用户名: 密码: 验证码:
纯电动汽车锂离子动力电池组热特性分析及仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国一直在着手电动汽车相关技术的研发,通过国家863计划的的研发支持,我国电动汽车行业取得了快速发展,不仅攻克了一系列关键技术,而且自主研发的电动汽车整车产品已实现小批量生产,并进入市场销售环节,在某些技术领域已实现了与日美欧等国家同步发展。但是对于电动汽车特别是纯电动汽车的动力电池来说,在生产环节和使用环节还没有完善、全面的检测系统和管理系统。目前市场上能够买到的电池管理系统(BMS)具备数据采集模块、数据显示模块、高压和低压保护模块和电池荷电状态(SOC)估算与显示模块等,但是电池热管理模块还没有加到电池管理系统中去,因此有必要研究电池组的热管理系统,使电池组中各单体电池之间的温度差异较小,温度分布较均匀,改善动力电池的电化学性能,提高电池的充放电能力和使用寿命,使BMS的功能更加完善。
     本文结合吉林省科技厅科技发展计划项目“纯电动高档商务客车研制”,以纯电动汽车用磷酸铁锂动力电池为研究对象,运用实验和仿真相结合的方法对电池组的生热温度场和散热温度场进行研究,为温控电池箱的整体设计提供技术支持。
     本文的主要研究内容可以概括如下:
     1.锂离子电池的热特性分析。通过分析锂离子电池的工作原理、结构和电化学特性,研究锂离子电池的生热机制,找出影响锂离子电池温度特性的因素,建立电池温升和环境温度之间的对应关系,确定了电池组放电效率的最佳温度区间。
     2.锂离子电池组的生热温度场仿真分析。首先建立锂离子电池的热效应模型和生热速率模型,然后对电池热模型的导热系数、比热容和密度等参数进行计算,最后确定了热模型的初始条件和边界条件,实现了生热温度场的仿真,得到了电池组生热后的温度分布。
     3.锂离子电池组的散热温度场仿真分析。首先介绍了各种传热介质的优缺点,确定了空气冷却的散热方式,同时采用并行通风的散热结构。然后分析了空气的流动方式,建立起了电池-空气的流固耦合模型。最后通过设置求解器方式和边界条件完成了电池组散热温度场的仿真,为温控电池箱的初步设计做出理论分析。
     4.完成温控电池箱的的整体设计。首先提出了温控电池箱的总体设计方案,并进行了电池箱的功能描述,其次对电池箱的壳体和上下夹具做了详细的设计和空间上的布置,再次对散热设备和加热设备进行了比较和选型。最后对散热设备、加热设备和温度传感器的布置进行了详细的分析。
China has been working on research and development (R&D) of electric vehicle's related technology for years, and the electric vehicle industry in China has achieved rapid development, which is supported by National863Program of R&D. Not only a series of key technologies have been overcome, but also small quantities of electric vehicle products, researched and developed independently, have come into the market. In some areas of technology, Simultaneous development with Japan, the United States and Europe has been achieved. Power battery for electric vehicles, especially pure electric car, there is no perfect, comprehensive detection system and management system in the links of production and use. Battery management system (BMS) which can be bought on the current market have the data acquisition module, the data display module, high pressure and low voltage protection modules and the battery state of charge (SOC) estimating and display module, etc. Battery thermal management module has not been added to the battery management system, therefore, it is necessary to study the battery pack thermal management system, in order to narrow down the temperature difference among every the battery cell of the battery pack, so the temperature distribution is more even, thus can enhance electrochemical characteristics of the battery pack, improve the charging and discharging ability and life of the battery, and make BMS more perfect at the same time.
     This thesis is supported by Science and Technology Department of Jilin Province's scientific and technological development projects,"Pure Electric Grade Commercial Bus development", and pure electric vehicles using Lithium iron phosphate power battery is its research subject. In this thesis, the method of combining experiment and simulation will be applied to study the temperature field of heat generation and heat dissipation of the battery pack, which will provide technical support to the overall design of the thermostat battery box.
     The main contents of this thesis can be summarized as follows:
     1. Analysis of the thermal characteristics of the lithium-ion battery. First of all, the thesis will make you understand the working principle, structure and electrochemical properties of lithium-ion battery to analyze the mechanism of lithium-ion battery heat. And then the thesis will analyze the temperature characteristics of the lithium-ion battery to find a correspondence between the battery temperature rising and ambient temperature, while the optimal temperature range of the discharge efficiency of the battery pack will be determined.
     2. Analysis of Lithium-ion battery packs heat temperature field simulation. Through establishing the thermal effect model of the lithium-ion battery and the model of the rate of heat generation, and then calculating thermal conductivity, specific heat capacity and density parameters of battery thermal model, the initial and boundary conditions of a thermal model will be finally ascertained. That realized the temperature field simulation of heat generation, and obtained temperature distribution after the battery heat.
     3. Analysis of Lithium-ion battery pack heat dissipation temperature field simulation. First of all, the advantages and disadvantages of the various heat transfer medium will be introduced, the air-cooled cooling mode will be determined, and simultaneously parallel ventilation heat dissipation structure will be used. Then, the air flow will be analyzed in order to establish the battery-air fluid-solid coupled models. Finally, by setting the solver methods and boundary conditions of the battery pack thermal model, heat dissipation temperature field simulation will be accomplished, and a good theoretical analysis of the preliminary design for temperature control battery box will be done.
     4. The overall design of the thermostat battery box. First, the overall design scheme of the thermostat battery box will be proposed, and a description of the function of the battery box will be done. Then, a detailed design and space layout on the shell of the battery box and the upper and lower fixture will be done. Next, a comparison and selection of heat dissipation equipment and heating equipment will be done. Finally, a detailed analysis of the layout of heat dissipation equipment, heating equipment and temperature sensors will be done.
引文
[1]朱晓彤. RAV-4电动汽车电池组风冷系统的研究[D].南京:南京航空航天大学,2007.
    [2]林国发.纯电动汽车锂电池组温度场研究及散热结构优化[D].重庆:重庆大学,2011.
    [3]黎林.纯电动汽车用锂电池管理系统的的研究[D].北京:北京交通大学,2009.
    [4]Lee Johnsee,Choi,K.W,Yao,N.P, etal.Three-dimensional thermal modeling of electric vehicle battery [J]. Journal of The Electro-chemical Society,1986.133(7):1286-1291.
    [5]Bernardi,D.,Pawlikowski,E.,Newman,J.. General Energy Balance for Battery System[J]. Journal of Electrochemical Society,1985.132(1):5-12.
    [6]杨亚联,秦大同,彭志远,任勇等.一种混合动力汽车用动力电池组的管理系统:中国,200620110480.8[P].20070418.
    [7]Spotnitz,R.,Franklin,J.. Abuse behaviour of high-Power, lithium-ion cells.Journal of power Sources,2003.113(l):81-100.
    [8]李成学,杨大柱.电动汽车蓄电池组电池管理及其状态检测[J].电源技术测试与分析,2010.
    [9]戴燕珊,冼巧妍,黄振茂.锂离子电池性能研究[J].电池工业,2002,7(5):258261.
    [10]林成涛,田光宇,仇斌,陈全世.MH-Ni动力电池散热能力影响因素分析[J].电源技术测试与分析,2008,2(5):115119.
    [11]李腾,林成涛,陈全世.锂离子电池热模型研究进展[J].电源技术综述,2009,10(6):927932.
    [12]车杜兰.电动汽车锂离子电池包热特性研究与优化设计[D].武汉:武汉理工大学汽车工程学院,2009.
    [13]CHEN S C, WANG C C. Thermal analysis of lithium-ion batteries [J]. J Power Sources,2005,140:111-124.
    [14]CHEN Y F, EVANSW J. Heat transfer phenomena in lithium/poly-mer electrolyte batteries for electric vehicle application [J].J Elec-trochem Soc,1993,140:1833.
    [15]Pesaran Ahmad A. Battery thermal models for hybrid vehicle simulations [J]. Journal of Power Sources,2002,110:377-382.
    [16]Rami Sabbah, Kizilel R., Selman J.R., et. al. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs:Limitation of temperature rise and uniformity of temperature distribution[J]. Journal of Power Sources,2008,182:630-638.
    [17]Paul Nelson, Dennis Dees, Khalil Amine, et. al. Modeling thermal management of lithium-ion PNGV batteries[J]. Journal of Power Sources,2002,110:349-356.
    [18]陈则韶,葛新石,顾毓沁.量热技术和热物性测量[M].合肥:中国科学技术大学出版社,1990.
    [19]Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells [J]. Journal of Power Sources,2003,113(1):81-100.
    [20]王珂.纯电动汽车动力电池特性及应用研究[D].武汉:武汉理工大学汽车工程学院,2011.
    [21]科技部.美国电动汽车联盟推出未来发展目标和行动计划[EB/OL].中华人民共和国科技部,[20100330].
    [22]Ahmad A.Pesaran,Steve D Burch,Matthew Keyser.An approach for designing thermal management systems for electric and hybrid vehicle battery packs [C].The Fourth Vehicle Thermal Management Systems Conference and Exhibition,London:OSTI,1999:1-16.
    [23]许超.混合动力客车电池包散热系统研究[D].上海:上海交通大学机械与动力工程学院,2010.
    [24]王峰,李茂德.电池热效应分析[J].电源技术测试与分析,2010(3):288291.
    [25]刘璐,王红蕾,张志刚.锂离子电池的工作原理及其主要材料[J].科技信息,2009(23):6263.
    [26]付庆茂.锂离子电池低温性能研究[D].哈尔滨:哈尔滨工程大学,2005.
    [27]张国庆,马莉,张海燕.HEV电池的产热行为及电池热管理技术[J].广东工业大学学报,2008.25(1):14.
    [28]R.Kizilel,A.Lateef,R.Sabbah,etal.Passive Control of Temperature Excursion and Uniformity in High-Energy Li-Ion Battery Packs at High Current and Ambient Temperature [J] Journal of Power Sources,2008.183(1):370-375.
    [29]马兆强.混合动力车用镍氢电池组散热系统CFD仿真与结构设计[D].重庆:重庆大学,2011.
    [30]饶中浩.锂离子动力电池强化传热关键技术研究[D].广州:广东工业大学,2010.
    [31]杨凯,李大贺,陈实,吴锋.电动汽车动力电池的热效应模型[J].北京理工大学学 报,2008.28(9):782785.
    [32]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2007.
    [33]Mao-de Li, Feng Wang. Thermal performance analysis of the lithium-ion batteries[C]. The11th International Conference on Parallel and Distributed Computing, Applications and Technologies,2010.
    [34]Noboru Sato.Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J].Journal of Power Sources,2001,99:70-77.
    [35]Andrew Mills, Said Al-Hallaj. Simulation of passive thermal management system for lithium-ion battery packs[J]. Journal of Power Sources,2005,141:307-315.
    [36]Dongping XU, Lifang Wang, JianYang. Research on Li-ion Battery Management System[C]. International Conference on Electrical and Control Engineering,2010.
    [37]Liye Wang,Lifang Wang,Chenglin Liao,jun Liu. Research on Battery Balance System Applied on HEV[c]. International Conference on Electrical and Control Engineering,2009.
    [38]Oliver Gross,Steven Clark.Optimizing Electric Vehicle Battery Life through Battery Thermal Management[J]. SAE International,2011.
    [39]Yue Ma, Ho Teng and Marina Thelliez. Electro-Thermal Modeling of a Lithium-ion Battery System[J]. SAE International,2010.
    [40]Ryan C. Kroeze, Philip T. Krein.. Electrical Battery Model for Use in Dynamic Electric Vehicle Simulations [J]. University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering,2008.
    [41]付正阳,林成涛,陈全世.电动汽车电池组热管理系统的关键技术[J].公路交通科技,2005.22(3):119123.
    [42]张扬军,李希浩,黄海燕.燃料电池汽车动力系统热管理[J].汽车工程,2003.25(6):561-565.
    [43]杨亚联,张晰,李隆键.基于CFD的混合动力车用镍氢电池散热系统研究[J].汽车工程,2009.31(3):214-218.
    [44]蒋新华.锂离子电池组管理系统研究[D].上海:中国科学院研究生院,2007.
    [45]HAND A, STUART T A. HEV battery heating using AC currents[J]. Journal of Power Sources,2004,129:368-378.
    [46]张遥,白杨,刘兴江.动力用锂离子电池热仿真分析[J].电源技术,2008.32(7):461-464.
    [47]吴义勇,方万里,彭子荣.电动汽车用锂离子电池管理系统的模块化设计与实现[C].第五届中国智能交通年会暨第六届国际节能与新能源汽车创新发展论坛优秀论文集(下册),2009.
    [48]楼英莺.混合动力车用镍氢电池散热系统研究[D].上海:上海交通大学,2007.[49]张瑶.锂离子电池热特性及实例仿真分析[D].天津:南开大学研究生院,2010.
    [50]张志杰,李茂德.锂离子动力电池温升特性的研究[J].汽车工程,2010.32(4):320-323.
    [51]冯勇.电动汽车电池管理系统研究[D].长沙:湖南大学,2010.
    [52]安富强,其鲁,王剑.电动汽车用动力锂离子二次电池系统性能的研究[J].北京大学学报,2011.47(1):1-8.
    [53]张华辉,齐铂金,袁学庆.锂离子电池组合前后的特性研究[J].电池,2007.37(4):294-296.
    [54]徐顺余,曹辉.锂离子动力电池受高温影响的试验分析[J].客车技术与研究,2011(4):53-55.
    [55]张政译,[美]帕坦卡.传热与流体流动的数值计算[M].北京:科学出版社,1984.
    [56]李哲,韩雪冰,卢兰光等.动力型磷酸铁锂电池的温度特性[J].机械工程学报,2011.47(18):115-120.
    [57]车杜兰,周荣,乔维高.电动汽车电池包散热加热设计[J].北京汽车,2010(1):5-8.[58]王震坡,孙逢春,马洪沛.一种用于电动汽车的电池箱:中国,200920172818.6[P].2010-05-19.
    [59]蔡群英.混合动力汽车用锂离子电池管理系统的研制[D].北京:北京交通大学,2010.
    [60]袁春刚.液态软包装锂离子电池工艺与隔膜的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [61]田爽.锂离子电池的热特性研究[D].天津:天津大学化工学院,2007.
    [62]管道安.18650S锂离子电池动力性能的研究[D].天津:天津大学化工学院,2005.
    [63]Do Yang Jung, Baek Haeng Lee, Sun Wook Kim. Development of Battery Management System forNickel—metal Hydride Batteries in Electric Vehicle Applications[J]. Journal of PowerSources,2002,109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700