用户名: 密码: 验证码:
硫酸铜和金藻Poterioochromonas sp.控制蓝藻水华的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化的不断加剧,有毒蓝藻水华的频繁爆发,是造成水环境生态灾害的主要原因之一。蓝藻水华的控制一直是环境科学、生态学领域研究的重点,探索浮游藻类尤其是有毒蓝藻水华控制的行之有效的方法是非常迫切的。近20年来,我国对湖泊等水体富营养化进行了一系列研究与防治的实践,取得了一定的成绩,但富营养化污染总体状况仍呈持续恶化趋势,许多淡水湖泊相继发生了严重的产毒蓝藻“水华”。从全国范围防治富营养化污染的任务极为紧迫,急需研发高效安全的控藻、除藻方法。
     本文研究了常用的铜类杀藻剂(硫酸铜)抑制不同藻类生长的半有效浓度及该方法用于湖泊蓝藻水华控制中水生态系统的影响;探讨了一种可以吞噬微囊藻的金藻(Poterioochromonas sp.)的吞噬特性及在水华发生初期所起的作用,具体内容如下: 1. Cu2+对五株常见藻类——铜绿微囊藻Microcystis aeruginosa (PCC 7806),水华鱼腥藻Anabaena flos-aquae (FACHB 245),莱茵衣藻Chlamydomonas reinhardii (FACHB 479),斜生栅藻Scenedesmus obliquus (FACHB 416),以及小环藻Cyclotella sp. (FACHB 986)——生长抑制的EC50(Cu2+,48h)及毒性强弱顺序为铜绿微囊藻(46μg/l) >水华鱼腥藻(75μg/l) >小环藻(186μg/l) >莱哈衣藻(403μg/l) >斜生栅藻(515μg/l); 2.对武汉市两个小型富营养化城市湖泊——小月湖和小莲花湖,先后进行了3次使用硫酸铜对去除蓝藻“水华”的试验,每次进行为期约15天的跟踪实验,结果表明:硫酸铜对去除“水华”藻类、改善水体透明度有一定作用,但时效性约为10~15天;硫酸铜处理后,浮游植物种类发生更替的顺序为:蓝藻门-硅藻门/绿藻门-蓝藻门,这与Cu2+对藻类生长抑制实验的结果相吻合;硫酸铜处理后,水柱中微囊藻毒素含量迅速增加,但又很快的降低于处理前水平,时间为3~5天; 3.对金藻Poterioochromonas sp.吞噬单细胞藻类的特性进行了研究:金藻Poterioochromonas sp.能引起培养的单细胞微囊藻在短时间内大量消失;蓝藻“水华”发生期间的高温、偏碱性pH等环境条件不影响Poterioochromonas sp.吞噬微囊藻的速率;喂食不同饵料藻的Poterioochromonas sp.出发株吞噬微囊藻表现出一定的选择性,以产毒的饵料藻喂食的Poterioochromonas sp.出发株选择性高,微囊藻重新生长的比例更大;以非产毒的饵料藻喂食的Poterioochromonas sp.出发株吞噬选择性低,微囊藻重新生长的比例小且时效较长; Poterioochromonas sp.在天然水体中的生长速率与在培养液中的生长速率相近;
     4.室内模拟水华发生的实验表明:去除浮游动物的影响,Poterioochromonas sp.在水华的发生过程中能够生长,它对控制微囊藻水华有一定的作用。
Nowadays, eutrophication and massive accumulations of planktonic microalgae as algal blooms in waterbodies have caused serious environmental problems. So it is very important to find effective methods to controll the growth of the bloom-forming algae.
     This paper focuses on: the effect of copper sulphate treatment, which is widely used as a global and empirical method to remove or control phytoplankton blooms, on different bloom-forming alga and on water ecosystem especially on the constructure of phytoplankton; effect of environmental factors, such as temperature, pH, and nutrition level, on the grazing speed of golden algae Poterioochromonas sp. to unicellular Microcystis, the species selectivity of Poterioochromonas sp. to Microcystis; and effect of Poterioochromonas sp. during the occurrence of Microcystis bloom. Main results are summarized as follows:
     1. According to algal growth inhibition tests, effect of copper on five species of Microcystis aeruginosa (PCC7806), Anabaena flos-aquae (FACHB245), Chlamydomonas reinhardii (FACHB 479), Scenedesmus obliquus (FACHB 416), Cyclotella sp. (FACHB 986)were illustrated. The EC50. of Cu2+ were in the increasing order for: M.aeruginosa (46μg/l), A. flos-aquae (75μg/l), Cyclotella sp. (186μg/l), Chlamydomonas reinhardii (403μg/l) and S. obliquus (515μg/l).
     2. In two eutrophic urban lakes, CuSO4?5H2O was used as algicide to control water bloom caused by cyanobacterial. The copper concentration applied was 102μg l-1 (as copper). Upon treatment, the transparence was increased and the algal biomass were decreased in the first 10-15 days, meanwhile, the dominant species were marked from cyanobacteria to diatom and green algae, but cyanobacteria re-emerged as dominant species after 10-15 days treatment. The short-term succession in species dominance seemed well correlated with the results of EC50 of species sensitiveity to copper. It was also found that, after treatment, the microcystins concetntration increased but soon droped to the level lower than that of before-treatment in 3-5 days.
     3. Golden alga Poterioochromonas sp. itself was responsible for the sudden disappearances of cultured Microcystis sp., but not bacteria or secretion of Poterioochromonas sp.. Temperature, pH and nutrition level would not affect the grazing speed of Poterioochromonas sp to unicellular Microcystis. Poterioochromonas sp. feeding on different strains of algae showed feeding selectivity on algae. Poterioochromonas sp. fed with nontoxic strains of algae would show lower selectivity and last longer time.
     4. In 10 L cuture system, lake water without zooplankton was used to simulate the occurrence of Microcystis bloom. It showed that Poterioochromonas sp. was able to grow in the lake water and play an active role in controlling the occurrence of unicellular Microcystis bloom in the system.
引文
1. Aaronson S. Descriptive biochemistry and physiology of the Chysophyceae (with comparisons to the Prymnesiophyceae) In:Levandowsky M, Hunter SH. (EDs.) Biochemistry and Physiology of the Protozoa. New York. Academic Press. 1980.pp: 118-169
    2. Agbeit MD, Smol JP. Chrysophyte population and encystment patterns in two Canadian lakes, J.Phycol., 1995.31: 71-78.
    3. Alam Zamir Bin M D, Masahiro O taki. Direct and Indirect Inactivation of Microcystis aeruginosa by UV-Radiation, Water Res. 2001, 35(4): 1008-1014.
    4. Anderson D M. Turning back the harmful red tide. Nature, 1997, 388: 513-514
    5. ASTM (American Society for Testing and Materials). Standard practice for algal growth potential testing with Selenastrum capricornutum. Philadelphia (PA)7 ASTM, D 1993: 3978-80
    6. B. Eklund, Development of a growth inhibition test with the marine and brackish water red alga Ceramium tenuicorne, Marine Pollution Bulletin, 2005, 50: 921–930
    7. Benndorf J. Food web manipulation without nutrient control: A useful strategy in lake restoration? Schweiz Z Hydrol, 1987, 49: 237-248
    8. Benndorf J. Posibilities and limits for controlling eutrophication by biomanipulation. Int Revue ges. Hydrobiol, 1995, 80 (4): 519-534
    9. Bernard Clement , Soumia Zaid: A new protocol to measure the effects of toxicants on daphnid–algae interactions, Chemosphere 2004, 55: 1429-1438
    10. Blindow I, Andersson G, Hargeby A, et al., Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology, 1993, 30: 159-167
    11. Bossuyt, B.T.A., Janssen, C.R., Long-term acclimation of Pseudokirchneriella Subcapitata (Korshikov) Hindak to different copper concentrations: changes in tolerance and physiology. Aquat. Toxicol. 2004, 68: 61-74.
    12. C.K. Yap, A. Ismail, H. Omar, S.G. Tan, Toxicities and tolerances of Cd, Cu, Pb and Zn in a primary producer (Isochrysis galbana) and in a primary consumer (Perna viridis), Environment International 2004, 29: 1097-1104
    13. Carignan R, Kalff J. Phosphorus sources for aquatic weeds: water or sediments?Science, 1980, 207: 987-988
    14. Carpenter S R, Kitchell J F. Trophic cascade and biomanipulation: interface of research and management. A reply to the comment by DeMelo et al. Limnology and Oceanography, 1992, 37: 208-213
    15. Carvalho L, Beklioglu M, Moss B. Changes in a deep lake following sewage diversion - a challenge to the orthodoxy of external phosphorus control as a restoration strategy? Freshwater biology, 1995, 34 (2): 399 - 410
    16. Cid, A., Herrero, C., Torres, E., Abalde, J., Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquat. Toxicol. 1995, 31: 165-174.
    17. Cooke G D. Advanced Treatment and Diversion of Wastewater Stormwater in Lake and Reservoir Restoration. Butterworth Boston, MA, 1986, Eloranta F., Phytoplankton structure in different types of lakes in central Finland. Holarct.,Ecol.,1986, 9: 214-224
    18. Cvetkovic, A.D., Samson, G., Couture, P., Popovic, R., Study of dependency between culture growth and photosynthetic efficiency measured by fluorescence induction in Selenastrum capricornutum inhibited by copper. Ecotox. Environ. Saf. 1991, 22: 127-132.
    19. David E. Slauenwhite, Peter J. Wangersky. Behavior of copper and cadmium during a phytoplankton bloom: a mesocosm experiment. Marine Chemistry, 1991, 32(1): 37-50
    20. De Melo R, France R , McQueen D J . Biomanipulation: hit or myth. Limnology and Oceanography, 1992. 37: 192-207
    21. De Oliveira-Filho, E.C., Lopes, R.M., Paumgartten, F.J.R., Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere 2004, 56: 369-374.
    22. EEC (European Economic Community). Methods for the determination of ecotoxicity: algal inhibition test. EEC Directive, 79/831, Annex V, Part C; 1987.
    23. Effler, S.W., Linen, S., Whole lake responses to low level copper sulphate treatment. Water. Research. 1980, 14: 1489-1499.
    24. Elder, J. f., Horne, A. J.,. Copper cycles and CuSO4 algicidal capacity in two California lakes, Environ Manage1978 , (1):17~30
    25. Everall N C, Lees D R, The use of barley-straw to control general and blue-green algal growth in a Derbyshire reservoir. Wat. Res. 1996, 30(2): 269-276
    26. Gary J. Jones and Philip T. Or, Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay, Water Research, 1994 , 28(4): 871-876
    27. Gervais F. Which factors controlled seasonal and spatial distribution of phytoplankton in Schlachtensee (Berlin, F. R.G.), Acch. Hycrobiol., 1991, 121: 43-65.
    28. Graneli W, Doris Solander. Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia, 1988, 170: 245-266
    29. Gumbricht T. Nutrient removal processes in freshwater submersed macrophyte systems. Ecological Engineering, 1993, 2: 1-30
    30. Hanson, M.J. and Stefan, H.G. Side effects of 58 years of copper sulphate treatment of the Fairmont Lakes, Wat. Res. Bull., 1984 , 20: 889-900.
    31. Harrison, W.G.A., Eppley, R.W., Renger, E.H., Phytoplankton nitrogen metabolism, nitrogen budgets and observation on copper toxicity; controlled ecosystem pollution experiment. Bull. Mar. Sci. 1977, 27 (1): 44-57.
    32. H′el`ene Roussel, Lo¨?c Ten-Hage, A long-term copper exposure on freshwater ecosystem using lotic mesocosms: Primary producer community responses, Aquat Toxicol 2007, 81: 168–182
    33. Horppila J, Peltonen H, Malinen T, et al. Top-down or bottom-up effects by fish: Issues of concern in biomanipulation of lakes. Restoration Ecology, 1998, 6 (1): 20-28
    34. Hosper S P, Meijer M L. Biomanipulation, will it work for your lake. A simple test for the assessment of chances for clear water, following drastic fish-stock reduction in shallow eutrophic lakes. Ecological Engineering, 1993, 2: 63-72
    35. Hosper S H. Stable states, buffers and switches: an ecosystem approach to the restoration and management of shallow lakes in Netherlands. Wat Sci Tech, 1998, 37 (3): 151-164
    36. Hrudey, S., Burch, S., Burch, M., Drikas, M., Greorgy, R., Remedial measures. 1999.
    37. Huang Z Q, Liao L P, Wang S L, Allelopethy of phenolics from decomposing stump-roots in replant Chinese fir woodland. Journal of Chemical Ecology, 2000, 26(9): 2211-2219
    38. Imamura N, Motoike I, Shimada N, et al. Phycologia, 2001, 54(7): 582-587
    39. In: Chorus, I., Bartram, J. (Eds.), Toxic Cyanobacteria in Water. A Guide to their Public Health Consequences, Monitoring and Management.Routledge, London, pp. 275-312.
    40. ISO (International Standardization Organization). Water Quality: Algal Growth Inhibition Test. Draft International Standard ISO/DIS 8692, ISO, Geneva, Switzerland; 1987.
    41. Ito H. Chrysophytes in the southern part of the Hyogo Prefecture, Japan. (Ⅰ) Chrysophyte flora in three ponds and a reservoir. Jap. J. Phycol., 1990a.38:327-332
    42. Ito H. Seasonal fluctuation of phytoplankton with special reference to the Chrysophytes in four ponds and lakes situated in the southern part of Hyogo Prefecture, Japan, Jap. J. Limnol., 1990b.51:283-305.
    43. Jacoby J M, Gibbons H L, Stoops KB. Response of a shallow, polymictic lake to buffered alum treatment, Lake Reservoir Manage, 1994, 10(2): 103-112
    44. Janse J H, Van Donk E, Aldenberg T. A model study on the stability of the macrophyte-dominated state as affected by biological Factors. Water Research,1998, 32(9): 2696-2706
    45. Jaynes M L, Carpenter S R. Effect of vascular and nonvascular macrophytes on sediment redox and solute dynemics. Ecology, 1986, 67: 875-882
    46. Jochimsen E M, Carmichael W W, An J S, et al. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med, 1998, 3, 38: 873-878
    47. Jones R C, Walti K, Adams M S. Phytoplank as a factor in decline of the submersed macrophyte. Myriophyllum spicatum L. in Lake Wingra Wisconsin. Hydrobiologia, 1983, 107: 213-219
    48. Jordi Solé, Emilio Garcia-Ladona, Marta Estrada. The role of selective predation in harmful algal blooms, Journal of Marine Systems, 2006, 62: 46–54
    49. Jorgensen S E. Fundamentals of Ecological Modelling. 2nd Edition. London: Elsever, 1994
    50. Jupp B P, Spence D H N. Limitations on macrophytes in a eutrophic lake Loch level 1. Effects of phytoplankton. J Ecol, 1977, 65: 175-186
    51. Kairesalo T, Laine S, Luokkanen E, et al. Direct and indirect mechanisms behind successful biomanipulation, Hydrobiologia, 1999, 395/396: 99-106
    52. Kaplan D, Stadler T, Algal Biotechnology, London: Elsevier Applied Science, 1988, p. 179
    53. Kasprzak P, Krienitz L, Loschel R. Biomanipwlation: a limnological in-lake ecotechnology of eutrophication management? Men Ist Ital idrobool, 1993, 52: 151-169
    54. Kenefick, S.L., Hrudey, S.E., Peterson, H.G., Prepas, E.E., Toxin release from Microcystis aeruginosa after chemical treatment. Water Sci. Technol. 1993, 27 (3-4), 433-440
    55. Kirpenko N I. Phytopathic properties of the toxin of bluegreen algae. Gidrobiol Zhurn, 1986, 22(1): 48-50
    56. L. Jeanine A. West, Karen Li, et al., Combined effects of copper and ultraviolet radiation on a microscopic green alga in natural soft lake waters of varying dissolved organic carbon content, Aquatic Toxicology 2003, 64: 39-52
    57. Lee RE. Chrysophyceae. In: Lee RE. (Ed.) Phycology. Cambridge University Press. 1980, 135-154
    58. Lee S O, Kato J, Takiguchi N, et al. Appl Environ Microbiol, 2000, 66(10): 4334-4339
    59. Libertad García-Villada, Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecide, Water Research, 2004, 38(8): 2207-2213
    60. Linder, M.C., Biochemistry of Copper. Plenum Press, New York. 1991: 34-78.
    61. McKnight, D. Chemical and biological processes controlling the response of a freshwater ecosystem to copper stress: a field study of the CuSO4 treatment of Mill Pond Reservoir, Limnol. Oceanogr., 1981, 26: 518-531
    62. McKnight, D.M., Chisholm, S.W., and Harleman, D.R.F., CuSO4 treatment of nuisance algal blooms in drinking water reservoirs, Environ. Manage., 1983, (7)311-320
    63. McQueen D J, Post J R, Mills E L. Trophic relationships in freshwater pelagic interactions. Verh Intern Verein Limnol, 1986, 23: 739-747
    64. Meador, J.P., The interaction of pH, dissolved organic carbon, and total copper in the determination of ionic copper and toxicity. Aquat. Toxicol. 1991, 19, 13-32.
    65. Mei Ma, Wangzhao Zhu: Accumulation, assimilation and growth inhibition of copper on freshwater alga (Scenedesmus subspicatus 86.81 SAG) in the presence of EDTA and fulvic acid, Aquatic Toxicology 2003, 63: 221-228
    66. Meijer M, Hosper H. Effects of biomanipulation in the large and Shallow Lake Wolderwijd, The Netherlands. Hydrobiologia, 1997, 342/343: 335-349
    67. Mitsch W J. Ecological engineering - the 72year itch. Ecological Engineering, 1998, 10: 119-130
    68. Morel, F.M.M., Principles of aquatic chemistry. John Wiley and Sons, New York, 1983.
    69. Moss B, Stersfield J, Irvine K. Developmant of Daphnid communities in Diatom and Cyanophyte Dominated lakes and their Relevance to lake Restoration by Biomanipulation. Applied Ecology, 1991, 28: 586-602
    70. Moss B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia, 1990, 200/ 201: 367-378
    71. Muscutt A D, Harris G L, Baily S W, et al. Buffer zones to improve water quality: a review of their potential use in U K agriculture. Agriculture, Ecosystem and Environment, 1993, 45: 59-77
    72. Naiman R J, Magnuson J J, Mcknight D M, et al. Freshwater Ecosystems and Their Management: A National Initiative. Science, 1995, 270: 584-585
    73. Natasha M. Franklin, Jennifer L. Stauber, Scott J. Markich, Richard P. Lim, pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.), Aquatic Toxicology 2000, 48: 275-289
    74. Nicholls KH, Carney EC and Robinson GW. Phytoplankton of an inshore area of Geogian Bay, Lake Huron, prior to reductions in phosphorus loading. J. Great Lakes Res., 1977.3: 79-92
    75. Nielsen, H.D., Nielsen, S.L., Photosynthetic responses to Cu2+ exposure are independent of light acclimation and uncoupled from growth inhibition in Fucus serratus (Phaeophyceae). Mar. Pollut. Bull. 2005, 51: 715-721
    76. OECD (Organization for Economic Development). Alga growth inhibition test. Test Guideline No. 201. OECD Guidelines for Testing of Chemicals, Paris; 1984.
    77. Okamoto, O.K., Colepicolo, P., Response of superoxide dismutase to pollution metal stress in the marine dinoflagellate Gonyaulax polyedra. Comp. Biochem. Physiol. 1998, 119C (1): 67-73.
    78. Ou d, Song L, Gan N and Chen W. Effects of microcystins on and toxin degradation by Poterioochromonas sp. Environ. Toxicol., 2005, 20(3):373-80
    79. Pandey, P.K., Singh, C.B., Cu uptake in a cyanobacterium: fate of selectedphotochemical reactions. Curr. Microbiol. 1992, 24: 35-39.
    80. Perrow M R, Meijer M, Dawidowicz P, et al. Biomanipulation in shallow lake: state of the art. Hydrobiologia, 1997, 342/ 343: 355-365
    81. PU Peimin. Physical-Biological Engineering for Removing Algae and Purifying Van der Does J, Verstraelen P, Boers P, et al. Lake restoration with and without dredging of phosphorus-enriched upper sediment layers. Hydrobiologia,1992, 233: 197-210
    82. PU Peimin, WANG Guoxiang, HU Chunhua, et al. Can we control the lake eutrophication by dredging, Eighth International Symposium on the Interactions between Sediments and Water, 1999, September : 13-17,
    83. Water Quality in Lake Taihu, China, in Successful Sino-European Science and Engineering on the Cao Yang Round Creek. Water Science and Technology, 1991, 23(1/3): 121-131
    84. PU Peimin, HU Weiping HU, YAN Jingsong, et al. A physico-ecological engineering experiment for water treatment in a hypertrophic lake in China, Ecological Engineering, 1998, (10): 179-190
    85. Reddy K R, DeBusk T A. State-of-the-art utilization of aquatic plant in water pollution control. Wat Sci Tech, 1987, 19(10): 61-79
    86. Rijstenbil, J.W., Poortvliet, T.C.W., Copper and zinc in estuarine water: Chemical speciation in relation to bioavailability to the marine planktonic diatom Ditylum brightwellii. Environ. Toxicol. Chem. 1992, 11: 1615-1625.
    87. Robinson N, Miura GA, Matson C F, et al. Characterization of chemically tritiaed microcyation - LR and its distribution in mice. Toxicon, 1989, 27: 1035-1042.
    88. Rosmary Milla′n de Kuhn, Christine Streb et al., Screening for unicellular algae as possible bioassay organisms for monitoring marine water samples, Water Research 2006, 40: 2695-2703
    89. S. L. Kenefick, S. E. Hrudey, H. G. Peterson, E. E. Prepas, Toxin release from Microcystis aeruginosa after chemical treatment Water Scientifical Technology, 1993, 27(2-3): 433-440
    90. Sanchez, I. and Lee, G.F. Environmental chemistry of copper in Lake Monona, Wat. Res., 1978, 12, 899-903.
    91. Sand-Jensen K, Jeppesen E, Nielsen, et al. Growth of macrophytes and ecosystem consequences in a lowland Danish stream. Freshwat Bio, 1989, 22: 15-32
    92. Sanders RW, Porter KG and Caron DA, Relationships between phototrophy andphagotrophy in the mixotrophophic Chrysophyte Poterioochromonas malhamensis. Microb. Ecol., 1990, 19: 97-109
    93. Sas H. Lake restoration by reduction by reduction of nutrient loading: expectations, experiences, extrapolations. Academi Verlag Richarz. St. Augustin, 1989
    94. Schafer, H., Wenzel, A., Fritsche, U., Roderer, G., Traunspuger, W., Long term effects of selected xenobiotica on freshwater green algae. Development of a flow-through test system. Sci. Tot. Environ. (Supplement, Part I), 1993, 735-740.
    95. Seip K L. Phoshporus and nitrogen limitation of algal biomass across trophic gradients. Aquatic Sciences, 1994, 56 (1):16-28
    96. Siver PA and Chock JS. Phytoplankton dynamics in a Chrysophycean lake. In Kristiansen, J, Anderson, RA(Eds.). Chrysophytes: Aspects and Problems. Cambridge University Press.1986.pp.317-328
    97. Siver PA and Harmer J. Seasonal periodicity of ChrysophyceaE and Synurophyceae in a small New England Lake: implications for paleolimnologcal research. J. Phycol., 1992.28:196-198
    98. Shapiro J. Biomanipulation: The Next Phase Making it Stable. Hydrobiologia, 1990, 200/ 201: 13-27
    99. Stauber, J.L., Florence, T.M., Mechanism of toxicity of ionic copper and copper complexes to algae. Mar. Biol. 1987, 94, 511-519.
    100. Sunda, W.G., Huntsman, S.A., Interactive effects of external manganese, the toxic metals copper and zinc, and light in controlling cellular manganese and growth in a coastal diatom. Limnol. Oceanogr. 1998a, 43: 1467-1475.
    101. Tarun K. Mal, Peter Adorjan and Andrea L. Corbett, Effect of copper on growth of an aquatic macrophyte, Elodea canadensis , Environmental Pollution, 2002, 120(2) :307-311
    102. Tilley D R, Brown M T. Wetland networks for stormwater management in subtropical urban watersheds. Ecological Engineering, 1996, 10(2): 226
    103. Technology Cooperation 1981-1995, Department of International Scientific and Technological Cooperation SSTC, Tsinghua University Press, 1996: 35-36
    104. Tilman D, Kilham K L & Kilham P. Phytoplankton community ecology: The role of limiting nutrients. Ann Rev Ecol Syst, 1982, 13: 349-372
    105. USEPA (United States Environmental Protection Agency). Toxic Substances Control Act Test Guidelines; Final Rules. Fed. Reg. 50, 797.1050, 797.1075,797.1060; 1985.
    106. Ueno Y, Nagata S, Tsutsumi T, et al. Detection of microcystins , a blue-green algae hepatotoxin , in drinking water sampled in Hai men and Fusui, endemic areas of primary liver camcer in china, by highly sensitive immunoassay. Carcinogenesis, 1996, 17: 1317-1321
    107. Verweij, W., Glazewski, R., De Haan, H., Speciation of copper in relation to its bioavailability. Chem. Spec. Bioavail. 1992, 4: 43-51
    108. Van Liere L, Parma S & Gulati R D. Working group water quality research Loosdreht Lakes: its history, structure, research programme, and some results, Hydrobiologia, 1992, 233: 1-9
    109. Wei Chen, Lin Li, Nanqin Gan, Lirong Song, Optimization of an effective extraction procedure for the analysis of microcystins in soils and lake sediments, Environmental Pollution 2006, 143: 241-246
    110. WHO 1996 Guidelines for Drinking Water Quality. Volume 2, Health Criteria and other Supporting Information. World Health Organization, Geneva, 973 pp.
    111. Welch E B, Barbiero R P, Bouchard D, et al. Lake trophic state change and constant algal composition following dilution and diversion. Ecological Engineering, 1992, 1: 173-197
    112. Wang C, Cai J, Jiaxin J, et al. The Effect of Water Purification Ecological Bradshaw A D. Restoration of mined lands using natural processes. Ecol Eng, 1997, 8: 255-269
    113. Wetzel R G. Factors influencing photosynthesis and excretion of dissolved organic matter by aquatic macrophytes in hard water lakes. Verh Int Verein Limnol, 1969, 17: 72-85
    114. Willemann, R. L., Development of an application of the ECOTOX System in the Estuarine Zone of the Ba?′a da Babitonga, SC, Brazil, Diplom, Friedrich-Alexander Universita¨ t, Erlangen-Nu¨ rnberg, pp. 2002, 1-72.
    115. Yang Yu,, Fanxiang Kong, Meilin Wang, Leilei Qian, Xiaoli Shi, Determination of short-term copper toxicity in a multispecies microalgal population using flow cytometry , Ecotoxicology and Environmental Safety 2007, 66: 49-56
    116. Yruela, I., Gatzen, G., Picorel, R., Holzwarth, A.R., Cu (II)-inhibitory effect on photosystem II from higher plants. A picosecond time-resolved fluorescence study. Biochemistry 1996, 35: 9469-9474.
    117. Yruela, I., Alfonso, M., Baro′n, M., Picorel, R., Copper effect on the proteincomposition of photosystem II. Physiol. Plant. 2000, 110: 551-557.
    118. Zhang XM and Watanabe MM. Grazing and growth of the mixotrophic chrysomonad Poterioochromonas malhamensis (Chysophyceae) feeding on algae. J. Phycol., 2001.37: 738-743
    119. Zhong-xing Wu, Nan-qin Gan, Qun Huang, Li-rong Song , Response of Microcystis to copper stress----Do phenotypes of Microcystis make a difference in stress tolerance?, Environ. Pollut. 2007, 147(2): 324 - 330
    120. 陈开宁,包先明,史龙新,陈伟民等,太湖五里湖生态重建示范工程——大型围隔试验,湖泊科学,2006,18(2):139-149
    121. 戴全裕,蒋兴昌,汪耀斌等,太湖入湖河道污染物控制生态工程模拟研究,应用生态学报,1995,6 (2): 201-205
    122. 和丽萍,利用化学杀藻剂控制滇池蓝藻水华研究,云南环境科学,2001,20(2):43-44
    123. 金送笛,李永函,倪彩虹等.菹草(Potamogeton crispus)对水中氮磷的吸收及若干影响因素.生态学报,1994,14(2):168-173
    124. 况琪军,吴振斌等,人工湿地生态系统的除藻研究,水生生物学报,2000, 24(6): 654-657
    125. 李锋民,胡洪营,植物化感作用控制天然水体中有害藻类的机理与应用,给水排水,2004,30(2)
    126. 李锋民,胡洪营,芦苇抑藻化感物质的分及其抑制蛋白核小球藻效果研究,环境科学,2004, 25(5): 89-92
    127. 李雪梅,杨中艺,简曙光等,有效微生物群控制富营养化湖泊蓝藻的效应,2000, 39(1): 81-85
    128. 李维炯,倪永珍. EM(有效微生物群) 的研究与应用,生态学杂志,1995,14(5): 58-62
    129. 林秋奇,王朝晖,杞桑,韩博平,水网藻(Hydriodictyon reticulatum)治理水体富营养化的可行性研究,生态学报,2001.5:814-819
    130. 刘建康,2002,高级水生生物学(M):科学出版社
    131. 刘鸿志,中国太湖和日本琵琶湖水污染防治状况比较,中国环境报,2001-07-13
    132. 刘文祥.人工湿地在农业面源污染控制中的应用研究,环境科学研究, 1997, 10(4): 15-19
    133. 刘振儒,田重威,壳聚糖复合粘土矿凝聚铜绿微囊藻的研究,环境工程,2004,22(3):80-82
    134. 陆长梅,张超英等,纳米级 TiO2 抑制微囊藻生长的实验研究,城市环境与城市生态,2002, 15(4): 13-15, 18
    135. 欧丹云,金藻 Poterioochromonas sp 对微囊藻的吞噬与毒性转化及其对微囊藻毒素的降解作用,中国科学院研究生院博士学位论文,2005
    136. 潘纲,张明明,闫海,邹华, 陈灏.黏土絮凝沉降铜绿微囊藻的动力学及其作用机理,环境科学,2003.24(5).
    137. 潘继征,李文朝,陈开宁,滇池东北岸生态修复区的环境效应——I. 抑藻效应,湖泊科学, 2004, 16(2): 141-148
    138. 濮培民,胡维平,逄 勇等,净化湖泊饮用水源的物理-生态工程实验研究,湖泊科学,1997.9 (2):159-167
    139. 濮培民,胡维平,王国祥等,太湖环境治理:蔡启铭主编,太湖环境生态研究,北京:气象出版社,1998:188-201
    140. 濮培民,王国祥,李正魁等.健康水生态系统的退化及修复——理论与技术及应用,湖泊科学,2001,13(3):199-210
    141. 邱东茹,吴振斌,刘保元,武汉东湖水生植被的恢复试验研究,湖泊学,1997,9(2):168-174
    142. 沈银武,刘永定,吴国樵,敖鸿毅,丘昌强,富营养湖泊滇池水华蓝藻的机械清除,水生生物学报,2004.28(2)
    143. 宋祥甫,邹国燕,吴伟明等,浮床水稻对富营养化水体中氮、磷的去除效果及规律研究,环境科学学报,1998,18 (5):489-494
    144. 舒金华,黄文钰,高锡芸等,1998,发达国家禁用(限用)含磷洗衣粉的措施,湖泊科学,1998.10 (1):90-96
    145. 孙文浩,俞子文,余叔文,城市富营养化水域的生物治理和凤眼莲抑制藻类生长的机理,环境科学学报,1989,9 (2):188-195
    146. 田玲,王九思,李玉金,水处理絮凝剂的絮凝原理及其研究进展,甘肃教育学院学报(自然科学版),2004,18(1):54-57
    147. 王国祥,濮培民,张圣照等,用镶嵌组合植物群落控制湖泊饮用水源区藻类及氮污染,植物资源与环境,1998,7(2):35-41
    148. 王海珍 刘永定 肖邦定 李敦海 陈德辉,围隔中鲢和菹草控藻效果及其生态学意义,水生生物学报, 2004, 28(2): 141-146
    149. 吴刚,席宇,赵以军,溶藻细菌研究的最新进展,环境科学研究,2002, 15(5): 43-46
    150. 何家莞,何振荣,俞家禄,有毒铜禄微囊藻对鱼和蚤的毒性,湖泊科学,1997,9: 49-57
    151. 王国祥,濮培民,若干人工调控措施对富营养化湖泊藻类种群的影响,环境科学,1999, 20 (2):71-74
    152. 王平,吴晓芙,李科林,胡曰利,有效微生物群(EM)抑藻效应研究,2004,17(3): 34-38
    153. 王平,吴晓芙,李科林,等,应用EM技术处理城市污水的中试研究,中南林学院学报,2003,(2): 52-57
    154. 吴玉树,余国莹.根生沉水植物菹草(Potamogeton crispus)对滇池水体的净化作用.环境科学学报, 1991, 11(4):411-416
    155. 吴振斌,邱东茹,贺锋,付贵萍,成水平,马剑敏,沉水植物重建对富营养化水体氮磷营养水平的影响,应用生态学报,2003,14(8):1351-1353
    156. 吴振斌,邓平,吴晓辉等,人工湿地小试系统藻类去除效果的变化研究,长江流域资源与环境,2005, 14(2): 229-232
    157. 尹黎燕,黄家权,沈强,李敦海,刘永定,微囊藻毒素在沉水植物苦草中的积累,水生生物学报,2004,28(2):151-154
    158. 尹澄清,兰智文,晏维金,白洋淀水陆交错带对陆源营养物质的截留作用初步研究.应用生态学报,1995, 6(1): 76-80
    159. 尹海川,林强,涂学炎等,纳米二氧化钛符合半导体光翠华抑制蓝藻生长,昆明理工大学学报(理工版),2005, 30(1): 52-56
    160. 余莉萍,尹华,彭辉,张娜,微生物絮凝剂对含藻微污染水的除浊性能研究,环境污染与防治,2004, 6:220-224
    161. 张圣照,王国祥,濮培民,太湖藻型富营养化对水生高等植物的影响及植被的恢复. 植物资源与环境,1998,7(4):52-57
    162. 张勇,席宇,吴刚,溶藻细菌杀藻屋子的研究进展,微生物学通报,2004, 31(1):127-131
    163. 周安娜,朱静,第三代絮凝剂——微生物絮凝剂,食品工业科技,2004.2:148-150
    164. 周霖,黄文氢等,用杀藻剂控制湖泊蓝藻水华的尝试,环境工程,1999,17(4):75-77
    165. 周明,董金荣,赵开弘,浸没式UV-C技术对铜绿微囊藻生长的抑制效应,华中师范大学学报(自然科学版), 2003,37(4): 549-552
    166. 赵以军,刘永定,有害藻类及其微生物防治的基础——藻菌关系的研究动态,水生生物学报,1996,20(2): 173-181
    167. 章宗涉,黄昌筑,固城湖生物资源利用和富营养化控制的研究. 海洋与湖沼,1996 , 27 (6): 651-656

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700