用户名: 密码: 验证码:
微通道型分离式热管通讯基站节能特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源问题的日益突出,移动通讯基站的节能减排已经成为了通讯领域及制冷领域共同关注的焦点。中国基站数量已超过120万个,随着3G业务的拓展,基站数量还将急剧增加。2009年中国基站年总耗电量达到150.8亿度,其中空调耗电69.4亿度。基站的节能减排已经成为了国家节能战略中的重点。基站的高能耗是由于其内部环境的要求非常苛刻,需要空调24小时开启来保证环境的温湿度。本文在此背景下,对基站的节能潜力展开了研究,提出微通道型分离式热管通讯基站,帮助基站实现节能降耗的目的。
     经分析,造成基站能耗高的主要原因是:没有根据气候条件设计围护结构,造成基站负荷较高;气流组织不合理;一年四季依靠空调冷却造成能源浪费。本文展开了以下主要工作:
     一、建立了不同气候条件区域下基站围护结构优选模型,对几个典型城市进行了负荷和能耗分析,选用适合的材料作为基站围护结构可降低基站能耗。
     二、建立了基站CFD模型,提出了三种不同的下进上出的气流组织形式,利用CFD仿真分析对基站内部气流组织进行了优化,提高了冷风的利用率。
     三、为充分利用自然冷源,将分离式热管应用到基站中,并将微通道换热器与分离式热管结合,开发了微通道型分离式热管。对不同工况下微通道型分离式热管进行了实验研究,同时建立了两轮基站样机并进行了性能测试,对不同工况下微通道型分离式热管基站进行了实验研究,在室外环境平均温度为20oC时,节能基站制冷系统的COP可达4.66~13.9,实验平均COP可达9.05;当室外环境平均温度为27oC时,制冷系统的COP可达6.23,都具有较高的能效比。微通道型分离式热管基站空调压缩机的运行时间仅占基站总运行时间的39.1%且PUE值达到1.71,节电率达到44.7%,具有很好的节能降耗的效果。
     四、考虑到电源缺少地区的能源供给问题,提出了风光电互补的微通道型分离式热管节能基站,并对基站的太阳能发电系统进行实验测试,太阳能系统运行良好,发电能力与设计相符。
With the global attention to the energy consumption, the energy saving of telecommunication base station (TBS) have already become the focus both for the refrigeration industry and the telecommunication industry. Number of the TBS in china has over 1.2 million, which will dramatically increase with the expansion of 3G services. TBS consumed about 15.08 billion degree of power in 2009, and air-conditioning take up about 69.4 billion degree. Energy saving of the TBS has become the focus of national energy strategy. Air-conditioning system of TBS needs to 24 hours operate in order to ensure the environment temperature and humidity. In this paper, energy saving potential of TBS has been studied. In order to achieve the energy saving purpose, TBS with separate heat pipe is proposed.
     Inappropriate envelope, bad air distribution and uninterrupted air conditioning operating are the main reasons which lead to the high energy consumption of TBS .The main contents and conclusions are as followings:
     1) A heat load of the TBS calculating model is established. With the help of the envelope experiment data and the calculation software, the load and the energy-consumption of the TBS in typical cities can be worked out on several conditions.
     2)Three different forms of organization of airflow were established. CFD simulation was used to optimize the airflow distribution of the TBS in order to improve the energy utilization.
     3) In order to make full use of the outdoor cold source, separate heat pipe with Micro-channel was experimentally investigated on different conditions. TBS with separate heat pipe was experimentally studied on several different conditions. The COP range of the TBS with separate heat pipe is from 4.66 to 13.9, the average COP is up to 9.05 when average outdoor temperature is 20oC, while the average COP is 6.23 when average outdoor temperature is 27oC. Compressor of Air-conditioning occupies about 39.1% of the total running time and the PUE value is up to 1.71. The energy-saving rate of the new TBS can reach 44.7%. This system can save lots of energy.
     5) TBS with separate heat pipe is equipped with a special solar power system. It is shown that the solar power system can basically meet the load demand for two fans of the TBS.
引文
[1]李萌.几种基站空调节能措施的对比及分析.通信电源学术研讨会,2008
    [2]李长云.利用自然冷源进行隔绝换热的节能措施[J].电信技术,2008(8):52-53.
    [3] Yau Y H.The use of a double heat pipe heat exchanger system for reducing energy consumption of treating ventilation air in an operating theatre—a full year energy consumption model simulation[J].Energy and Buildings,2008,40(5):917-925.
    [4]青泉.通信网络能耗分析与节能技术应用[J].中南大学学报:自然科学版,2009,40(2):464-470.
    [5] Yi Chen, Yufeng Zhang, Qinglin Meng. Study of ventilation cooling technology for telecommunication base stations in Guangzhou[J]. Energy and Buildings, 2009, 41(7):738-744.
    [6]尹华,郭华芳,鲁涛.通信基站通风冷却节能系统的研究[J].节能,2011,30(1):49-52.
    [7]韦巍,李智旻,欧大春.基站配套设备节能减排方案的模拟研究与实测分析[J].邮电设计技术,2010,(10):6-11.
    [8]马国杰,刘东,金瑛.通信基站机房节能方案的实测与模拟研究[J].建筑节能,2010,38(11):44-48.
    [9]董欣,石海,刘硕豪.绿色基站综合节能技术验证[J].通信电源技术,2011,28(2):50-52.
    [10]陈晓晖.论全热交换在基站空调系统节能减排中的应用[J].中国新通信,2008,10(9):52-55.
    [11]饶中浩,张国庆,陈远景,吴中杰,傅李鹏.通信基站空调的智能型综合节能系统研究[J].电信工程技术与标准化,2008,21(12):26-28.
    [12]魏巍,刘京,赵加宁.电信基站用新风冷却换热装置的开发应用研究[J].电信工程技术与标准化,2005,(5):14-17.
    [13]李奇贺,黄虎,张忠斌.热管式机房空调性能实验研究[J].暖通空调,2010,40(4):145-148
    [14]石文星,韩林俊,王宝龙,周德海,李先庭.热管/蒸汽压缩复合空调原理及其在高发热量空间的应用效果分析[J].制冷与空调,2011,11(1):30-36.
    [15] Yufeng Zhang, Yi Chen, Ji Wu, Qinglin Meng. Study on energy efficient envelope design for telecommunication base station in Guangzhou. Energy and Buildings, 2008, 40(10):1895-1900.
    [16] Rang Tu, Xiao-hua Liu, Zhen Li, Yi Jiang. Energy performance analysis on telecommunication base station. Energy and Buildings, 2011, 43(2-3):315-325.
    [17] H. Hayama, M. Nakao, Air flow systems for telecommunications equipment rooms, in: Proceedings of the 11th International Telecommunications Energy Conference, Florence, Italy, 1989, 1-7.
    [18] J. Choi, J. Jeon, Y. Kim, Cooling performance of a hybrid refrigeration system designed for telecommunication equipment rooms, Applied Thermal Engineering,2007,27 (11-12) :2026-2032.
    [19] Gaugler R S,Heat transfer device,U.S.Patent,2350348,1944-6-6
    [20] [英]P.D邓恩D.A,雷伊著,周梅云译.热管[M].北京:国防工业出版社.1982.
    [21]马同泽,候增祺,吴文铣.热管[M].北京:科学出版社.1983.
    [22]庄骏,徐通明,石涛椿.热管与热管换热器[M].上海:上海交通大学出版社.1989.
    [23]庄骏.热管与热管换热[M].上海:上海交通大学出版社.1989.
    [24]庄骏,张红.热管技术及其工程应用[M].北京:化学工业出版社.2000.
    [25] Grover G M,Cotter T P,Erikson G F. Structure of very high thermal conductance[J]. Applied Physics,1964,35(6):1990-1991.
    [26] Cotter T P. Theory of heat pipes. Los Alamos Scientific Lab:Report No.LA-3246-MS,1965
    [27] Gray V H. The rotating heat pipe,a wickless hollow shaft for transferring high heat fluxes. ASME Paper No.69-HT-19,1969
    [28] Tien C L,Sun K H. Minimum meniscus radius of heat pipe wicking materials[J]. Heat Mass Transfer,1971,14(11):1853-1855.
    [29] Dunn P,Reay D A. Heat pipes[M]. Oxford:Pergamon Press.1978.
    [30]陈远国.分离式热管换热器的研究、应用与评价,中国工程热物理学会热管专业组编,第三届全国热管会议论文集,重庆:重庆大学出版社,1991,17~24
    [31] Sato Masaki,Nishida Shuzo Noto Fumitoshi. Study on electro hydrodynamical heat pipe. International Solar Energy Conference Part 1(of 2),ASME-JSES-KSES,1992,155~160
    [32]居怀明,徐元辉,钟大辛.化学热管系统在高温堆上的应用[J].清华大学学报(自然科学版),1995,35(6):59-63.
    [33] Nguyen T,Johanson P,Akbarzadeh A,etal. Design,manufacture and testing of a closed cycle thermosyphon rankine engine[J]. Heat Recovery System&CHP,1995,15(4):333-346.
    [34] J E Bryan,J Seyed-Yagoobi. Heat transport enhancement of monogroove heat pipe with electrohydrodynamic pumping[J]. Journal of Thermophysics and Heat Transfer,1997,11(3):454-460.
    [35] Riffat S B,Holt A. Determination of effectiveness of heat-pipe heat recovery for naturally-ventilated buildings[J]. Applied Thermal Engineering,1998,18(3-4):98-101.
    [36]李菊香,徐通明.分离式热管的传热极限[J].南京化工大学学报,1998,20(1):80-82.
    [37]徐尧润,陈东,刘振义.非相邻热源间强化传热新技术——“热环”技术.中国工程热物理学会传热传质学学术会议论文集(上册),苏州:1999,I218-I221.
    [38]王越,陈东,刘振义.“热环”技术的初步理论分析和实验验证.中国工程热物理学会传热传质学学术会议论文集(下册),苏州:1999,V216-V221.
    [39]刘震炎,卢允庄.冷管型太阳能制冷系统[J].热能动力工程,2000,15(6):587-589.
    [40]王越,陈东,刘振义.国内分离式热管概况与热环研究的小结及展望[J].节能技术,2000,5(3):5-6.
    [41]陈东,徐尧润,刘振义.非相邻冷热源间强化传热新技术热环的研究[J].工程热物理学报,2000,21(6):724-728.
    [42] Akbarzadeh A,Johanson P,Nguyen T. Formulation and analysis of the heat pipe turbine for production of power from renewable sources[J]. Applied Thermal Engineering,2001,21(15):1551-1563.
    [43] Smirnov H F,Kosoy B V. Refrigerating heat pipes[J]. Applied Thermal Engineering,2001,21(6):631-641.
    [44]陈岚,苏俊林,伍贻文.分离式热管充液率实验研究[J].上海理工大学学报, 2003,25(3):285-288.
    [45]唐志伟,马重芳,蒋章焰.小型分离式热管工作温度与传热特性的实验研究[J].工程热物理学报, 2004,25(6):1043-1045.
    [46]洪光,张春辉,罗晴,张新铭.常温小温差下的分离式热管换热器充液率研究[J].节能,2011,30(1):24-27.
    [47]庄正宁,沈月芬,张焕,杨天亮,曹溪如.分离式热管倾斜布置蒸发管流动特性的试验研究[J].化工机械,1998,25(1):1-6.
    [48]朱玉琴,李迓红.分离式热管小倾角蒸发段传热特性的试验研究[J].西安石油大学学报(自然科学版),2006,21(1):51-53.
    [49]金育义,臧润清,顾永明.分离式热管在不同高度差下传热性能的实验研究[J].应用能源技术,2009,(4):45-51.
    [50]郝莹,臧润清,金育义.以R600a为工质的分离式热管的实验研究[J].低温与超导, 2009,37(12):37-41.
    [51]朱玉琴.分离式热管倾斜蒸发段流动特性试验[J].西北电力技术,2000,28(3):45-47.
    [52]邓林.分离式热管蒸发段流动和传热的研究[博士学位论文].天津:天津大学.
    [53]徐济鋆,沸腾传热和气液两相流[M].北京:原子能出版社.1993.
    [54]朱玉琴,曹子栋.分离式热管倾斜蒸发段传热特性的试验研究[J].动力工程,2001,21(2):1153-1155.
    [55]朱玉琴.分离式热管蒸发段传热特性的研究[J].节能技术,2000,18(101):3~4.
    [56]王建伟,曹子栋,郑蒲燕.分离式热管蒸发段传热特性试验研究[J].西安交通大学学报,2000, 34(9):33~37.
    [57] Chen yuanguo, Gao mingchong, Xin mingdao, Experiments of heat transfer performance of separate type thermosyphony. International heat pipe symposium, Osaka, Japan:1986
    [58]简弃非,魏蕤,颜永明,杨苹.通信机房气流组织的模拟与分析.节能技术,2009,27(1):35-39.
    [59] C.D.Patel,R.Sham,C.E.Bash,A.Beitelmal. Thermal considerations in cooling large scale high compute density data centers,in:Proceedings of 2002 Inter Society Conference on Thermal Phenomena,2002
    [60] S.Kang,R.R.Schmidt,K.M.Kelkar,A.Radmehr,S.V.Patankar. A methodology for the design of perforated tiles in raised floor data centers using computational flow analysis. IEEE Transactions on Computer and Packaging Technologies,2001,24(2):177-183.
    [61]魏蕤,简弃非.空调布局对数据机房内热环境影响的试验与仿真研究.暖通空调,2010,40(7):91-94.
    [62] Sven Reichrath,Tom W Davies.Using CFD to model the internal climate of green houses:past,present and future[J].Agronomie,2002(22):3-19.
    [63]张亚静,朱建章.铁路集中信息机房空调设计.暖通空调,2010,40(7):25-28.
    [64]林阳洸.信息系统受限机房的气流组织解决方案.广西电力,2008,(6):35-38.
    [65]杨苹,肖莹,简弃非,罗学维,刘文飞.通信机房的气流组织特性与空调冷量调配方案.华南理工大学学报(自然科学版),2009,37(11):107-111.
    [66]刘威,许新毅,邓重秋.通信机房空调系统节能措施分析.暖通空调,2010,40(4):92-96.
    [67]严竹生.节能型移动通信基站室内气流的数值模拟[J].制冷与空调,2007,21(3):105-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700