用户名: 密码: 验证码:
柄海鞘的生理能量学及对重金属的富集作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用室内静水培养系统,从生理生态学的角度对柄海鞘的摄食、代谢及能量收支进行了研究,建立了不同温度下柄海鞘的能量收支方程。应用半静态双箱式生物富集动力学模型,在室内研究了柄海鞘对Cd~(2+)、Pb~(2+)、Cu~(2+)、Zn~(2+)四种金属离子的生物富集作用,通过非线性拟合得到了相应的生物富集动力学参数。同时考察了四种重金属离子对柄海鞘代谢的影响,并探讨了柄海鞘及其代谢指标作为近海海域重金属污染指示物种和指标的可行性。
     柄海鞘代谢的研究结果表明:同一温度下,柄海鞘的各项代谢指标(耗氧率、排氨率、清滤率、摄食率和摄食强度)与体重的关系均可用幂函数R=aW~b表示;不同温度下同一规格柄海鞘的耗氧率随温度升高而增加,而排氨率、清滤率、摄食率、吸收率和摄食强度则在20~24℃出现峰值。
     柄海鞘的食物选择性研究表明,柄海鞘对较大规格的饵料藻(6μm左右)具有较强的选择性。当饵料藻浓度较低时,柄海鞘的摄食率和清滤率随饵料浓度增大呈幂函数增长,至10 mg POM·L~(-1)时达到最大值。在2.11~20.12 mg POM·L~(-1)的饵料浓度范围内,二项式R=aC~2+bC+c可用来表示清滤率及摄食率随温度的变化。
     对柄海鞘的能量收支进行研究,发现同一规格柄海鞘的日常代谢明显高于标准代谢,耗氧率平均增加16.7~34.9%,排氨率增加34.0~61.9%。摄食能、吸收能、代谢能、排泄能和排粪能均随体重的增加而增加。实验温度范围内(12~28℃),柄海鞘的代谢能随着温度的增加而逐渐增加,摄食能、吸收能、排泄能和排粪能则在20~24℃出现峰值。能量收支中,排泄能占3.8~9.4%,排粪能占27~54%,代谢能占10~78%;各种能量组分所占的比例随温度变化较大。
     柄海鞘对重金属具有一定的富集作用,其中对Cd~(2+)的富集作用明显高于Pb~(2+)、Zn~(2+),而对Cu~(2+)的富集作用很小。对四种离子的富集吸收速率常数k_1和富集系数BCF均随外部水体中金属离子浓度的增大而减小。富集平衡时,海鞘体内的金属含量(C_(Amax))与外部水体中金属离子的浓度基本成正相关。柄海鞘不同器官中的金属浓度依次为:生殖腺>消化腺>其他部分>外背囊。重金属在柄海鞘体内的生物学半衰期(B_(1/2))为10~24d。
     柄海鞘富集金属的同时,这些金属离子也对柄海鞘的代谢产生了一定的影响,其中实验浓度的Cd~(2+)、Pb~(2+)、Zn~(2+)均会使柄海鞘的耗氧率降低,0.1mg/L的Cu~(2+)对柄海鞘的呼吸代谢有一定的促进作用,高于0.5mg/L则抑制柄海鞘的呼吸代谢。低浓度的Cd~(2+)(0.01mg/L)、Cu~(2+)(0.1mg/L)、Zn~(2+)(0.1mg/L)和Pb~(2+)(0.01mg/L)可促进柄海鞘的氮排泄,而高浓度下则使柄海鞘的排氨率降低。Cd~(2+)对柄海鞘的清滤率表现出浓度相关的抑制作用;Zn~(2+)则表现出浓度相关的促进作用;0.1、0.5和1mg/L的Cu~(2+)及0.01和0.05mg/L的Pb~(2+)可以提高柄海鞘的清滤率,而2mg/L的Cu~(2+)和0.2mg/L的Pb~(2+)则会抑制柄海鞘的滤水作用。四种金属离子对柄海鞘的氧氮比均表现出浓度相关的抑制作用。
     同时,四种金属离子也会影响到柄海鞘体内的几种代谢酶的活力。四种金属离子对柄海鞘的碱性磷酸酶和Na~+-K~+-ATP酶活力均有浓度相关的抑制作用。柄海鞘暴露于Cd~(2+)和Pb~(2+)溶液后,SOD活力均表现出先降低后回升的趋势;低浓度的Cu~(2+)和Zn~(2+)(0.1mg/L)提高了该酶的活力,高浓度的Cu~(2+)和Zn~(2+)则会抑制SOD的活力。
     结果提示,柄海鞘可以作为近海海域重金属污染的指示物种,而以柄海鞘的几项代谢指标(O/N、碱性磷酸酶、Na~+-K~+-ATP酶和SOD活性)作为海域污染的生物指标,具有一定的可行性。
The ingestion and metabolism of ascidian Styela clava were studied in static water system, oxygen consumption rate, ammonia-N excretion rate, filtration rate (FR), clearance rate(CR), ingestion rates (IR), ingestion intension (II) and assimilation efficiency (AE) were measured under different temperatures, and the energy budget equations were established in lab. Based on the semi-static two-compartment model, the bioaccumulation of four heavy metals (Cd~(2+), Pb~(2+), Cu~(2+) and Zn~(2+)) by S. clava were investigated, the kinetic parameters (K_1, K_2, BCF, B_(1/2)) were obtained by non-linear regression. The effects of four heavy metal ions on metabolism were discussed at the same time. The feasibility of S. clara and its metabolizable parameters were explored used as markers of heavy metal pollution in offing marine space.
     The study on metabolism of S. clava showed that metabolizable parameters increased with increasing individual weight as a power function R=aW~b including oxygen consumption rate, ammonia excretion rate, filtration rate(FR), clearance rate(CR), ingestion rate(IR) and ingestion intensity(II); Oxygen consumption rate increased with increasing temperature, while peaks were found in the range of 20~24℃for ammonia excretion rate, FR, CR, IR, II and AE.
     The study of food selection indicated S. clava had selectivity to the sizes of particles and could retain more particles around 6μm. In low concentration range, FR and IR of S. clara increased with increasing algal cell concentrations as described by the equation R=aW~b until 10 mg POM·L~(-1). Within the range of diet concentration from 2.11 to 20.12 mg POM·L~(-1), the relationships between POM and CR as well as IR changed to quadratic as R=aC~2+bc+c.
     The study of energy budget revealed that routine metabolism of S. clava with same size was obviously higher than standard metabolism at different temperatures, oxygen consumption rate increased by 16.7~34.9%, while ammonia excretion rate increased by 34.0~61.9%. Ingestion energy, absorption energy, metabolism energy, excretion energy and feces energy all increased with increasing body weight at different temperatures. Respiration energy increased with increasing temperature within the range of temperature from 12℃to 28℃, but critical values were found at 20~24℃for energy of ingestion and absorption, and energy in feces and excretion. In the energy budget equations of different sized ascidians obtained at different temperatures, excretion energy shared a minimal fraction in ingestion energy (3.8~9.4%), the ratios of feces energy and respiration energy to ingestion energy were 27~54%and 10~78%, respectively. The proportion of various energies changed with temperature.
     S.clava could accumulate heavy metals, and its accumulative action of Cd~(2+) was distinctly higher than that of Pb~(2+) and Zn~(2+), while the accumulation of Cu~(2+) was quite small. The absorbing rate constant k_1 of four heavy metals increased with increasing metal concentration in water as well as bioaccumulation factors (BCF). When the accumulation achieved balance, metal concentrations in organism showed positive correlation to metal concentrations in water. Concentrations of four metals in different organs of S. clava were in the order: germen>digest gland>others>crust. The biological half-life (B_(1/2)) of four heavy metals were 10~24 days.
     S. clara's metabolism was influenced by heavy metal ions at the same time of accumulation. Cd~(2+), Zn~(2+) and Pb~(2+) could depress oxygen consumption rate of S. clava, 0.1mg/L Cu~(2+) could improve its respiratory metabolism, while restraint effect occurred when the concentration of Cu~(2+) exceeded 0.5mg/L. Ammonia excretion rates increased in 0.01mg/L Cd~(2+)、0.1mg/L Cu~(2+)、0.1mg/L Zn~(2+) and 0.01mg/L Pb~(2+), while obvious depress was observed when S. clara discovered in high concentration of metal. Cd~(2+) exhibited controlling effects on filtration rate of S. clava with concentration correlation, while Zn~(2+) boost FR with concentration correlation; 0.1, 0.5, 1 mg/L Cu~(2+) and 0.01, 0.05mg/L Pb~(2+) enhanced FR while 2 mg/L Cu~(2+) and 0.2mg/L Pb~(2+) depressed FR. Four heavy metals all showed restraining effect on O:N with concentration correlation.
     The four metal ions could affect energy of metabolizing enzymes in S. clara. Cd~(2+), Pb~(2+), Cu~(2+) and Zn~(2+) could depress the activities of alkaline phosphatase (AKP) and Na~+-K~+-ATPase with concentration correlation. The activities of SOD descended immediately and then increased again when S. clara exposed to Cd~(2+) and Pb~(2+). Cu~(2+) and Zn~(2+) could increase the activities of SOD at low concentrations, while restrain its activities at higher concentrations.
     The results suggested that S. clava and its metabolism parameters (O/N, AKP, Na~+-K~+-ATPase and SOD) could be used as markers of heavy metal pollution in offing marine space.
引文
[1] 顾谦群,俎成立,方玉春等.柄海鞘Styela clava化学成分的研究.中国海洋药物,2000,1:4~7
    [2] 郑成兴.黄、渤海沿岸污损生物中的海鞘类.动物学报,1988,34(2):180-188
    [3] 黄宗国等.中国海洋生物种类与分布.北京:海洋出版社.1994,649~652
    [4] 郑成兴.中国沿海海鞘的物种多样性.生物多样性.1995,3(4):201~205
    [5] 李太武,苏秀榕,迟庆宏等.柄海鞘生殖系统的组织学研究,辽宁师范大学学报(自然科学版),2000,23(3):301~302
    [6] Carlisle, DB. Styela mammiculata n. sp., a new species of ascidian from the Plymouth area. J. Mar. Biol. Ass. U.K., 1954, 33:329~334
    [7] Houghton, DR., RH. Millar. The spread of the ascidian Styela marnmiculata Carlisle. Nature, Loud, 1960,185,862
    [8] Millar RH. The identity of the ascidians Styela mammiculata Carlisle and Styela Clava Herdman. J. Mar. Biol. Ass. U.K., 1960, 39:509-511
    [9] 张继红,方建光,董双林.温度对柄海鞘和玻璃海鞘食物颗粒选择性的影响海洋水产研究,2001,22(2):47~51
    [10] 孙慧玲,方建光,匡世焕等.不同季节海鞘滤水率的测定.海洋水产研究,1996,17(2):103~107
    [11] 葛国昌,胶州湾海鞘类,Ⅱ.柄海鞘科Stylidae,山东海洋学院学报,1987,17(4):95-102
    [12] Svane IB, Young CM. The ecology and behaviour ofascidian Larnae, Oceanogr. Mar. Biol. Annu. Rev., 1989, 27:45~90
    [13] Bayne BL, RC Newell. Physiological Energetics of Marine Molluscs. In the mollusca. Vol. 4, Physiology, Part 1, edited by ASM Saleuddin & KM Wilbur, Academic Press, New York, 1983
    [14] Macdonald BA., Ward JE. Variation in food quality and particle selectivity in the sea scallop Placopecten mogellanieuv, Mar. Ecol. Prog. Scr., 1994, 1118, 251-264.
    [15] Jψrgensen, CB. Ciliary and mucus-net filter feeding, with special reference to fluid mechanical characteristics. Mar. Ecol. Prog. Ser., 1984, 15,283-292.
    [16] Sprung M., Rose U. Influence of food size and food quantity on the feeding on the mussel Dreissena polymorpha. Oecologia, 1988, 77:526-532
    [17] Nakammura M, Yamamuro M, Zshikana M, et al. Role of the bivalve Corbicula japonica in the nitrogen cycle in a mesohaline lagoon. Mar Biol, 1988,99:369~374
    [18] Riiggard HU. Efficiency of particle and filtration rates in six species of northeast American bivalves. Mar. Ecol. Prog. Ser. 1988,45:217-223
    [19] Winberg G.G. Rate of Metabolism and food requirements of fishes. Fish. Res. Bd. Can. Translation Series, 1956,194:1960
    [20] Crisp D.J. Energy flow measurements. In Holme, N. A. and Mclntyre. A.D. eds., Methods for study of marine benthos, IBP Handbook 16. Blackwell Scientific. Oxford., 1984. 285-369
    [21] Griffiths CL., Griffiths RJ. Bivalvia in: TL Pandian and EJ Vernberg (Editors) , Animal Energetics, Vol2, Academic Press. New York, 1987, p:1-88
    [22] Warren CE., Davis GE. Laboratory students on the feeding bioenergetics and growth of fish. In "The biological basis of fresh fish production" (SD. Gerking, editors) , Balackwell Scientific Publications, Oxford, England, 1967, p: 175-214.
    [23] 杨红生,张福绥.浅海筏式养殖系统贝类养殖容量研究进展.水产学报,1999,23(1):84-90
    [24] Widdows J., Bayne B.L. Temperature acclimation ofMytilus edulis with reference to its energy budget. J. Mar. Biol. Assoc. U. K., 1971, 51: 827-843.
    [25] Dame RF. The ecological energies of growth, respiration and assimilation in the intertidal American oyster Crass virginica Mar. Biol, 1972, 17:243-250
    [26] Buxton CD. Newell RC., Field JG. Response-surface ananlysis of the combined effects of exposure and acclimation temperature on filtration, oxygen consumption and scope for growth in the oyster Ostrea edulis. Mar. Ecol. Prog. Ser., 1981, 6:73-82
    [27] Jespersen H. Bioenergetcs in veliger larvae of Mytilus edulis L. phelia, 1982, 21 (1) : 101-113.
    [28] Vanharen RJF. Application of a dynamic energy budget model to Mytilus edulis (L) , Neth. J. Sea. Res.,1993, 2: 119-133.
    [29] Whyter JNC, Assessment of biochemical composition and energy reserves in larvae of the scallop Patinopecten yessoensis, J. Exp. Mar. Biol. Ecol .,1987,113:113-124
    [30] 董双林.日本沼虾生理生态学研究Ⅰ.温度和体重对对能量收支的研究.海洋与湖沼,1994,25(3):238-2420
    [31] Brown PB. Apparent digestible energy coefficients and associative effects in practical diets for red swamp cray fish. J. World Aqua. Socie., 1989, 20 (3) :122-126.
    [32] Villarreal H. A partial energy budget for the Australian cray fish Cherax tenuimanus, J. of The World. Aqua. Socie.,1991,22 (4) : 252-259.
    [33] Rosas. Energy balance of Callinecte scathbunae in floating cages in a tropical coastal lagoon, J. of The World Aqua. Socie.,1993, 24 (1) :71-79.
    [34] Bayne BL. Hawkins AJS, Navarro E. Feeding and digestion by the musses Mytilus edulis (L.) in mixtures of silt and algal cells at low concentration. J. Exp. Mar. Biol. Ecol, 1987, 111:1-22
    [35] Navarro JM. The effect of salinity on the physiological ecology ofChromytilus edulis (Molina,1782) (Bivalvia: Mytilidae) . J. Exp. Mar. Biol. Ecol., 1988, 122:19-33
    [36] Ralph R. Respiration, energy balance and development during growth,and starvation of Carclnus maenas L. larvae (Decapoda: Portunidaae) , 1983, 69:105-1280
    [37] Carfoot, TH. Animal energetics, Academic Press, New York, 1987
    
    [38] Elliott JM. Body composition of brown (Salmo trutta L.) in relation to temperature and ration size. J. Anim. Ecol. 1976, 45: 273-289
    
    [39] 常亚青.贝类生物能量学研究进展.海洋科学,1996,6:25—30
    [40] Navarro E. Natural sediments as a food source for the cockle Cerastoderma edule (L. ) : effect of vaviable particle concentration on feeding, digestion and the scope for growth, J. Exp. Mar. Biol. Ecol., 1992, 156:69-87
    [41] Brousseau DT. Spawning cycle, fecundity, and recruitment in a population of soft-shell clam Mya arenaria from Cape Ann, Massachusetts. Fish Bull., 1978,76:155-166.
    [42] Winter JE. A review on the knowledge of suspension-feeding in Lamellibrabchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture, 1978,13:1-33
    [43] Vahl O. Pumping and oxygen consumption rates of Mytilus edulis L. of different sizes. Ophelia, 1973,12:45-52
    [44] Bayne BL., Iglesias JIP., Hawkins AJS, et al. Feeding behaviour of the mussel Mytilus edulis: responses to variation in quantity and organic content of the seston. J. Mar. Biol. Ass. UK., 1993, 73:813-829
    [45] Perez, CA. and Gonzalez, R. La filtracion del mejillon (Mytilus edulis L.) en laboration. Cuad. Ar. Cienc. Mar., Semin. Estud. Galegos, 1983,1:427-437
    [46] Laing I., Utting SD., Kilada RWS. Interactive effect of diet and temperature on the growth of iuvenile clams. J. Exp. Mar. Bio. Ecol., 1987,113:23-28
    [47] Wilbur AE. and Hilbish TJ. Physiological energetics of the ribbed mussel Geukensia demissa in response to increased temperature. J. Exp. Mar. Bio. Ecol., 1989,131:161-170
    [48] Erkom SC, Griffiths CL. Physiological energetics of four African mussel species in relation to body size, ration and temperature. Comp. Biochem. Physiol., 1992,101 A:779-789
    
    [49] Elvin OW., Gonor. JJ. The thermal regime of an intertidal Mytilus californianus Conad population on the central Oregon coast. J. Exp. Mar. Biol. Ecol., 1979, 39:265-279
    [50] Beiras R., Perez Camacho A., Albentosa M. Influence of food concentration on energy balance and growth performance of venerupis Pllastra seed reared in an open-flow system. Aquaculture, 1993. 116: 353-365
    [51] Albentosa, M. Determination of optimal conditions for growth of clam (Venerupis pullastra) seed. Aquaculture. 1994. 126:315-328
    [52] Bacon GS., Macdonald BA., Ward JE. Physiological responses of infanual (Mya arenaria) and epifaunal (Placopecten magellanicas) bivalves to variations in the concentration and quality of suspended particles. I. Feeding activity and selection. J. Exp. Mar. Biol. Ecol. 1998.219:105-125
    [53] Wong WH., SG Cheng. Feeding ehaviour of the green mussel, Perma viridis (L.) : Responses to variation in seston quantity and quality. J. Exp. Mar. Biol. Ecol., 1999, 236:191-207
    [54] Iglesis JIP, Urrutia MB, Navarro E. et al. Measuring feeding and absorption in suspension-feeding bivalves: an appraisal of the biodeposition method. J. Exp. Mar. Bio. Ecol., 1992, 219:71-86
    [55] Bricelj VM., Malouf RE. Influence of algal and suspended sediment concentrations on the feeding physiology of the hard clam Mercenaria mercenaria. Mar. Biol, 1984, 84:155-165
    [56] Cranford. Particle clearance and absorption of phytoplankton and detritus by the sea scallop Placopecten magellanicus. J. Exp. Mar. Bio. Ecol., 1995,137:105-121
    [57] Bruce AM., Geogory S.B., Evan J.E. Physiologiucal responses of infaunal (Mya arenaria) and epifaunal (Placopeeten magellanicus) bivalves to variations in the concentration and quality of suspended particles Ⅱ. Absorption efficiency and scope for growth. J. Exp. Mar. Biol. Ecol., 1998, 219:127-141
    [58] Widdows J. The effect of fluctuating and abrupt changes in salinity on the performance of Mytilus edulis. In Marine Biology of Polar Regions and Effects of Stress on Marines Organism. Edited by Gray, JS., Christiansen, ME. Wiley Interscience, 1985, 555-566
    [59] Hildreth DJ., Crisp, DJ. Acorrected formula for calculation of filtration rate of bivalve mollusks in an experimental flowing system, J. Mar. Biol.,Assoc. U.K., 1976, 56:111-120
    [60] Kuang S.H., Fang J.G., Sun H.L. & Li E Seasonal variation of filtration rate and assimilation efficiency of scallop Chlamys farreri in Sanggou Bay. Oceanologia et Linmologia Sinica 1996, 27,194~199.
    [61] Jψrgensen C .B., Larsen PS., Riisgard HU. Effects of temperature on the mussel pump. Mar. Ecol. Prog. Ser. 1990,64:89-97
    [62] 翟平阳,刘巍.松花江甲基汞的生态污染及其防治研究.水资源保护,1995,3:1-7.
    [63] 王冬梅,冯军.锦州市近岸海域汞污染状况调查及防治对策.辽宁工学院学报,2001,21(3):58-59.
    [64] 林秀武.20年来第二松花江甲基汞污染危害渔民健康的研究进展.环境与健康杂志.1995,12(5):238-240.
    [65] Wu RSS. Eutrophication, trace organics and water-born epathogens: pressing problem and challenge. Marine Pollution Bulletin., 1999, 39:11-22.
    [66] Wang WX, Dei RCH., Yan X. Cadmium uptake and trophic transfer in coastal plankton under contrasting nitrogen regimes. Mar. Ecol. Prog. Ser, 2001,21:293-298
    [67] Xue HB., Laura S. Free cupric ion concentration and Cu speciation in a eutrophic lake. Limnol. Oceanogr., 1993, 38 (6) :1200-1213.
    [68] 高素兰.营养盐和微量元素与黄海赤潮的相关性.黄渤海海洋,1997,15(2):59-63
    [69] 华泽爱.赤潮灾害,北京:海洋出版社,1994:50-58
    [70] Yin KD, Qian PY, Madline, C.S., et al. Shift from P to N limitation of phytoplankton growth across the Pear River estuarine plume during summer. Marine Ecology Progress Series. 2001, 221:17-28
    [71] Eisler R. Trace metal concentrations in marine organism. New York: Pergamon Press. 1981.
    [72] Luoma SN., Bryan G.W. A statistical study f environmental factors controlling concentration of heavy metals in the burrowing bivalve Scrobicularia plana and the polychaete Nereis diversicolor. Estuar. Coast. Shelf. Sci., 1982,15:95-108
    [73] Rainbow PS. Trace metal accumulation in marine invertebrates: marine biology or marine chemistry? J. Mar. Bin. Ass. U.K, 1997, 77:195-210
    [74] Wang WX., Dei RCH. Metal uptake in a coastal diatom influenced by major nutrients (N,P, Si), Water Research, 2001, 35:315-321
    [75] 王公德.关于生物富集的几个问题.生物学杂志,1993,5:31-32
    [76] Geyer H., Sheehan P. Prediction of ecoxicological behaviour of chemicals relationship between physico-chemical properties and bioaccumulation of organic chemicals in the mussel mytilus. Chemosphere, 1982, 11 (19) :1121-1134
    [77] Adamo RD. Pelosi S. Bioaccumulation and biomagnification of polycycli aromatic hydrocarbons in aquatic organisms. Marine Chemistry, 1997, 56:45-49
    [78] Butte W. Mathematical description of uptake, accumulation and elimination of xenobiotics in a fish/water system. In Bioaccumulation in Aquatic System, ed. R. Nagel & R. Loskill. VCH Verlagsgesellsehaft. Weinheim. Germany, 1971
    [79] Phillips DJH. Quantitative aquatic biological indicators: Their use to monitor trace metal and organochlorine pollution. Applied Science Publishers, London, 1980.
    [80] Lee RF, GH Dobbs. Uptake, metabolism and discharge of polycyclic aromatic hydrocarbons by marine fish. Mar. Biol., 1972.17 (2) : 201-208
    [81] Goldberg ED., Koide M., Hodge V., et al .U.S. mussel watch:1977-1978 results on trace metals and radionuclides. Estuar. Coast. Shelf. Sci, 1983, 16:69-93
    [82] Goldberg, ED., Bowen, VT, Farrington, JW, et al .The mussel watch.Environ. Conserv, 1978, 5:101-125
    [83] 陆超华,谢文造.近江牡蛎作为重金属Cu监测指示生物的研究.中国水产科学,1998,17(2):17-23
    [84] 陆超华,谢文造.近江牡蛎作为重金属镉污染指示生物的研究.中国水产科学,1998,5(2):79-83
    [85] 陆超华.近江牡蛎作为重金属污染生物指示种的初步研究.台湾海峡,1994.13(1):14-20
    [86] Sunda WG, Engle DW, Thoutte RM. Effects of chemical speciation on the toxicity of cadmium to the grass shrimp Palaemonetes pugio: importantce of free cadmium ion. Environ Sci Tech, 1978, 12: 409-413
    [87] Zamuda CD, Wright DA, Smucker RA. The importance of dissolved organic compounds in the accumulation of copper by the American oyster, Crassostrea vrginica .Mar Envion Res, 1985,16: 1-12
    [88] Bjerregaard P, Depledge MH. Cadmium accumulation in Littorina littorea, Mytilus edulis and Carcinus maenas: the influence of Salinity and cadmium ion concentrations. Mar Biol, 1994, 119:385-395
    [89] 阎铁.海洋污染生物监测中指示生物的选择.海洋环境科学.1989,8(1):50-55
    [90] Strong CR, Luoma SN. Variations in the correlation of body size with concentrations of Cu and Ag in the bivalve Macoma balthica. Can J Fish Aquat Sci, 1981, 38:1059-1064
    [91] Wang WX, Fisher NS. Modeling the influence of body size on trace element accumulation in the mussel Mytilus edulis. Mar Ecol Prog Ser, 1997, 161:103-115
    [92] 陈金堤等.九龙江河口海区生物体内汞、铜、铅、锌和锡含量的初步调查.厦门大学学报,1981,(4):458-467.
    [93] Byeong-Gweon Lee, William G.Wallace, Samuel N.Luoma. Uptake and loss kinetics of Cd, Cr and Zn in the bivalves Potamocobula arnurensis and Macoma balthica: effects of size and salinity. Mar Ecol Prog, 1998, 175:177-189
    [94] 张毅,唐晓冬,杨春和.渤海湾砷的生物富集及其在底泥中的积累.海洋环境科学,1990,9(4):24-29
    [95] Fowler SW., Heyraud M., La Rosa J. Factors affecting methyl and inorganic mercury dynamics in mussels and shrimp. Mar Biol, 1978, 46:267-276
    [96] Nieboer E., Richardson, DHS. The replacement of the nondescript term "heavy metal" by a biologically and chemically significant classification of metal ions. Environ. Pollut. B, 1980, 1:3-26.
    [97] Wang WX., Fisher NS. Effects of calcium and metabolic inhibitors on trace element uptake in two marine bivalves. J Exp Mar Biol Ecol, 1999, 236:149-164
    [98] Wang WX.,Dei RCH. Factors affecting trace element uptake in the black mussel Septifer virgatus Weis JS. Effect of zinc on regeneration in the fiddler crab, Uca pugilator, and its interactions with methylmercury and cadium. Marine Envlron.Res, 1980, 3:249-255
    [99] Weis JS. Effect of zinc on regeneration in the fiddler crab, Uca pugilator, and its interactions with methylmercury and cadium. Marine Envlron.Res, 1980, 3:249-255
    [100] Attar EN., Maly EJ. Acute toxicity of cadmium, zinc, and cadmium/zinc mixtures to Daphnia magna. Arch.Environ.Contam.Toxicol, 1982, 11:291-296
    [101] Cossing AR.,Bowler K. Temperature biology of animals. Chapman and Hall, London, 1987.
    [102] Bervoets L., Blust R., Verheyen R. Efect of temperature on cadmium and zinc uptake by the midge larvae Chironomus riparius. Arch. Environ. Contain. Toxicol., 1996, 31:502-511
    [103] White SL., Rainbow, PS. Regulation of zinc concentration by Palaemon elegans (Crustacea: Decapoda) : Zn flux and effects of temperature, zinc concentration and moulting. Mar. Ecol. Prog. Set, 1984, 16:135-147.
    [104] Nugegoda, D., Rainbow, PS. The effect of temperature on zinc regulation by the decapod crustacean Palaemon elegans. Ophelia, 1989,27:17-30.
    [105] Inza B., Ribeyre F., Boudou A. Dynamics of cadmium and mercury compounds (inorganic mercury or methylmercury) : Uptake and depuration in Corbicula fluminea: Effects of temperature and PH. Aqua Toxi, 1998,43:273-285
    [106] Denton GRW, Burdon-Johns C. Influence of temperature and Salinity on the uptake, distribution and depuration of mercury, cadmium and lead by the black-lip oyster Saccostrea echinatao. Mar Biol, 1981, 64:317-326
    [107] Watkins B., Simkiss K. The effect of oscillating temperatures on the metal ion metabolism of Mytilus edulis. J. Mar. Biol. Ass. U.K,1988,68: 93-100.
    [108] Moller V., Forbes V.E., Depledge M.H. Influence of acclimation and exposure temperature on the acute toxicity of cadmium to the freshwater snail Potamopyrgus antipodarum (Hydrobiidae) . Environ. Toxicol. Chem, 1994,13:1519-1524.
    [109] Tessier L., Vaillancourt G, Pazdemik L. Temperature effects on cadmium and mercury kinetics in freshwater molluscs under laboratory conditions. Arch. Environ. Contam. Toxicol,1994, 26:179-184.
    [110] Zamuda CD, Sunda WG Bioavailability of dissolved copper to the American oyster, Crassostrea virginica: important of chemical speciation. Mar Biol, 1982, 66:77-82.
    [111] Blust R., Kockelbergh E., Baillieul M. Effects of salinity on the uptake of cadmium by the brine shrimp Artemia franciscana Mar Ecol Prog Ser, 1992, 84: 245-254
    [112] Campbell, RGC. A critique of the free-ion activity model. In: Tessier, A., Turner, D.R. (Eds) , Metal Speciation and Bioavilability in Aquatic Systems. John Wiley, Chichester, 1995
    [113] Claisse D. Chemical contamination of French coasts-the results of a ten years mussel watch. Mar. Pollut. Bull. 1989,20 (10) :523-528 .
    [114] Fischer H. Influence of temperature, salinity, and oxygen on the cadmium balance of mussels Mytilus edulis. Mar Ecol Prog Set, 1986,32:265-278
    
    [115] 吴玉霖等.毛蚶对汞积累和排出的实验室试验.海洋与湖沼,1983,14(1):30-34
    
    [116] De Wolf P. Mercury content of mussels from West European coast. Mar Pollut Bull, 1975,6:61-63
    [117] Cunningham PA., Tripp MR. Factors affecting the accumulation and removal of mercury from tissues of the American oyster Crassostrea virginica. Mar Biol, 1975, 31:311-320
    [118] Boyden CR. Trace element content and body size in mollusks. Nature, 1974,251:311-314
    [119] Schulz-Baldes M. Lead uptake from sea water and food, and lead loss in the common mussel Mytilus edulis. Mar Biol, 1973, 25:177-193
    [120] Graham D. Trace metal levels in intertidal mollusks of California. Veliger, 1971, 14:365-372
    [121] Simpson RD. Uptake and loss of zinc and lead by mussels (Mytilus edulis) and relationships with body weight and reproductive cycle. Mar Pollu Bull, 1979, 10:74-78
    [122] 许澄源.大连湾贻贝对砷积累的调查研究.海洋环境科学,1983,2(2):60-64
    [123] 胡勤海,胡志强等.稀土元素钥在草鱼体内分布与富集.农业环境保护,1996,15(5):218-220.
    [124] 阮晓,郑春霞.重金属在罗非鱼、淡水白绍和鲤鱼体内的蓄积.农业环境保护,2001,20(5):351-355.
    [125] Tran D., Boudou A,Massabuau J.C. Mechanism for maintaining consumption under varying oxygenation levels in the freshwater clam Corbicula fluminea. Can. J. Zool, 2000,78:2027-2033
    [126] Routleg MH, Nilsson, GE., Renshaw, GMC. Exposure to hypoxia primes the respiratory and metabolic responses of the epaulete shark to progressive hypoxia. Comp. Biochem. Physiol, 2002, 131 A: 313-321.
    [127] Wang WX.,Widdows J. Metabolic responses of the common mussel Mytilus edulis to hypoxia and anoxia. Mar. Ecol. Prog. Set. 1993, 95: 205-214.
    [128] Mcintyre AD. Ecological Toxicology Research-Effects of Heavy Metal and Organohalogen Compounds. Plenum Press, New York, 1975
    [129] Ritterhoff J., Zauke G.-P. Calibration of the estuarine amphipods, Gammarus zaddachi Sexton (1912), as biomonitors: toxicokinetics of cadmium and possible role of inducible metal binding proteins in Cd detoxification. Aquat. Toxicol., 1996, 34,351-369
    [130] Zauke Gerd-Peter. Validation of estuarine gammarid collectives (Amphipoda: Crustacea) as biomonitors for cadmium in semi-controlled toxicokinetic flow-through experiment. Environmental Pollution., 1995,90 (2) , pp. 209-219.
    [131] OECD. Guideline for Testing Chemicals: Bioaccumulation No.305 A-E.Organizatin for Economic Cooperation and Development, Paris, France, 1981
    [132] Butte W., Willing A., Zauke GP.. Bioaccumulation of phenols in zebrafish determined by a dynamic flow through test. In QS, 4R in Environmental Toxicology-Ⅱ, ed. K.L.E.Kaiser.D. Reidel.Dordrecht. The Netherlands, 1987
    [133] Janssen MPM., Bruins A. Comparison of cadmium kinetics in four soil arthropod species. Arch. Environ. Contam. ToxicoL, 1991, 20,305-12
    [134] Wang XL, Shigeki H, Masataka W., et al. Modelling the bioconcentration of hydrophobic organic chemicals in aquatic organisms. Chemo sphere, 1996, 32:1783-1793
    [135] 汪小江,黄国庆等.生物富集系数的快速测定方法.环境科学,1991,10(4):25-27
    [136] 赵元慧,杨常岩等.有机化合物生物富集因子快速测定方法.环境化学,1994,13(3):203-205
    [137] 薛秋红,孙耀.紫贻贝对石油烃的生物富集动力学参数的测定.海洋水产研究,2001,22(1):32-36
    [138] 黄美珍.汞、铜等重金属对长毛对虾受精卵及幼体发育的影响.福建水产,1991,(2):9-14.
    [139] 袁有宪,张渡溪.重金属离子对中国对虾幼体的影响及其消除方法比较.海洋学报,1993,15(3):80-87.
    [140] 刘金栋.金鱼体中汞的排出.淡水渔业,1981,6:33-34.
    [141] 刘发义.铜在中国对虾体内的积累和致毒效应.海洋与湖沼,1988,19(2):133.
    [142] Sirnkiss K., Taylor MG.. Transport of metals across membranes. In: Tessier A, Turner DR (Eds) Metal Speciation and Bioavailability in Aquatic Systems. John Wiley and Sons, Chichester, 1995, pp. 2-44.
    [143] SirnkissK., Taylor MG. Metal fluxes across the membrane of aquatic organisms. Rev. Aquat. Sci, 1989, 1:173-188
    [144] Pan, JF., Wang, WX. Comparison of the bioavailability of Cr and Fe bound with natural colloids of different origins and sizes to two marine bivalves. Mar. Biol., 2002, 141:915-924
    [145] Endo T. Transport of cadmium across the apical membrane of epithelial cell lines. Comp. Biochem. Physiol, 2002,131C :223-229.
    [146] Roesijadi G, Unger ME. Cadmium uptake in gills of the mollusc Crassostrea virginica and inhibition by calcium channel blockers. Aquat. Toxicol, 1993, 24: 195-206.
    [147] Pigman AE., Blanchard J., Laird HE. A study of cadmium transport pathways using the Caco-2 cell model. Toxicol. Appl. Pharmacol, 1997,142:243-247.
    [148] Limaye DA., Shaikh ZA. Cytotoxicity of cadmium and characteristics of its transport in cardiomyocytes. Toxicol. Appl. Pharmacol, 1999, 154:59-66.
    [149] 吴玉霖,赵鸿儒,侯兰英.铜对对虾的毒性及在其体内的积累、分布和排出.海洋环境科学,1988,7(2):1-4
    [150] 孙振中,林惠山,姚根娣等.重金属等若干污染因子对克氏原鳌虾的影响.水产科技情报,1995,22(3):107-110
    [151] 戴习林,减维玲,杨鸿山等.Cu~(2+),Zn~(2+)、Cd~(2+)对罗氏沼虾幼虾的毒性作用.上海水产大学学报,2001,10(4):298-302
    [152] 王丹.辽河下游主要污染物对河蟹不同发育期的毒性研究.水产科学,1993,1:7-10
    [153] 王晓蓉.环境化学.南京:南京大学出版社.1993
    [154] 王俊,张义生.化学污染物与生态效应.北京:中国环境科学出版社,1993
    [155] 杨居荣,黄翌.植物对重金属耐性机理.生态学杂志,1994,13(6):20-26
    [156] Dhavale DM. Environmental variables and heavy metal toxicity in crab Scylla serrata. Bull.Mar.Sci., 1990, 46(1):244-245
    [157] 孔繁翔.环境生物学.北京:高教出版社,2000
    [158] 徐立红,张甫元,陈宜瑜.分子生态毒理学研究进展及其在水环境保护中的意义.水生生物学报,1995,19(2):171-185
    [159] 林凡,任宏伟,茹炳根.鱼体内金属硫蛋白与水环境关系的研究.北京大学学报(自然科学版),2001,37(6):779-784
    [160] Manuela Martinez, Jose Del Ramo, Amparo Torreblanca, et al. Effects of cadmium exposure on zinc levels in the brine shrimp Artemia parthenogenetica. Aquaculture, 1999,172:315-325
    [161] Per-olav Moksnes, Ulf Lindahl, Carl Haux. Metallothionein as a bioindicator of heavy metal exposure in the tropical shrimp,Penaeus vannamei:a study of dose-dependent induction. Marine Environmental Research, 1995,39:143-146
    [162] Marius Brouwer, Thea Hoexum Brouwer.Biochemical defense mechanisms against copper- induced oxidative damage in the blue crab, callinectes sapidus. Archives of biochemistry and biophysics,1998, 351(2):257-264
    [163] 吴坤.三种苯胺衍生物体外对大鼠脾淋巴细胞膜毒性作用比较.工业卫生与职业病,1993,10(2):67
    [164] 刘键铎,卓鉴波.氧化镉对大鼠肝线粒体和微粒体膜功能的影响.中国药理学和毒理学杂志,1994,8(1):60-63
    [165] 吴坚.微量金属对海洋动物的生物化学效应.海洋环境科学,1992,10(2):58-64
    [166] 汤鸿,李少著,王桂忠等.铜、锌、镉对锯缘青蟹仔蟹代谢酶活力影响的实验研究.厦门大学学报,2000,39(4):521-525
    [167] 赵维信,魏华,贾江等.镉对罗氏沼虾组织转氨酶活力及组织结构的影响.水产学报,1995,19(1):21-27
    [168] 卢敬让,赖伟,堵南山.镉对中华绒鳌蟹肝R-细胞亚显微结构及血清谷丙转氨酶活力的影响.青岛海洋大学学报,1989,19(2):61-67
    [169] Towel DW .Role of Na~+-K~+-ATPase in ionic regulation by marine and estuarine animals. Mar Biol Lett, 1981,2(1):107-122
    [170] K. Haya, BA. Wajwood. Adenylate energy charge and ATPase activity:potential biochemical indicators of sublethal effects caused by pollutants in aquatic animals. Adv Environ Sci Technol,1983, 13:307-333
    [171] Daksna M, Dhavale.V, B Masurekar et al.Cadmium induced inhibition of Na~+-K~+-ATPase activity in tissues of crab Scylla serrata (Forskal).Bull Environ Contam Toxicol, 1988,40:759-763
    [172] 方展强,张风君,郑文彪等.多氯氛联苯对剑尾鱼Na~+-K~+-ATPase活性的影响.水产学报,2004.28(1):89-92.
    [1] GB17378-1998,海洋监测规范
    [2] 国家环境保护总局编,水和废水监测分析方法(第四版).北京:中国环境出版社,2002
    [3] Coughlan J.I.P., Navarro E., Jorna P.A. & Ibarrola I. Feeding particle selection and absorption in cockles Cerastoderma edule L exposed to variable conditions of food concentration and quality. J. Exp. Mar. Biol. Ecol., 1992,162, 177~198.
    [4] Jψrgensen CB., Larsen PS., Riisgard HU. Effects of temperature on the mussel pump. Mar. Ecol. Prog. Ser., 1990, 64, 89-97
    [5] Conover RJ. Assimilation of organic matter by zooplankton. Limnol. Oceanogr., 1966, 11:338-345
    [6] Gnaiger E. Appendix C. Calculation of energy and biochemical equivalents of respiratory oxygen consumption, in Polarographic oxygen seasons: Aquatic and Physiological Applicantions. E. Gnaiger and H. Forstner, eds. Springer. New York, 1983, pp 337~345
    [7] Widdows J. et al. Relationship between seston, available food and feeding activity in the common mussel Mytilus edulis. Mar. Biol., 1979, 50:195-207
    [8] Widdows J., Bayne B.L. Temperature acclimation of Mytilus edulis with reference to its energy budget. J. Mar. Biol. Assoc. U. K., 1971, 51: 827-843.
    [9] Carfoot, TH. Animal energetics, Academic Press, New York, 1987
    [10] Jorge M., 1988,The effects of salinity on the physiological ecology of Choromytilus chorus, J .Exp. Mar. Biol. Ecol., 122, 19-33
    [11] 张继红.我国北方沿海三种常见海鞘的摄食及代谢的初步研究.中国水产科学院黄海研究所硕士论文.2000,10
    [12] 郝亚威,杨小龙,毛兴华等.海湾扇贝(Argpecten irradians)呼吸的研究.黄渤海海洋,1993,11(1):37-43
    [13] Hutchinson S. and Hawkins LE. Quantification of the physiological responses of the European flat oyster Ostrea edulis L. to temperature and salinity. J. Moll. Stud., 1992,58:215-226
    [14] Winter JE. A review on the knowledge of suspension-feeding in Lamellibrabchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture, 1978, 13:1-33
    [15] Bayne BL,.RC. Newell. Physiological energeties of marine mollusca. A.S.M. Salenddin and K.M. Willbur, Ed "the Mollusca". Vol.4, Academic press, New York, 1983,407-515
    [16] 王芳.四种滤食性贝类摄食和代谢的基础研究.青岛海洋大学硕士学位论文,1997.13-17
    [17] Shumuag SE. Respiration, pumping activity and heart rate in ciona intesinalis exposed to fluctuating salinities. Mar. Biol., 1978, 48:235-242
    [18] Fisher TR. Oxygen uptake of the solitary tunicate styela plicata. Biol. Bull. Mar. Biol. Lab., Woods Hole, 1976, 151:297-305
    [19] Bougrier S. Geairon E Deslous-Paoli JM., Bacher C. and Jonquieres G., Allometric relationship and effects of temperature on clearance and oxygen consumption rates of Crassostarea gigas (Thunberg) Aquaculture. 1995,134:143-154
    [20] 姜祖辉,王俊.菲律宾蛤仔生理生态学研究Ⅰ.温度和体重对耗氧率和排氨率的影响.海洋水产研究,1999,20(1):40-44
    [21] Regnaull M. Respiration and ammonia excretion of the shrimp Crangon crangrm (L.): Metabolic response to prolonged starvation. J. Comp. Physiol., 1981, 141:549-555
    [22] Clark BC., et al. Ecological energetic of mussels Chormnytilus meridionalis under simulated intertidal rock pool conditions. J. Exp. Mar. Biol. Ecol., 1990, 1 37:6 3-77.
    [23] Schmitt ASC., RF Uglow. Effects of temperature change rate on nitrogen effiuxes of Macrorachium rosebergii (DcMan). Aquaculture, 1996, 140:373-381
    [24] Aldridge DW, Payne BS, Miller AC, et al. Oxygen consumption, nitrogenous excretion, and filtration rates of Dreissena polymorpha at acclimation temperatures between 20 and 32℃. Can. J. Fish. Aquat. Sci., 1995, 52:171-176
    [25] Widdows J. Physiological indices of stress in Mytilus edulus, J. Mar. Biol. Ass. U.K., 1978, 58:125-142
    [26] 董双林,堵南山,赖伟.pH值C~(2+)浓度对日本沼虾生长和能量收支的影响.水产学报,1994,18(2):118-123.
    [27] Shumuug SE et al. Particle selection, ingestion, and absorption in filter feeding bivalves. J. Exp. Mar. Biol. Ecol., 1985, 91:77-92
    [28] 王芳,董双林,张硕等.海湾扇贝和太平洋牡蛎的食物选择性及滤除率的实验研究.海洋与湖沼,2000,31(2):139-144
    [29] Ward JE. et al. Direct observations feeding structures and mechanisms in bivalve mollusks using endoscopic examination and video image analysis. Marine Biology., 1991, 111:287-291
    [30] Niggard HU. Efficiency of particle and filtration rates in six species of northeast American bivalves. Mar. Ecol. Prog. Ser. 1988,45:217-223
    [31] Flood PR, AF Fiala medioni. Ultrastmcture and histochemistry of the food trapping mucons film in benthic filter-feeders (Ascidians). Acta. Zool, stockh., 1981, 62:53-65
    [32] 李德尚,董双林.鲢、鳙滤食器官的结构与功能的实验研究.动物学报,1996,42(1):10-14
    [33] Wilson JH. Particle retention and selection by larvae and spat of Ostrea edulis in algal suspensions. Mar. Biol. 1980,57:135-145
    [34] Bayne BL., Iglesias JIP., Hawkins AJS, et al, Feeding behaviour of the mussel Mytilus edulis: responses to variation in quantity and organic content of the seston. J. Mar. Biol. Ass. UK., 1993, 73:813-829
    [35] Jin Lei, Barry SP., Shiao YW. Filtration dynamics of the zebra mussel Dreissena polymorpha. Can. J. Fish. Aquact. Sci., 1996, 53:29-37
    [36] Barille L., Pron J., Heral M. et al. Effects of high natural seston concentrations on the feeding, selection, and absorption of the oyster Crassostrea gigas (Thunberg). J. Exp. Mar. Biol. Ecol., 1997, 212:149-172
    [37] Robbins IJ. The effects of body size, temperature and suspension density on the filtration and ingestion of inorganic particulate suspensions by ascidians. J. Exp. Mar. Biol. Ecol., 1983, 70:65-78
    [38] Robbins IJ. The regulation of ingestion rate, at high suspended particulate concentration, by some phleobranchiate ascidians. J. Exp. Mar. Biol. Ecol., 1984, 82:1-10
    [39] Petersen JK, HU Riisgard. Filtration capacity of the ascidian ciona intestinalis and its grazing impact in a shallow fjord. Mar. Ecol. Prog. Ser., 1992, 88:9-17
    [40] 孙慧玲,方建光,匡世焕等.不同季节海鞘滤水率的测定.海洋水产研究,1996,17(2):103~107
    [41] Bernard F.R. Nutrition of Crassostrea gigas (Thunberg, 1795): an aspect of estuarine energetics. Ph.D.Thesis.London, 1972.448
    [42] Griffiths CL, Griffiths R J. Bivalvia [A]. Pandian T L, Vernberg EJ. Animal Energetics, Vol, 2. New York: Academic Press, 1987,1~88
    [43] 杨晓新,林小涛,计新丽等.温度、盐度和光照条件对翡翠贻贝滤水率的影响.海洋科学,2000,24(6):36-390
    [44] David W., Aldridge, Barry S. et al. Oxygen consumption, nitrogenous excretion, and filtration rates of Dreissena polymorpha at acclimation temperatures between 20 and 32℃. Can. J. Fish. Aquat. Sci. 1995,52:1761-1767
    [45] Erkon Schurink C, Griffiths C.L. Physiological energetics of four African mussel species in relation to body size, ration and temperature.Comp.Biochetn.Physiol., 1992, 101A:779-789
    [46] Beiras R., Perez Camacho A., Albentosa M. Influence of food concentration on energy balance and growth performance of venerupis Pllastra seed reared in an open-flow system. Aquaculture, 1993, 116: 353-365
    [47] Seiderer LJ., Newell,R.C. Adjustment of the activity of a -amylase extracted from the style of the black mussel Choromytilus meridionalis (Krauss) in response to thermal acclimation. J. Exp. Mar. Biol. Ecol., 1979, 39:79-86
    [48] Navarro JM., Winter JE. Ingestion rate, assimilation efficiency and energy balance in Mytilus chilensis in relation to body size and different algal concentrations, Mar. Biol., 1982, 67:255-266.
    [49] Bayne BL, J. Widdows. The physiological ecology of two populations of Mytilus edulis L. Oceologia, 1976, 37:137-162
    [1] simkis, K., Ecotoxicant at the cell—membrane barrier. In Eootoxicology. A Hierarchical Treatment (Newman, MC & Jagoe, CH. eds). Boca Raton, Lewis Publishers, 1996.59-83.
    [2] Conover, R.J. Assimilation of organic mater by zooplankton. Limnol. Oceanogr, 1966,11:338-345
    [3] 翁焕新.重金属在牡蛎(Crassostrea virginica)中的生物累积及其影响因素的研究.环境科学学报,1996,16(1):51-58
    [4] Camillo, A.Y Comparison of results of mussel watch programs of the United States and France with worldwide mussel watch studies. Mar. Pollut. Bull. 1998, 36:712-71
    [5] Geyer H. Sheehan P, Prediction of ecoxicological behaviour of chemicals relationship between physico-chemical properties and bioaccumulation of organic chemicals in the mussel Mytilus. Chemosphere., 1982, 11(19):1121-1134
    [6] Lee RF, GH Dobbs. Uptake, metabolism and discharge ofpolycyclic aromatic hydrocarbons by marine fish. Mar. Biol. 1972,17(2): 201-208
    [7] Farring JW et al. Not fuel oil compounds in Mytilus edulis. Mar. Biol., 1982,66(1):15-26
    [8] Adamo RD, Pelosi S, Bioaccumulation and biomagnification ofpolycyclic aromatic hydrocarbons in aquatic organisms. Marine Chemistry. 1997, 56:45-49
    [9] Caihuan K, Wang WX. Trace metal ingestion and assimilation by the green mussel Perna viridis in a phytoplankton and sediment mixture. Marine Biology, 2002, 140 (2): 327-335
    [10] Butte W. Mathematical description of uptake, accumulation and elimination of xenobiotics in a fish/water sysem .In Bioaccumulation in Aquatic System, ed. R. Nagel &R.Loskill. VCH Verlagsgesellschaft.Weinheim. Germany, 1991, pp.29-42.
    [11] Butte W., Willing A., Zauke GP. Bioaccumulation of phenols in zebrafish determined by a dynamic flow through test. In QSAR in Environmental Toxicology-Ⅱ, ed K.L.E.Kaiser.D. Reidel.Dordrecht. The Netherlands., 1987, pp.43-53
    [12] Landrum PF. Bioavailability and toxicokinetics of polycyclic aromatic hydrocarbons sorbed to sediments for the amphipod Pontoporeia hoyi. Environ. Sci. Technol., 1989, 23,588-95
    [13] Barron MG, Stehly GR., Hayton WL. Review: Pharmacokinetic modeling in aquatic animals, I.Models and concepts. Aquat. Toxicol., 1990, 18.61-86
    [14] Depledge MH., Rainbow PS. Mini-review:Models of regulation and accumulation of trace metals in marine invertebrates. Comp. Biochem. Physiol., 1990, 97C, 1-7
    [15] Matis JH., Miller TH., Allen DM. Stochastic models ofbioaccumulation. In Metal Ecotoxicology Concepts & Applications,ed. M.C. Newman&A.W.Mcintosh. Lewis Publishers, Chelsea, USA, 1991, 171-206
    [16] Kahle J. Bioaccumulation of trace metals in the copepod Calanoides acutus from the Weddell Sea (Antarctica): comparison of two-compartment and hyperbolic toxicokinetic models. Aquatic Toxicology., 2002, 59:1-2
    [17] Zauke, Gerd-Peter. Validation of estuarine gammarid collectives (Amphipoda: Crustacea) as biomonitors for cadmium in semi-controlled toxicokinetic flow-through experiment. Environmental Pollution., 1995, 90:209-219.
    [18] Florence Boisson. Bioaccumulation and retention of lead in the mussel Mytilus galloprovincialis following uptake from seawater. The Science of the total environment., 1998,222:55-61
    [19] Chan HM. Accumulation and tolerance to cadmium, copper, lead and zinc by the green mussel perna viridis. Marine Ecology Progress Series, 1988,48:295-303
    [20] 蔡立哲,刘琼玉,洪华生.菲律宾蛤仔在高浓度水体中的金属积累.台湾海峡,1998,17(4):456-461
    [21] Rainbow PS., The signification of trace metal concentration in marine invertebrates. In: Dallinger R., Rainbow P. S. (Eds), Ecotoxicology of Metals in Invertebrates. Lewis Publisher, Boca Raton, 1993.4-23
    [22] Sunda WG, Engle DW, Thoutte RM. Effects of chemical speciation on the toxicity of cadmium to the grass shrimp Palaernonetespugio: importantce of free cadmium ion. Environ Sci Tech, 1978, 12: 409-413
    [23] Zamuda CD., Wright DA., Smucker RA.The importance of dissolved organic compounds in the accumulation of copper by the American oyster, Crassostrea virginica. Mar. Environ. Res., 1985,16: 1-12.
    [24] Bjerregaard P, Depledge MH. Cadmium accumulation in Littorina littorea, Mytilus edulis and Carcinus maenas: the influence of Salinity and cadmium ion concentrations. Mar Biol, 1994, 119:385-395
    [25] 阎铁.洋污染生物监测中指示生物的选择.洋环境科,1989,8(1):50-55
    [26] Phillips DJH.Quantitative Aquatic Biological Indicators: Their Use to Monitor Trace Metal and Organochlorine Pollution. Applied Science Publishers, London, 1980.
    [27] Cunningham PA., Tripp MR. Factors affecting the accumulation and removal of mercury from tissues of the American oyster Crassostrea virginica. Mar Biol., 1975, 31:311-320
    [28] 许澄源.大连湾贻贝对砷积累的调查研究.海洋环境科学,1983,2(2):60-64
    [29] 崔毅.乳山湾贝类体中重金属含量及其评价研究.海洋水产研究,1997,18(2):46-54
    [30] 蔡立哲,洪华生,洪丽玉.菲律宾蛤仔对锌、铅的积累特征.境科学学报,1999,19(3):319-322
    [31] Fisher N S,Teyssie J-L,et al.Accumulation and retention of metals in mussels from food and water: a comparison under field and laboratory condition. Environ Sci Technol. 1996;30:3232-3242
    [1] 汤鸿,李少著,王桂忠等.铜、锌、镉对锯缘青蟹仔蟹代谢酶活力影响的实验研究.厦门大学学报,2000,39(4):521-525
    [2] 任加云,潘鲁青,姜令绪.3种重金属离子对中华绒螯蟹鳃丝N~+-K~+-ATPase活性的影响.中国水产科学,2004,11(4):291-295
    [3] 刘晓玲,周忠良,陈立侨.镉对中华绒鳌蟹(Eriocheir sinensis)抗氧化酶活性的影响.海洋科学,2003,27(8):59-63
    [4] Holloway JG, Sibly RM, Povey SR. 1990. Evolution in toxin stressed environments. FunctEcol, 4: 289~294
    [5] Rainbow PS.海洋生物对重金属的积累及意义.海洋环境科学,1992,11(1):44-55
    [6] 周一兵,尹春霞,杨建立.菲律宾蛤仔的呼吸与排泄对三种重金属慢性毒性的反应.大连水产学院学报,1998,13(1):8-15
    [7] Abel, P.D.. Effect of some pollutants on the filtration rate of Mytilus. Marine Pollution Bulletin, 1976, 7, 228~231
    [8] 吴坚.铜、镉对紫贻贝摄食率影响的初步研究.海洋环境科学,1991,10(1):25~28
    [9] Kraak M.H.S., Lavy D., Peeters W.H.W., Davids C. Chronic ecotoxicity of copper and cadium to the zebra mussel Dreissena polymorpha. Arch. Environ. Contam. Toxicol., 1992, 23,363~369
    [10] Watling H.R.. The effect of metal on mollusk filtering rates. Trans R. Soc. S. Aft., 1981, 44, 441~451
    [11] Roesijadi G., Fellingham G.W.. Influence of Cu, Cd and Zn pre-exposure on Hg toxicity in the mussel Mytilus edulis. Can. J. Fish Aquat. Sci., 1987, 44, 680~684
    [12] Widdows J. Physiological responses to pollution. Marine Pollution Bulletin, 1985, 16(4): 129~134
    [13] 何海琪,孙凤.中国对虾酸性磷酸酶和碱性磷酸酶的特性研究.海洋与湖沼,1992,23(5):555~560.
    [14] Dhavale DM. Environmental variables and heavy metal toxicity in crab Scylla serrata. Bull. Mar. Sci., 1990, 46(1):244-245
    [15] 刘存歧,王安利,王维娜,海水中Zn~(2+)和Cu~(2+)对日本对虾仔虾体内碱性磷酸酶活性的影响,水产科技情报,2002,29(5):195-197
    [16] 贾秀英,陈志伟.铜、镉对鲫鱼组织Na~+-K~+-ATPase酶活力的影响.科技通报,2003,19,1:50-53.
    [17] Haya K., Wajwood BA., Adenylate energy charge and ATPase activity: noential biochemical indicators of sublethal effects caused by pollutants in aquatic animals. Adv Environ Sci Technol,1983,13:307-333
    [18] Daksna M., Dhavale.VB. Masurekar et al. Cadmium induced inhibition of Na~+-K~+-ATPase activity in tissues of crab Scylla serrata (Forskal). Bull Environ Contain Toxicol, 1988,40:759-763
    [19] Collins K., Chris M.. Wood. The influence of ration size on copper homeostasis during sublethel dietary copper exposure in juvenile rainbow trout, Oncorhynchusa ykiss. Aquatic Toxicology, 2003,62:235-2
    [20] James C., McGeer C., Szebedinszky D. et al..Effects of chronic sublethel exposure to waterborne Cu,Cd or Zn in rainbow trout. Ⅰ: Iono-regulatory disturbance and metabolic costs. Aquatic Toxicology, 2000,5:231-243
    [21] 郁建栓.浅谈重金属对生物毒性效应的分子机理.环境污染与防治,1996,18(4):28-31
    [22] LemarieP, Mattews A ForlinL, Kivingstong D R.Stimulation ofoxyradical production othePatic microsomes of flounder (Platichthys flesus)and Perch (Perca fluviatilis) by model and Pollutant xenobiotics. Environ Contam Toxicol, 1994, 26:191-200
    [23] 徐立红,张币元,陈宜瑜.分子生态毒理学研究进展及其在水环境保护中的意义.水生生物学报,1995,19(2):171~185.
    [24] Florence G., Angela S., Luisa B., et al. Response of antioxidant systems to copper in the gills of the clam Ruditapes decussates. Marine Environmental Research,2002,54:413-417
    [25] Siraj P., Usha A. Cadmium-induced antioxidant defense mechanism in fresh water teleost reochromis mossambicus(Tilapia) .Ecotoxicology Environmental Safety, 2003,56,218-221
    [26] 侯丽萍,马广智.镉对草鱼鱼种肝组织超氧化物歧化酶(SOD)活性的影响.水利渔业,2003,23(3):14-15
    [27] 甘居利,吴关权.草鱼生长过程中肌肉锌、镉含量的变化.水利渔业,1998,22(1):34-39
    [28] Regoli F. Trance metals and antioxidant enzymes in gills and digestive gland of theMediterranean mussels Mytilus galloprovincialis. Arch Environ Contain Toxicol, 1998, 34: 48-63.
    [29] Stebbing ARD. Hormesis the stitulation of growth by low levels of inhibitions. Sci Tol Envir, 1982, 22(1): 213-234.
    [30] 周显青,孙儒泳,牛翠娟.应激对水生动物生长、行为和生理活动的影响.动物学研究,2001,22(2):89~92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700