1.李作章, 徐日升等.尾矿库安全技术[M],北京:航空工业出版社,1996
    2.路美丽.尾矿坝的数值模拟及分析[D],大连:大连理工大学,2002
    3.魏作安, 尹光志, 沈楼燕等.探讨尾矿库设计领域中存在的问题[J],有色金属(矿山部分),2002(4):44-45
    4.沈楼燕,魏作安.探讨矿山尾矿库闭库的一些问题[J],金属矿山,2002(6):47-48
    5. Williarns M. Tailings Darn failure case history [J], Proc.2nd Int. Tailings Symp. Argall, SanFrancisco,1979
    6.徐宏达.我国尾矿库病害事故统计分析[J],工业建筑,2001,1(31): 69-71
    7.梁雅丽.10.18南丹尾矿坝大坍塌[J],沿海环境,2000(12):7-8
    8.国家安全生产监督管理总局:尾矿库安全技术规程AQ 2006-2005[S],中华人民共和国安全生产行业标准.2006.3
    9.吴恒,张信贵,易念平等.水土作用与土体细观结构研究[J],岩石力学与工程学报,2000,19(2),199-204
    10.周雷.多孔介质失稳特性研究与化学—水力—力学耦合流形元分析[D],大连:大连理工大学,2007
    11.尹光志,魏作安,万玲.龙都尾矿库地下渗流场的数值模拟分析[J],岩土力学,2003,24(supp):25-28
    12.柳厚祥,李宁,廖雪等.考虑应力场与渗流场耦合的尾矿坝非稳定渗流分析[J],岩石力学与工程学报,2004,23(17):2870-2875
    13.段蔚平,李广杰,项宏海等.尾矿坝非饱和带滞水曲线模型的建立及应用[J],吉林大学学报(地球科学版),2004,10(S1):95-98
    14. Fourie AB, Blight GE, Papageorgiou G Static liquefaction as a possible expanation for the Merriesprnit tailing dam failure [J], Canadian Geotechnical Journal,2001,38(4): 707-719
    15. Hancock GR, Willgoose GR. An experimental and computer simulation study of erosion on a mine tailings dam wall [J], Earth Surface Processes and Landforms,2004,29(4): 457-475
    16. Sjodahl P, Dahlias T, Johansson S. Using receptivity measurements for dam safety evaluation at Enemossen tailings dam in southern Sweden [J], Environmental Geology, 2005,49(2):267-273
    17. Gallart F, Benito G, Martin-Vide JP, et al. Fluvial geomorphology and hydrology in dispersal and fate of pyrite mud particles released by the Aznalcollar mine tailings spill [J], The Science of the Total Environment,1999,242:13-26
    18. Manzano M, Ayora C, Domenech C, et al. The impact of the Aznalcollar mine tailing spill on groundwater [J], The Science of the Total Environment,1999,242:189-209
    19. Fernandez I, Olias M, Ceron JC, et al. Application of lead stable isotopes to the Guadiamar Aquifer study after the mine tailings spill in Aznalcollar (SW Spain) [J], Environmental Geology,2005,47:197-204
    20. Madejon P, Murillo JM, Maranon T, et al. Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by the Aznalcollar mine spill (SW Spain) [J], The Science of the Total Environment,2002,290(1-3):105-120
    21. Alzaga R, Mesas A, Ortiz L, et al. Characterization of organic compounds in soil and water affected by pyrite tailing spillage [J], The Science of the Total Environment, 1999,242:167-178
    22. Murillo JM, Maranon T, Cabrera F, et al. Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill[J], The Science of the Total Environment,1999.242:281-292
    23. Domenech C, Ayora C, de Pablo J. Sludge weathering and mobility of contaminants in soil affected by the Aznalcollar tailing dam spill (SW Spain) [J], Chemical Geology, 2002,190:355-370
    24. Domenech C, de Pablo J, Ayora C. Oxidative dissolution of pyritic sludge from the Aznalcollar mine (SW Spain) [J], Chemical Geology,2002,190:339-353
    25. Osan, Torok S, Alfoldy B, et al. Characterization of anthropogenic sediment particles after a transboundary water pollution of river Tisza using synchrotron radiation [J], Spectrochimica Acta Part B,2004,59:701-708
    26. Di Gregorio F, Massofi-Novelli R. Geological impact of some tailings dams in Sardinia, Italy [J], Environmental Geology,1992,19(3):147-153
    27. Lupankwa K, Love D, Mapani BS, et al. Impact of a base metal slimes dam on water systems, Madziwa Mine, Zimbabwe [J], Physics and Chemistry of the Earth,2004, 29:1145-1151
    28. Cukrowska EM, Govender K, Viljoen M. Ion mobility based on column leaching of South African gold tailings dam with chemo metric evaluation [J], Chemosphere,2004,56(1): 39-50
    29. Schippers A, Kock D, Schwartz M, et al. Geomicrobiological and geochemical investigation of a pyrrhotite-containing mine waste tailings dam near Selebi-Phikwe in Botswana [J], Journal of Geochemical Exploration,2007,92:151-158
    30. Sharma RS, Al-Busaidi TS. Groundwater pollution due to a tailings dam [J], Engineering Geology,2001,60(1-4):235-244
    31.孙庆业,蓝崇钮,杨林章.铅锌尾矿废弃地的化学性质研究[J],农村生态环境,2000,16(4)36-39,44
    32. Ye ZH, Shu WS, Zhang ZQ, et al. Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques [J], Chemosphere,2002,47:1103-1110
    33.杨明理,Tokonami S,蔡振民等.某铀尾矿库周边地区氡调查[J],核技术,2002,25(7):545-550
    34.滕应,黄昌勇,龙健等.铜尾矿污染区土壤酶活性研究[J],应用生态学报,2003,14(11):1976-1980
    35.龙健,黄昌勇,滕应等.铜矿尾矿库土壤—海洲香蕾(Elsholtzia harchowensis)植物体系的微生物特征研究[J],土壤学报,2004,41(1):120-125
    36.王友保,张丽琴,刘登义.铜尾矿区土壤与凤丹植株重金属富集研究[J],应用生态学报,2004,15(12):2351-2354
    37.王友保,张莉,沈章军等.铜尾矿库区土壤与植物中重金属形态分析[J],应用生态学报,2005,16(12):2418-2422
    38.谢水波,刘奇,张晓健等.尾矿库区地下水中U(Ⅵ)的反应——输运耦合模拟及其参数分析[J],水科学进展,2006,17(6):803-807
    39.李合莲,陈家军.铀尾矿库中238U运移数值模拟[J],安全与环境工程,2007,14(1):36-38,46
    40.毛昶熙.渗流计算分析与控制[M],北京:水利电力出版社,1990
    41.钱家欢,殷宗泽.土工原理与计算(第二版)[M],北京:中国水利水电出版社,1996
    42. Dupuit A J E, J. Etudes. Theoretiques et Fatigues sur le Movement des Eaux [M], Paris: Dunod,1963
    43. Fredlund D.G and H.Rahardjo著,陈仲颐,张在明,陈愈炯等译.非饱和土土力学[M],北京:中国建筑工业出版社,1997
    44. Fredlund, D.G, and Moegenstern, N.R.. Constitutive Relation for Volume Change in Unsaturated Soil [J], Canadian Geotechnical Journal,1976, Vol.13:261-276
    45. Fredlund D.G. and Morgenstern, N.R.. Stress State Variable for Unsaturated Soils [J], ASCE,1977, Vol.103:447-464
    46. Skaggs R., Wayne, Tang, Yau-K. Saturated and unsaturated flow to parallel drains [J], ASCE J brig Drain Div,1976, v102, n2:221-238
    47. Topp, G. C. and Miller E.E.. Hysteretic moisture characteristics and hydraulic conductivities for glass-bead media [J], Proc. Soil Sci. Soc. Am.,1966, Vol.30: 156-162
    48. R.A. Freeze. Influence of the Unsaturated Flow Domain on Seepage through Earth Dams [J], Water Resources Res.,1971, Vo1.7, No4:929-940
    49. A.T. Papagiannakis and D.G Fredlund A.. Steady State Model for Flow in Saturated-Unsaturated Soils [J], Can. Geotech.,1984, vo1.21, no.13:419-430
    50. Neuman, Shlomo P.. Saturated-unsaturated seepage by finite elements [J], ASCE J Hydraul Div,1973, Dec:2233-2250
    52. Akai K., Ohnishi Y., Nishigaki M. Finite Element analysis of three-dimensional flows in saturated-unsaturated soils [J], SAE Preprints,1979(1):227-239
    53. Lam L., Fredlund D.G, Barbour S.L.. Transient seepage model for saturated-unsaturated soil systems:a geotechnical engineering approach [J], Canadian Geotechnical Journal, v24, n4, Nov,1987:565-580
    54.周庆科,金峰等.离散单元法的饱和非饱和渗流模型及其实验验证[J],水力发电学报,2001(3):34-39
    55.李信,高骥,汪自力等.饱和—非饱和土的渗流三维计算[J],水利学报,1992(11):12-17
    56.刘洁,毛昶熙.堤坝饱和与非饱和渗流计算的有限单元法[J],水利水运科学研究,1997,9(3):242-252
    57.陈章友,王又武,刘石桥等.尾矿坝固结渗流的分析模型和计算方法研究[J],工程设计与建设,第36卷第2期2004年3月
    58.吴恒.城市区域地下水的水岩作用浅析.第五届全国工程地质大会文集.中国地质学会工程.地质专业委员会编,1996:388-391
    59.吴恒,张信贵,易念平,城市建设与地质环境的关系及研究要点[J],地质科学,1999,34(1):162-170
    60.吴恒,张信贵,易念平等.城市环境下的水土作用对土强度的影响[J],岩土力学,1999,20(4):25-30
    61.丁抗.水岩作用的地球化学动力学[J],地质地球化学.1989,(6):29-38
    62. James K. Mitchell著.高国瑞,韩选江,张新华译.岩土工程土性分析原理[M],南京工学院出版社,1998.1
    63.冯金良.无定形态游离氧化铁脱水老化时对粘性土物理性质的影响[J],工程地质学报,1993,1(2):85-92
    64.周福俊.大庆市西部地区地下水硬度形成机制的研究[J],环境地质研究,1991(2):135-141
    65.周芳琴,罗鸿禧,王银善.微生物对某些岩土工程性质的影响[J],岩土力学,1997.18(2):17-22
    66.吴恒,代志宏,张信贵,易念平,水土作用研究现状与研究要点[J],广西大学学报 (自然科学版),1999.24(4):255-258
    67.周平根,地下水与岩土介质相互作用的工程地质力学研究[J],地学前缘,1996.4(1-2):176-176
    68.汤连生,王思敬,张鹏程等.水—岩土化学作用与地质灾害防治[J],中国地质灾害与防治学报,1999,10(3):61-69
    69.鲁嘉.城市地下水环境场变异与土结构相互作用的理论分析[D],南宁:广西大学,2006.5
    70.苑莲菊,李振栓,武胜忠等.工程渗流力学及应用[M],北京:中国建材工业出版社,2001.6
    71.J.贝尔著.李竞生,陈崇希译.多孔介质流体动力学[M],北京:中国建筑工业出版社,1983
    72. K.Terzaghi. Die berechnung der durchleessigkeitszifter des tones aus dem verlauf der hydrodynamics hen spannungeser scheinungen[J], Sitsber. Akad. Wiss.Vienna, Abt.1923. Ⅱ132
    73. Bishop AW, Blight GE. Some aspects of effective stress in saturated and unsaturated soils [J], Geotechnique,1963,13:177-197
    74.毛昶熙主编.渗流计算分析与控制第二版[M],北京:中国水利电力出版社,2003
    75. M.TH.VAN GENUCHTEN. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils [J], Soil Sci. Soc. Am.44:892-898
    76.李广信.高等土力学[M],北京:清华大学出版社,2004.
    77.徐绍辉,张佳宝.求土壤水力特征的一种迭代法[J],土壤学报,2000.5(2):271-274
    78.雷志栋,杨诗秀,谢森传.土壤水动力学[M],北京:清华大学出版社,1998:156-214
    79.孙敏.饱和—非饱和渗流影响因素及对土坡稳定性影响研究[D],南京:河海大学,2005.4
    80.李韵珠.李保国.土壤溶质运移[M],北京:科学出版社.1998
    81. Sparks, D.L.. Kinetics of Soil Chemcical Process [M], Academic press, Inc, Ltd,1989
    82.吴恒,张信贵,韩立华.水化学变异对土体性质的影响[J],广西大学学报,1999.24(2),85-88
    83. W.H.Casey, CzSposito著.杨秋剑译,论矿物溶解速率与温度的关系[J],Geochimica et Cosmochimica Acta. V56 No30,1992(11):3825-3830
    84. Bohn, HI. and Meneal, BL. etal. Soil Physical Chemistry 2nd [M]., Inc. New York, 1985.
    85. Sparks, DL., Rates of Soil Chemcical Process[M], Soil Sci Soc. Of Ame. Inc,1991
    86.许中坚,刘广深,喻佳栋等.模拟酸雨对红壤结构体及其胶结物影响的实验研究[J], 水土保持学报.2002,(3):911
    87.曹净,龚宪伟,李鸿翔.攀钢马家田尾矿化学固结机理初探[J],桂林工学院学报.2000.20(2):147-150
    88.王继华.降雨入渗条件下土坡水土作用机理及其稳定性分析与预测预报研究[D],长沙:中南大学,2006.4
    89.毛昶熙.电模拟试验与渗流研究[M],北京:水利出版社,1981
    90.毛昶熙.渗流数值计算与程序应用[M],南京:河海大学出版社,1999
    91.周健,屠洪权缪俊发.地下水位与环境岩土工程[M],上海:同济大学出版社,1995
    92.顾淦臣.土石坝地震工程[M],南京:河海大学出版社,1989
    93.祝玉学,戚国庆,鲁兆明等.尾矿库工程分析与管理[M],北京:冶金工业出版社,1999
    94.欧自强.金属矿山尾矿坝的溃坝事故及其他有关情况简介[J],勘察科学技术,1989,(02):30-34
    95.段蔚平,江斌.尾矿坝非饱和带滞水曲线模型的建立及应用[J],岩土力学,2003,vo1.24(supp):65-68
    96.仵彦卿.岩体水力学概述[J],地质灾害与环境保护,1995.3(1):57-64
    97.尹光志,魏作安.细粒尾矿及其堆坝稳定性分析[M],重庆:重庆大学出版社,2004.
    98. Fredlund, M.D., Wilson, G.W., Fredlund, D.G.. Use of the grain-size distribution for estimation of the soil-water characteristic curve [J], Canadian Geotechnical Journal, 2002,39(5):1103-1117
    99. Fredlund D. G., Xing A, Huang S. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve [J], Can. Geotech.1994,31:533-546

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700