用户名: 密码: 验证码:
湿热地区通信基站建筑节能设计策略与技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿热地区建筑能耗水平高,能源形势紧张。通信基站类建筑分步广泛,数量众多,耗电量大,其电能耗费已经成为运营商的重要成本支出。目前对通信基站类建筑的节能研究集中在设备、空调系统、气流组织及管理等方面,很少涉及建筑节能研究。本文针对以广州为代表的湿热地区通信基站类建筑的建筑节能设计策略与技术问题,重点进行了以下理论和实验研究工作:
     1.通信基站的调研测试。
     对基站的分类、室内设备发热量、围护结构构造、空调类型和空调的运行等进行了调研。选择广州地区典型基站进行了实地测试,测试内容包括:基站各部分的电耗、机柜设备的散热量、空调系统的制冷量和围护结构的传热量等。对基站的热平衡和传热过程中的各个传热环节进行了分析,结果表明测试期间基站围护结构是整个传热过程中热阻最高的环节,阻碍了室内设备的散热,应采用有效措施予以降低。最后总结了通信基站的基本热工特征。
     2.通信基站建筑围护结构节能设计策略及其节能效果评价。
     根据现场调研和实地测试所获取的信息建立典型基站的DeST模型,对围护结构设计因素对不同室内设备发热量的不同类型基站空调耗电量的影响进行了模拟分析。提出了优化外墙和屋面的传热性能、外遮阳设计以及两者综合运用的节能设计方案,并分析了节能效果。总结了通信基站的围护结构节能设计策略。分析了机房的围护结构构造设计,提出了兼顾通风的遮阳构造。
     3.通信基站通风冷却技术的系统研究。
     通风冷却技术直接引进室外新风能有效的排除室内设备发热量,节能效果显著。首先对通风冷却技术在广州地区运用的气候适应性及节能潜力进行分析。针对现有的通风冷却技术的风机、空调联动控制策略的不足,对控制策略进行优化。对通风冷却的室内气流组织进行CFD模拟,结果表明气流组织的优化对设备的散热效率有较大的影响,并总结了室内气流的组织原则。根据室内气流组织原则,对通风冷却基站的建筑平、剖面进行设计,并对室内设备和进、排风单元进行合理的布局设计,以保证基站室内设备的散热效果。对通风系统过滤器的特性进行了分析,总结了加大过滤器面积的优点,并设计了通风系统的进、排风单元构造。
     4.通信基站通风冷却技术的节能效果评价和运用策略。
     针对现有通风冷却技术的节能评价方法的不足,提出了适用于不同的空调设定温度、室内发热量、空调性能、通风换气次数和风机功率下运用通风冷却技术的不同类型基站的节能效果评价方法。建立实验房,模拟通风冷却基站,按照新控制策略开发了控制系统,测试结果表明优化后的控制策略可行,系统运行稳定可靠,并验证了节电量计算公式。计算总结了不同影响因素与通风冷却技术全年节电量的关系。总结了通风冷却技术在不同类型基站中的运用策略及其节能效果。
The building energy consumption in hot and humid zone is large and energy situation is severe. Telecommunication base stations (TBSs) are used in large numbers, and have high heat density, a long cooling season and high energy consumption. Electricity bill for TBSs is an importance cost of mobile communications corporation. The previous studies on energy conservation of TBS mainly focused on equipments, air-conditioning system, airflow optimization and energy management. There are very limited studies on building design of TBS for energy saving. The objective of this thesis is to systematically study the building energy efficiency strategies and technologies of TBSs in hot and humid zone. The main research works are as follows:
     1. Field investigation.
     The basic information of TBS was achieved such as the base of classification, indoor heat sources, building envelopes structures, air-conditioning performance and the temperature set point of air-conditioning. A typical TBS in Guangzhou was chose to be investigated and tested in the present study. The test included the various parts of the electricity consumption, the heat release of the equipments, and the refrigerating capacity of the air-conditioning and the heat transmission of the building envelopes. The thermal equilibrium and the heat transfer sections were discussed. Results showed that the building envelopes were the most high resistance section of the heat transfer. And the thermal characteristics of TBS were concluded
     2. Strategies of the energy efficiency design of building envelopes of TBS and evaluation of their energy efficient.
     A dynamic thermal simulation program named DeST was applied to estimate the annual cooling load of the typical TBS. The parameters for the simulations were set according to the basic information achieved by the field investigation and testing. The energy consumption of different design of the building envelopes of TBS under different temperature set point and indoor heat sources were calculated. Several energy efficient envelope designs were proposed. The effect on annual energy consumption was analyzed for each energy efficient design and the combined effects were achieved for several combinations of the designs by thermal simulation. The energy efficient design strategy of building envelope for TBS in Guangzhou was proposed. And the building structure giving consideration to both ventilation and shading was proposed.
     3. Systems study of ventilation cooling technology for TBS.
     As the heat from the telecommunication equipments can be dissipated directly to outdoor cold air and the runtime of the air conditioners can be shortened by ventilation cooling technology (VCT), resulting in notable energy savings. The adaptability to the climate of Guangzhou and the energy saving potentials of ventilation cooling technology was analized. Accoding to the inadequate of the integrated operation strategy of fans and air-conditioning for VCT, an energy saving maximized integrated operation strategy was proposed. Computational fluid dynamics simulation results indicate that optimization of airflow organization has a strong influence on heat dissipation efficiency for VCT. And the principles of airflow organization was generated. Based on the principles, the plan and section of TBS applied VCT and the layout of the equipments and ventilation system was designed. The characteristics of filter was analized and the advantage of increaing filter sieve area was concluded. Also, the construction of ventilation system was designed.
     4. The evaluation of energy saving and the applying strategies of VCT.
     For the defect of the existing evaluate method for VCT such as it only specific type TBS can be evaluated for one test, and the test must be last for a long time, and the oversize error rate, a new evaluate method for VCT was proposed. The evaluate method can be used for different TBS under different meteorological condition, temperature set point, indoor heat sources, performance of air condition and ventilation rate. The relation ship between all influencing factors and annual saved electric energy was analized. The applying strategies and the effect of energy saving of VCT for different TBS were concluded.
引文
[1]张家诚、林之光.中国气候[M].上海:上海科技出版社,1995
    [2]孟庆林.建筑表面被动蒸发冷却[M].广州:华南理工大学出版社,2001
    [3] Bellcore. Network equipment-building system (NEBS) requirements:Physical protection[J]. Proc. Generic Requirements GR-63-CORE, 1995, (1)
    [4] European Telecommunications Standard ETS 300019-1-3, Equipment Engineering (EE); Environmental conditions and environmental tests for telecommunications equipment part1–3: Classification of environmental conditions, stationary use at weather protected locations [S]
    [5] YD/T 1821-2008,通信中心机房环境条件要求[S].中华人民共和国工业和信息化部,2008
    [6]于晓冰、靳松.基站机房内环境温度提升的研究[J].电信工程技术与标准化,2008, (12):2-7
    [7] Abazari Torghabeh. Nasrin, Reza Akbarzadeh Totonchi. Mohammad, Hossein Yaghmaee Moghaddam. Mohammad. Mobile Base Station Management using Fuzzy Logic in Wireless Sensor Networks[A]. in 2010 2nd International Conference on Computer Engineering and Technology (ICCET), Chengdu, China, (2010), pp. V2-352 - V2-356
    [8]刘璐.基于优化手段的基站主设备节能技术研究与分析[J].科技信息,2009,(16): 254
    [9]刘星、蔡文洲.节能基站构建生态型TD网络[J].移动通信,2009,(12):87-89.
    [10] M. Nakao, H. Hayama, T. Uekusa. An efficient cooling system for telecommunication equipment rooms[A], in: Proceedings of the 10th International Telecommunications Energy Conference, San Diego, Canada, (1988), pp. 344-349
    [11] Y. Maeda, Y. Seshimo, T. Okazaki. Study of a cooling system for the telecommunication base site[M]. ASHRAE Transactions 111 (2) (2005) 746-755
    [12] J. Choi, J. Jeon, Y. Kim. Cooling performance of a hybrid refrigeration system designed for telecommunication equipment rooms[J]. Applied Thermal Engineering 27 (11-12) (2007) 2026-2032
    [13]魏鹏飞.关于基站空调运行节能的研究[J].电信工程技术与标准化,2006,(6): 50~54
    [14]中国电信集团公司电源技术支撑中心.连载3:机房专用空调与舒适性空调的比较[J].广东通信技术,2009,(6):29-34
    [15]中国电信集团公司电源技术支撑中心.连载4:机房专用空调的自适应控制[J].广东通信技术,2009,(3):35-37
    [16]中国电信集团公司电源技术支撑中心.连载5:机房空调室外机雾化喷淋和冷凝水回收[J].节能技术,2009,(4): 38-41
    [17]中国电信集团公司电源技术支撑中心.连载9:机房新风水帘过滤节能系统[J].广东通信技术,2009,(6):44-46
    [18]中国电信集团公司电源技术支撑中心.连载12:空调冷媒控制器节能技术[J].广东通信技术,2009,(7):38-40
    [19]中国电信集团公司电源技术支撑中心.连载18:机房专用空调主机变频技术[J].广东通信技术,2009,(12):34-35
    [20] H. Hayama, M. Nakao. Air flow systems for telecommunications equipment rooms[A]. in: Proceedings of the 11th International Telecommunications Energy Conference, Florence, Italy, (1989), pp. 1–7
    [21] HAYAMA Hirofumi, NAKAO Masaki, SANBE Minoru. Airflow distribution in telecommunications equipment rooms[A]. INTELEC[C]. 1990. 206-212
    [22] Nakao M., Hayama H., Nishioka M. Which cooling air supply system is better for a high heat density room: Underfloor or overhead?[A]. INTELEC[C]. 1991. 393-400
    [23] Noh H. -K, Song K. S., Chun S. K. The cooling characteristics on the air supply and return flow system in the telecommunication cabinet room[A]. INTELEC[C]. 1998. 777-784
    [24] N. Dan, K. Matti. Application of CFD technique in thermal design of a telecommunication base station[A]. in: 9th International Flotherm User Conference, Orlando, USA, 2000
    [25]李雄文.机房空调合理安装与控制对散热及节能的影响分析[J].通信电源技术,2007,24(6):95-97
    [26]简弃非、魏蕤、颜永明、杨苹.通信机房气流组织的模拟与分析[J].节能技术,2009,27(1):35-39
    [27]项生逵.移动通信基站节电的成功探索[J].通信世界,2003,(12):45
    [28]陈圣照、甘海峰.基站节能控制系统[J].邮电设计技术,2005,(2):30~32
    [29]赖春旺.基站节能方法和途径初探[J].电信工程技术与标准化,2006,(6):40~42
    [30]李森.通风节能系统在电信机房中的应用[J].电信技术,2008,(8):48-49
    [31]黄成龙、杨文鹏.移动通信基站节能控制的理论与实践[J].西安工程大学学报,2008,22(2):205-209
    [32]中国电信集团公司电源技术支撑中心.连载8:机房新风直接引入节能技术[J].广东通信技术,2009,(5):28-33
    [33] Y. Feng. Thermal design standards for energy efficiency of residential buildings in hot summer/cold winter zones[J]. Energy and Buildings 36 (12) (2004) 1309-1312
    [34] Jinghua Yu, Changzhi Yanga and Liwei. Tiana Low-energy envelope design of residential building in hot summer and cold winter zone in China[J]. Energy and Buildings, 40 (8) (2008) 1536-1546
    [35] T. Athanassios, K.A. Andreas, K. Panagiota. Simulation of facade and envelope design options for a new institutional building [J]. Solar Energy 81 (9) (2007)1088-1103
    [36] C.K. Cheung, R.J. Fuller, M.B. Luther. Energy-efficient envelope design for high-rise apartments [J]. Energy and Buildings 37 (1) (2005) 37-48
    [37] M. Nakao, K. Ohshima, H. Jitsukawa. Thermal control wall for telecommunication equipment rooms [A]. in: Proceedings of the 10th International Telecommunications. Energy Conference, San Diego, Canada, (1988), pp. 280-284
    [38] Nahar N. M., Sharma P., Purohit M. M. Performance of different passive techniques for cooling of buildings in arid regions [J]. Building and Environment, 2003, (38): 109-116
    [39] Cheikh Hamida Ben, Bouchair Ammar. Passive cooling by evapo-reflective roof for hot dry climates[J]. Renewable Energy, 2004, 29: 1877-1886
    [40] Zhou Nan, Gao Weijun, Nishida Masaru, Kitayama Hiroki, Ojima Toshio. Field study on the thermal environment of passive cooling system in RC building [J]. Energy and Buildings, 2004, 36: 1265-1272
    [41] Amer Emad H. Passive options for solar cooling of buildings in arid areas[J]. Energy, 2006, (31): 1332-1344
    [42]钟水库、胡东南.夏季降温的太阳房实验分析[J].可再生能源,2003,(4):17-18
    [43]赵金玲、陈滨、丁颖慧、陈会娟、贾珣.海洋性气候条件下新型特隆布墙被动降温的通风模式研究[J].暖通空调,2005,35(8):10-15
    [44]杨卫波、施明恒.太阳能通风墙的性能研究[J].建筑热能通风空调2005,24(3):17-21
    [45]陈星、陈滨、丁颖慧.大连地区特隆布墙夏季不同降温方式的实验研究[J].暖通空调,2006,36 (7):7-12
    [46]王平、龙激波、张磊、龚思越、何昀.夏热冬冷地区通风墙体隔热性能测试与分析[J].建筑热能通风空调,2010,29(3):21-24
    [47]刘凌、刘加平.建筑垂直绿化生态效应研究[J].建筑科学,2009,25(10):81-84
    [48]徐斌、叶宏、葛新石、焦冬生、庄双勇.隔热涂层降低建筑空调负荷效果的参数分析[J].太阳能学报,2006,27(9):857-865
    [49]胡凌.建筑外墙隔热涂料的研究[D].重庆:重庆大学,2007
    [50]张雪芹、韩国民、周根全.建筑保温隔热涂料及其复合技术研究[J].新型建筑材料,2008,10:46-49
    [51]陆洪彬、陈建华、冯春霞、李文丹、焦宝祥.新型太阳热反射隔热涂料的研制[J].太阳能学报,2008,29(12):1522-1527
    [52]张磊、孟庆林.华南理工大学人文馆屋顶空间遮阳设计[J].建筑学报,2004,(8):70-71
    [53]孙洪波.夏热冬冷地区居住建筑山墙遮阳隔热设计[J].南方建筑,2004,(3):58-61
    [54]朱燕燕.夏热冬冷地区建筑遮阳系统设计及其节能评价[D].成都:西南交通大学,2007
    [55]籍存德、郝瑞珍、常民.夏热冬暖地区建筑遮阳设计探讨[J].工业建筑,2007,(2):44-46,49
    [56]冯林东.适宜夏热冬暖地区的建筑遮阳技术研究[D].西安:西安建筑科技大学,2008
    [57]房志勇、程琛、覃建国等.寒冷地区通信机房外墙研究[J].建筑节能,2009,(12):34-38
    [58]房志勇、程琛、覃建国、陈越、王永红、周依刚.寒冷地区通信机房外墙厚度计算模型研究[J].建筑节能,2010,(3):37-39
    [59] Dahono. P.A., Salam. M.F., Falah. F.M., Yudha. G., Marketatmo. Y., Budiwibowo. S. Design and operational experience of powering base transceiver station in Indonesia by using a hybrid power system[A]. in 31st International Telecommunications Energy Conference, (2009) , pp: 1-4
    [60] Pragya Nema a, R.K. Nemab, Saroj Rangnekar a. Minimization of green house gasesemission by using hybrid energy system fortelephony base station site application[J]. Renewable and Sustainable Energy Reviews, 2010, (14): 1635-1639
    [61] Grangeat. Christophe, Grandamy. Gabriel, Wauquiez. Frederic. A solution to dynamically decrease power consumption of wireless base stations and power them with Alternative energies[A], 32nd International Telecommunications Energy Conference (INTELEC), 2010 , pp: 1-4
    [62]彭建伟、刘学红.管道负压式一体化智能节能通风系统在通信基站中的应用[J].通信电源技术,2008,25(4):69-70
    [63]赵苏安.基站地温风循环节能系统设计思路[J].电信技术,2008,(8):54-56
    [64]中国电信集团公司电源技术支撑中心.连载7:低压配电系统谐波治理技术[J].广东通信技术,2009,(5):20-27
    [65]中国电信集团公司电源技术支撑中心.连载10:机房新风热交换节能技术[J].广东通信技术. 2009. (6):47-48
    [66]中国电信集团公司电源技术支撑中心.连载11:乙二醇热交换节能技术[J].广东通信技术,2009,(7):34-37
    [67]中国电信集团公司电源技术支撑中心.连载14:太阳能光伏供电技术[J].广东通信技术,2009,(9):39-46
    [68]中国电信集团公司电源技术支撑中心.连载15:风力发电技术[J].广东通信技术,2009,(10):51-53
    [69]中国电信集团公司电源技术支撑中心.连载16:风光互补供电技术[J].广东通信技术,2009,(10):54-59
    [70]中国电信集团公司电源技术支撑中心.连载19:上送风机房机柜精确送风技术[J].广东通信技术,2009,(12):36-39
    [71]王应德、席永明.基站智能管理系统的电源节能问题初探[J] .福建电脑,2010,(4):14-15
    [72] Romagnoni P., Scattolin M., Zecchin R. Dynamic Simulation Of Air Conditioning Systems For Base Stations[J]. Telescon, 1997, : 431~438
    [73] Schmidt Roger R., Shaukatullah H. Computer and telecommunications equipment room cooling: a review of literature[A]. IEEE Transactions on components and packaging technologies[C]. 2003. 266~265
    [74]刘涛.移动通信基站的综合节能[J].电信工程技术与标准化,2006,(6):32-34
    [75]郭树师.通信电源设备和空调的节电降耗[J].电信技术,2006,(6):17-19
    [76]饶中浩、张国庆、陈远景、吴忠杰、傅李鹏.通信基站空调的智能型综合节能系统研究[J].电信工程技术与标准化,2008,(1):226-28
    [77]中国电信集团公司电源技术支撑中心.连载1:节能连载专栏“善用其效,尽享其能”——通信机房节能技术总则[J].广东通信技术,2009,(2):34-37
    [78]中国电信集团公司电源技术支撑中心.连载2:通信机房用电分析及节能方法概述[J].广东通信技术,2009,(2):38-46
    [79]廖利娣、陈沂、张宇峰、孟庆林.广州地区民房类基站围护结构节能设计研究常见问题[J].建筑科学,2009,(2):72-75
    [80] Yan, D., Xia, J., Tang, W. Song F., Zhang X. & Jiang, Y. DeST—An integrated building simulation toolkit Part I: Fundamentals [J], Building Simulation, Vol. 1, No.2, pp.95-110, 2008
    [81] D.P. Bloomfield. Final report of IEA Annex 21 (Calculation of energy and environmental performance of buildings) [M], CRC Publications, London, 1994
    [82]张晓亮、谢晓娜、燕达、江亿.建筑环境设计模拟分析软件DeST第3讲建筑热环境动态模拟结果的验证[J].暖通空调,2004,34(9):37-50
    [83] Zhang X., Xia J., Jiang Z., Huang J., Qin R., Zhang Y., Liu Y. & Jiang, Y. DeST—An integrated building simulation toolkit Part II: Applications[J]. Building Simulation, Vol. 1, No.3, pp.193-209, 2008
    [84]牛建广、高春艳.轻钢活动板房结构体系研究[J].山西建筑,2009,35(21):79-80
    [85]段君瑛.冷弯薄壁型钢结构房屋及其在我国的发展应用[J].山西建筑,2008,34(20):84-85
    [86]张磊、孟庆林.百叶外遮阳太阳散射辐射计算模型及程序实现.土木建筑与环境工程,2009,31(6):92-95
    [87]长沙市业通达监控技术有限公司.机房通风空调节能控制系统[EB/OL].http: //www.yestuned.com/readnews.asp?id=346,2008
    [88]常州中兴华达科技有限公司.智能通风系统[EB/OL].http://www.lambor.com.cn/ products _show.asp?md=3&id=66
    [89]深圳市特力康科技有限公司.基站节能通风系统[EB/OL].http://www.cnlinfo.net/ product/446501.htm,2010
    [90]深圳市橡树通讯技术有限公司.机房节能通风系统[EB/OL].http://www.qy6.com/ syjh /showbus640889.html,2008
    [91]福建省南安市电子技术研究所.智能通风降温节能系统[EB/OL].http:// www.cndz. com/dzcpjs/ydjztf/jztf.htm
    [92]深圳市榜样通信有限公司.智能通风节能系统[EB/OL].http:// www.telebanyan. com/product.asp?id=1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700