用户名: 密码: 验证码:
叶绿素荧光参数对氮、磷限制的响应及其在赤潮生消过程中的变化特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋中浮游植物的生长经常受到营养盐的限制。许多方法可以用来判断限制因子,但往往由于参数测定复杂,不同微藻之间存在差异等原因,主要用于室内研究。对于现场海域而言,目前主要根据水体中营养盐的浓度和比例、营养盐添加后叶绿素a(Chl a)的变化情况来判断限制因子。然而,虽然前一种方法速度较快,但是不同浮游植物对N、P的需求不尽相同,最适氮磷比也有差异,该方法只是按照一个固定的营养盐浓度和比例来判断,因此只是一个粗略的估计。而后一种方法,只是告诉我们随着浮游植物的继续生长,哪种营养元素可能会被首先耗尽,不能反映调查区域现场原位的营养状态,且一般需要几天的时间才能得出结论。因此,迫切需要建立一个快速、可靠的方法来判断现场原位营养盐的限制情况。
     活体叶绿素荧光是研究光合作用的有效探针,可以快速、简便、无损伤的探测植物的光合生理状况以及各种外界因子对其产生的细微影响。其中,最常用的荧光参数为光系统Ⅱ(PSⅡ)的最大光化学量子产量(F_v/F_m)。已有研究表明,F_v/F_m对营养盐限制存在响应。但就目前来看,室内研究主要以饵料藻和淡水藻为主,近海常见藻种研究较少,且较少关注处于限制条件下的微藻重新添加营养盐后,F_v/F_m在恢复过程中的变化情况。现场海域,F_v/F_m已被认为是一个研究Fe限制的良好指标,然而应用F_v/F_m研究常量营养盐限制的报道较少,且虽有成功的案例,但结论并不统一。此外,现场海域情况复杂,除了营养盐,其他环境因子如温度、光照等同样会对F_v/F_m产生影响。而且,天然水域中同时存在多种浮游植物,群落结构也会引起F_v/F_m数值的变化。因此如何利用F_v/F_m来判断现场海域常量营养盐的限制情况,仍需进一步研究。
     此外,赤潮监测过程中,浮游植物种类组成、细胞数量等参数测量必不可少,但这些参数传统的测量方法耗时较长,降低了赤潮监测的时效性。因此需要确立一个快速、可靠的指标,为赤潮的现场实时监测服务。F_v/F_m测量快速、简便。已有研究表明,赤潮生消过程中其存在变化情况。然而目前相关报道较少,仍需进一步研究。
     本文采用室内培养与现场实验相结合的方法,室内选择7种我国近海常见微藻,观察了F_v/F_m对N、P限制的响应,尝试运用该参数来判断N、P限制;并将该方法应用到现场海域,判断了青岛近海的N、P限制情况。此外,以长江口邻近海域为研究区域,报道了赤潮生消过程中F_v/F_m的变化情况,尝试将该参数作为一个赤潮现场快速监测的辅助指标,为赤潮的研究提供基础资料。得到的主要结论如下:
     1、室内培养条件下7种海洋微藻F_v/F_m对N、P限制的响应(1)以中肋骨条藻(Skeletonema costatum)、旋链角毛藻(Chaetoceros curvisetus)、微小原甲藻(Prorocentrum minimum)、裸甲藻(Gymnodinium sp.)、盐生杜氏藻(Dunaliella salina)、球等鞭金藻3011(Isochrysis galbana)、隐藻1533(Rhodomonas sp.)7种微藻为研究对象,分别在缺少N或P的条件下培养数天,F_v/F_m均逐渐下降。之后随着限制性营养盐的重新添加,与对照组相比,各微藻的F_v/F_m在5h~24h之内便开始显著升高(P <0.05),18h~72h之内恢复到营养盐充足时的水平;而添加其他非限制性营养盐,F_v/F_m在整个测定过程中与对照组相比没有明显差异(P>0.05)。Chl a对限制性营养盐的添加同样存在响应,但其响应时间大多晚于F_v/F_m的时间。此外,不同微藻,F_v/F_m的最大值不尽相同。
     (2)根据上述结果可以推出,在浮游植物群落结构没有发生显著变化的前提下,可以根据营养盐添加后F_v/F_m的变化情况来判断现场海域是否受到N、P的限制:添加某种营养盐后,与对照组相比,如果F_v/F_m显著升高,则说明此种营养盐为限制因子;相反的,如果F_v/F_m没有显著差异,则说明此种营养盐为非限制因子。该方法速度较快,与通过营养盐加富后Chl a的变化来判断限制因子相比,更加快速。
     2、青岛近海F_v/F_m对N、P限制的响应
     2009年夏季在青岛近海A、B两个站位采集水样,进行了6次N、P加富实验,利用上述方法以及营养盐的浓度和比例、营养盐加富后Chl a的变化情况,三种方法来判断该区域是否受到N、P的限制。结果显示:
     (1)7月24日,水体中PO4-P的浓度、F_v/F_m处于较低水平,24h后F_v/F_m、Chl a对P的添加存在响应,P为限制浮游植物生长的营养因子。8月4日,PO4-P的浓度依然处于限制水平,DIN的浓度大幅下降,B站位只有加N+P组的F_v/F_m与对照组相比显著升高,说明浮游植物的生长受到N、P的共同限制。加N+P组的Chl a浓度最高也证实了这点。9月16日各营养盐浓度有所回升,F_v/F_m数值较高。B站位F_v/F_m、Chl a对N、P的添加没有响应,说明此时N、P充足,浮游植物群落处于健康状态。A站位,F_v/F_m的初始数值、浮游植物的群落组成,与B站位类似,且添加N、P后,F_v/F_m维持在初始时的水平没有升高。说明初始时,A站位浮游植物群落也处于健康状态。随后,对照组、加N组的F_v/F_m逐渐下降,24h时显著低于加P组、N+P组的数值,说明随着浮游植物继续生长,P会被首先耗尽。此外,初始时DIN/PO4-P比值、SiO3-Si/PO4-P比值较高,48h后加P组、N+P组Chl a的浓度显著高于其他两组,也得出P为潜在限制因子的结论。
     (2)在浮游植物群落结构没有发生显著变化的前提下,利用营养盐添加后F_v/F_m的变化情况来判断现场海域是否受到N、P的限制,快速(24h)、准确,还可以得到群落生理状态方面的信息。
     3、长江口邻近海域春季赤潮生消过程中表层水体F_v/F_m的变化特征
     2010年、2011年春季赤潮生消过程中对典型断面的表层水体进行了重复调查。研究表明,晴天时表层水体F_v/F_m存在明显的昼低夜高现象,夜晚时F_v/F_m数值最高,白天随着光强的增强F_v/F_m逐渐降低,当正午光强最强时F_v/F_m降至最低水平。暗适应1h基本上可以消除昼夜变化带来的影响,使不同时间测定的数据可以相互比较。F_v/F_m、Chl a由bbe藻类分析仪、Phyto-PAM浮游植物荧光仪两种仪器测得,研究表明两种仪器的测定结果具有较高的线性相关性。数据统一转换成Phyto-PAM的测定结果,得到的主要结果如下:
     (1)2010年5月7日至5月24日期间对长江口以北的绿潮孕育区和以南的赤潮高发区进行了一次大面调查。表层水体F_v/F_m在0.19~0.74之间,整体呈现出北高南低的特点。其中,长江口以北绿潮孕育区,Chl a浓度较低,硅藻为优势种,F_v/F_m高值区分散在南北两测。长江口以南赤潮高发区,Chl a浓度较高,局部发生硅、甲藻赤潮。F_v/F_m呈现出近岸高远岸低的特点,高值区集中在沿岸的狭长地带,并在杭州湾附近海域呈舌状向外海伸展。
     (2)2011年重点关注长江口以南赤潮高发区,于3月29日至5月27日硅甲藻赤潮生消期间对5个典型断面进行了9个航次的重复调查。表层水体F_v/F_m在0.17~0.73之间,F_v/F_m大于0.60的区域与赤潮区域分布类似。其中,3月29日至4月2日期间,调查海区水体普遍处于富营养化状态,高温高盐的外海水向近岸推进,从而导致外部海域水温较高,适合硅藻的生长繁殖,F_v/F_m达到0.60以上,在此区域内硅藻赤潮率先爆发。随着硅藻赤潮的发生、发展,PO4-P、SiO3-Si的浓度大幅降低,已难以满足藻细胞持续增长的需求,4月9日至4月20日期间硅藻赤潮进入消亡期,F_v/F_m普遍在0.60以下。期间,水温逐渐上升,随着长江冲淡水的补充与外扩,局部区域营养盐得到补充,F_v/F_m重新升高。5月4日至5月7日期间南部近岸区域营养盐充足,水温上升到15℃以上,适合甲藻的生长繁殖,F_v/F_m达到0.60以上,在此区域内原甲藻赤潮率先爆发。随后,5月13日至5月15日期间,F_v/F_m高值区向北移动,原甲藻赤潮向北扩张,东北部海域也发生原甲藻赤潮。5月25日至5月27日期间长江冲淡水回缩,高温高盐的外海水向近岸推进,F_v/F_m的高值区贴近岸边,在此范围内原甲藻赤潮仍在持续。
     (3)温度、浊度、营养盐为影响该区域F_v/F_m的主要因素。营养盐加富实验表明,分别以骨条藻、东海原甲藻为优势的硅、甲藻群落,F_v/F_m的最大值差异不大,当F_v/F_m在0.60以上时,硅甲藻群落处于健康状态,没有受到环境因子的胁迫。否则,F_v/F_m低于0.60的水平。近岸区域主要是由于水体温度较低、浊度较高造成的;外部海域主要是由于营养盐浓度较低造成的。
     (4)硅藻赤潮、原甲藻赤潮生消期间F_v/F_m表现出相似的特征:赤潮爆发前,F_v/F_m首先上升到0.60以上,然后Chl a大幅上升并爆发赤潮。赤潮期间F_v/F_m大多高于0.60的水平。赤潮消亡时,F_v/F_m重新降至0.60以下。鉴于赤潮爆发前F_v/F_m首先上升,然后Chl a大幅上升并爆发赤潮,因此可以把F_v/F_m作为藻华预警的辅助指标。
     (5)硅藻在细胞氮磷比值较低的情况下更易生长,而甲藻的适应范围较宽,在细胞氮磷比值较高时,仍能达到健康状态,具有较强的生长潜力。
Growth of phytoplankton in aquatic environments is frequently limited by theavailability of nutrients. A number of methods are available for determining nutrientlimitation in phytoplankton. However, many of them are complicated, timeconsuming and vary with species. There are problems extrapolating from laboratorystudies to an understanding of nutrient limitation on natural populations.
     At present, two approaches, i.e. criteria of nutrient concentrations and ratios, andnutrient enrichment bioassays using chlorophyll response as indicators, are commonlyused to assess nutrient limitation in the field. However, it is becoming increasinglyclear that the criteria of nutrient concentrations and ratios vary greatly between taxa,which introduce substantial difficulties when applying them to specific aquaticecosystems. In addition, bioassays may indicate the potential for nutrient limitation,but not necessarily show in situ nutrient status. Also, bioassays are time consumingand often require multiple days.
     Chlorophyll a fluorescence allows for rapid, sensitive, and non-invasiveassessment of the physiological state of phytoplankton. The fluorescence parametermost commonly used is the maximum photochemical efficiency of photosystem Ⅱ(F_v/F_m). Changes in F_v/F_mduring nutrient limitation have been observed in numerouslaboratory cultures, but the processes involved in recovery from nutrient limitationhave been less well studied, especially the fine-scale kinetics of repair of F_v/F_mafternutrient resupply. In addition, their usefulness in the field has yet to be determined. Anumber of factors, such as light, temperature and community structure may have influences on F_v/F_m.
     Here, the effects of nitrogen (N) and phosphorus (P) starvation and resupply onF_v/F_mwere examined in seven species of marine unicellular algae. F_v/F_mcoupled withnutrient enrichment experiment was used to determine nutrient limitation in thecoastal sea of Qingdao. In addition, spatial and temporal variations of F_v/F_mduringthe process of spring bloom in the adjacent area of Changjiang river estuary wereobserved. The main results are as follows:
     1、 In laboratory cultures, F_v/F_mdeclined markedly under nitrate and phosphatestarvation in all species examined and recoverd completely within18h-72h ofresupply of the limiting nutrient. After24h, resupply of the limiting nutrientsignificantly increased F_v/F_mof all species above the control treatment (P <0.05),while addition of non-limiting nutrient did not change F_v/F_mrelative to the controltreatment (P>0.05). Species differences were observed in the maximal values ofF_v/F_m.
     2、 F_v/F_mcoupled with nutrient enrichment experiments can be useful for rapidlydetecting N and P limitation of natural phytoplankton populations before majorchanges in community structure, and can provide information about the physiologicalstate of the community.
     3、 F_v/F_mand the two above mentioned methods, i.e. nutrient criteria and bioassaysusing chlorophyll response as indicators, were used to identify limiting nutrients inthe Qingdao Olympic sailing venue. In July of2009, low DIP concentrations andF_v/F_min the initial samples coupled with F_v/F_mand Chlorophyll a (Chl a) responses toP addition indicated that P was the limiting element. In August, P was still thelimiting nutrient. In the southwestern part of the Olympic sailing venue, only the N+Ptreatment caused marked increase of F_v/F_mover the control treatment and the Chl aconcentration was highest in the N+P treatment, suggesting that N and P wereco-limiting. In September, a lack of F_v/F_mand Chl a response following nutrientenrichments together with the relatively high nutrient concentrations andphotosynthetic efficiency observed at the start of experiment suggested that N and Pwere replete and phytoplankton community was healthy in the southwestern part of the Olympic sailing venue. In the northeastern part, the initial F_v/F_mandphytoplankton community structure were similar to those in the southwestern part,and F_v/F_mdid not increase after N and P additions, indicating that phytoplanktoncommunity was in a healthy state on the day of collection. F_v/F_mand Chl a in thecontrol and N treatments were lower than those in the P and N+P treatments duringthe incubation, coupled with the high N/P ratio at the start of experiment, suggestingthat P was the potential limiting nutrient, and would be exhausted first as growthproceeded. In July of2010, neither N nor P was deficient in the southwestern part ofthe Olympic sailing venue, which was different from the result in the same period of2009.
     4、The Characteristics of F_v/F_mduring the process of spring bloom in surface watersof the adjacent area of Changjiang river estuary
     (1) F_v/F_mwas between0.19and0.74from7to24May2010, and ranged from0.17to0.73in the frequent blooms occurrence area, south of the Changjiang river estuaryfrom29March to27May2011. Bloom occurrence areas were mainly located onthose areas where F_v/F_mis above0.6.
     (2) The primary factors affecting F_v/F_mwere temperature, turbidity and nutrients.Values of F_v/F_mgreater than0.60, were associated with healthy state of phytoplanktoncommunities. In addition, F_v/F_mchanged followed a day/night cycle with maximumvalues at night and a strong reduction at noon. Samples were dark adapted for1h atambient temperatures before measurement to avoid diel variations.
     (3) The Characteristics of F_v/F_mduring the process of diatom bloom were similar tothose within the dinoflagellate bloom. F_v/F_mincreased to more than0.60before bloom.Then Chl a concentration rocketed and the bloom broke out. F_v/F_mwas above0.6inthe retention stage of bloom and decreased to below0.6in the dissipation phase. ThusF_v/F_mcan help detecting and characterizing bloom events.
     (4) Dinoflagellate population can live in water mass characterized by low PO4-Pconcentration and high DIN/PO4-P ratio, but diatom population growth needs highPO4-P concentration and low DIN/PO4-P ratio. Maybe it is one of the reasons whydinoflagellate could grow better and cause bloom under lower PO4-P concentration after diatom bloom.
引文
[1]. Almazán-Becerril A and García-Mendoza E. Maximum efficiency of charge separation ofphotosystem Ⅱ of the phytoplankton community in the Eastern Tropical North Pacific offMexico: A nutrient stress diagnostic tool? Ciencias Marinas,2008,34:29-43.
    [2]. Antal T K, Matorin D M, Ilyash V, et al. Probing of photosynthetic reactions in fourphytoplanktonic algae with a PEA fluorometer. Photosynthesis Research,2009,102:67-76.
    [3]. Beardall J, Berman T, Phil H, et al. A comparison of methods for detection of phosphatelimitation in microalgae. Aquatic Sciences,2001a,63:107-121.
    [4]. Beardall J, Young E And Roberts S. Approaches for determining phytoplankton nutrientlimitation. Aquatic sciences,2001b,63:44-69.
    [5]. Berges J A, Charlebois D O, Mauzerall D C, et al. Differential effects of nitrogen limitationon photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiology,1996,110:689-696.
    [6]. Bergmann T, Richardson T L, Paerl H W, et al. Synergy of light and nutrients on thephotosynthetic efficiency of phytoplankton populations from the Neuse River Estuary, NorthCarolina. Journal of plankton research,2002,24(9):923-933.
    [7]. Behrenfeld M J, Bale A J, Kolber Z S, et a1. Conformation of iron limitation ofphytoplankton photosynthesis in the equatorial Pacific Ocean. Nature,1996,383(6600):508-5l1.
    [8]. Bernhard A E and Peele E R. Nitrogen limitation of phytoplankton in a shallow embaymentin northern Puget Sound. Estuaries,1997,20(4):759-769.
    [9]. Boyd P W and Abraham E R. Iron-mediated changes in phytoplankton photosyntheticcompetence during SOIREE. Deep-Sea Research Ⅱ,2001,48:2529-2550.
    [10].Brulanda K W, Ruea E L, Smitha G J, et al. Iron, macronutrients and diatom blooms in thePeru upwelling regime: brown and blue waters of Peru. Marine Chemistry,2005,93:81-103.
    [11].Cleveland J S and Perry M J. Quantum yield, relative specific absorption and fluorescence innitrogen-limited Chaetoceros gracilis. Marine Biology,1987,94:489-497.
    [12].Dijkman N A and Kromkamp J C. Photosynthetic characteristics of the phytoplankton in theScheldt estuary: community and single-cell fluorescence measurements. European Journal ofPhycology,2006,41(4):425-434.
    [13].Dortch Q, Clayton J R, Thoresen S S, et al. Species differences in accumulation of nitrogenpolls in phytoplankton. Marine Biology,1984,81:237-250.
    [14].Dortch Q and Whitledge T E. Does nitrogen of silicon limit phytoplankton production in theMississippi River plume and nearby regions? Continental shelf research,1992,12:1293-1309.
    [15].Elser J J and Kimmel B L. Alteration of phytoplankton phosphorus status during enrichmentexperiments: Implications for interpreting nutrient enrichment bioassay results.Hydrobiologia,1986,133(3):217-222.
    [16].Falkowski P G, Wyman K, Ley A, et al. Relationship of steady state photosynthesis tofluorescence in eucaryotic algae. Biochimica et biophysica acta,1986,849:183-l92.
    [17].Fisher T R, Harding Jr. L W, Stanley D W, et al. Phytoplankton nutrients and turbidity in theChesapeake Delaware and Hudson estuaries. Estuarine and coastal shelf science,1988,27:61-93.
    [18].Fisher E R, Peele J W, Ammerman L B, et a1. Nutrient limitation of phytoplankton inChesapeake Bay. Marine Ecology Progress Series,1992,82:51-63.
    [19].Geider R J, Green R M, Kolber Z S, et al. Fluorescence assessment of the maximum quantumyield efficiency of photosynthesis in the western North Atlantic. Deep-Sea Research,1993a,40:1205-1224.
    [20].Geider R J, Roche J La, Greene R M, et al. Response of the photosynthetic apparatus ofPhaeodactylum tricornutum (bacillariophyceae) to nitrate, phosphate, or iron starvation.Journal of Phycology,1993b,29:755-766.
    [21].Geider R J, Macintyre L, Graziano L M, et al. Responses of the photosynthetic apparatus ofDunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation. EuropeanJournal of Phycology,1998,33:315-332.
    [22].Gervais F, Riebesell U and Gorbunov M Y. Changes in primary productivity and chlorophylla in response to iron fertilization in the Southern Polar Frontal Zone. Limnology andOceanography,2002,47:1324-1335.
    [23].Greene R. M, Kolber Z S, Swift D G, et al. Physiological limitation of phytoplanktonphotosynthesis in the eastern equatorial Pacific determined from variability in the quantumyield of fluorescence. Limnology and Oceanography1994,39:1061-1074.
    [24].Gobler C J, Buck N J, Sieracki M E, et al. Nitrogen and silicon limitation of phytoplanktoncommunities across an urban estuary: The East River-Long Island Sound system. Estuarine,Coastal and Shelf Science,2006,68:127-138.
    [25].Gotham I J and Rhee G. Comparative kinetic studies of phosphate-limited growth andphosphate uptake in phytoplankton in continuous culture. Journal of Phycology,1981,17:257-65.
    [26].Graziano L M, La Roche J and Geider R J. Physiological response to phosphorus limitationin batch and steady-state cultures of Dunaliella tertiolecta (Chlorophyta): a unique stressprotein as an indicator of phosphate deficiency. Journal of Phycology,1996a,32:825-838.
    [27].Graziano L M, Geider R J, Li W K W, et al. Nitrogen limitation of North Atlanticphytoplankton: analysis of physiological condition in nutrient enrichment experiments.Aquatic Microbial Ecology,1996b,11:53-64.
    [28].Hassler C S, Djajadikarta J R, Doblin M A, et al. Characterisation of water masses andphytoplankton nutrient limitation in the East Australian Current separation zone during spring2008. Deep-Sea Research Ⅱ,2011,58:664-677.
    [29].Ho T Y, Quigg A, Finkel Z V, et al. The elemental composition of some marinephytoplankton. Journal of Phycology,2003,39:1145-1159.
    [30].Holland D, Roberts S and Beardall J. Assessment of the nutrient status of phytoplankton: acomparison between conventional bioassays and nutrient-induced fluorescence transients(NIFTs). Ecological Indicators,2004,4:149-159.
    [31].Hopkinson B M, Mitchell B G, Reynlods R A, et al. Iron limitation across chlorophyllgradients in the southern Drake Passage: Phytoplankton responses to iron addition andphotosynthetic indicators of iron stress. Limnology and Oceanography,2007,52:2540-2554.
    [32].Justic D, Rabalais N N, Turner R E, et al. Changes in nutrient structure of river-dominatedcoastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal andshelf Science,1995,40:339-356.
    [33].Kaiblinger C, Greisberger S, Teubner k, et al. Photosynthetic efficiency as a function ofthermal stratification and phytoplankton size structure in an oligotrophic alpine lake.Hydrobiologia,2007,578:29-36.
    [34].Kolber Z, Zehr J and Falkowski P. Effects of growth irradiance and nitrogen limitation onphotosynthetic energy conversion in photosystem Ⅱ. Plant Physiology,1988,88:923-929.
    [35].Kolber Z, Wyman K D and Falkowski P G. Natural variability in photosynthetic energyconversion efficiency: A field study in the Gulf of Maine. Limnology and Oceanography,1990,35:72-79.
    [36].Kolber Z S, Barber R T, Coale K H, et al. Iron limitation of phytoplankton photosynthesis inthe equatorial Pacific Ocean. Nature,1994,371:145-148.
    [37].Krom M D, Kress N and Brenner S. Phosphorus limitation of primary productivity in theeastern Mediterranean Sea. Limnology and Oceanography,1991,36:424-432.
    [38].La Roche J, Geider R J, Graziano L M, et al. Induction of specific proteins in eukaryoticalgae grown under iron-, phosphorus-, or nitrogen-deficient conditions. Journal of Phycology,1993,29:767-777.
    [39].La Roche J, Murray H, Orellana M, et al. Flavodoxin expression as an indicator of ironlimitation in marine diatoms. Journal of Phycology,1995,31:520-530.
    [40].Li M, Xu K, Watanabe M, et al. Long-term variations in dissolved silicate, nitrogen, andphosphorus flux from the Yangtze River into the East China Sea and impacts on Estuarineecosystem. Estuarine, Coastal and Shelf Science,2007,71:3-12.
    [41].Lippemeier S, Hintze R, Vanselow K H, et al. In-line recording of PAM fluorescence ofphytoplanton cultures as a new tool for studying effects of fluctuating nutrient supply onphotosynthesis. European Journal of Phycology,2001,36:89-100.
    [42].Liu S, Guo Z, Li T, et al. Photosynthetic efficiency, cell volume, and elementalstoichiometric ratios in Thalassirosira weissflogii under phosphorus limitation. ChineseJournal of Oceanology and Limnology,2011,29:1048-1056.
    [43].Maestrini S Y, Balode M, Behemin C, et al. Nitrogen as the nutrient limiting the algal growthpotential, for summer natural assemblages in the Gulf of Riga, eastern Baltic Sea. PlanktonBiology and Ecology,1999,46(1):1-7.
    [44].McMinn A and Hegseth E N. Quantum yield and photosynthetic parameters of marinemicroalgae from the southern Arctic Ocean, Svalbard. Journal of the marine biologicalassociation of the United Kingdom,2004,84:865-871.
    [45].Moore C M, Lucas M I, Sanders R, et al. Basin-scale variability of phytoplankton bio-opticalcharacteristics in relation to bloom state and community structure in the Northeast Atlantic.Deep-Sea Research I2005,52:401-419.
    [46].Moore C M, Mills M M, Milne A, et al. Iron supply limits primary productivity during springbloom development in the central North Atlantic. Global Change Biology,2006,12:626-634.
    [47].Moore C M, Mills M M, Langlois R, et al. Relative influence of nitrogen and phosphorusavailability on phytoplankton physiology and productivity in the oligotrophic sub-tropicalNorth Atlantic Ocean. Limnology and Oceanography,2008,53:291-305.
    [48].Müller P, Li X P and Niyogi K K. Non-photochemical quenching: a response to excess lightenergy. Plant Physiology,2001,125:1558-1566.
    [49].Nielsdóttir M C, Moore C M, Sanders R, et al. Iron limitation of the postbloomphytoplankton communities in the Iceland Basin. Global Biogeochemical Cycles,2009,23,GB3001.
    [50].Olaizola M, Geider R J, Harrison W G, et al. Synoptic study of variations in thefluorescence-based maximum quantum efficiency of photosynthesis across the North AtlanticOcean. Limnology and Oceanography,1996,41(4):755-765.
    [51].Olson R J, Sosik H M, Chekalyuk A M, et al. Effects of iron enrichment on phytoplankton inthe Southern Ocean during late summer: active fluorescence and flow cytometric analyses.Deep-Sea Research Ⅱ,2000,47:3181-3200.
    [52].Parkhill J P, Maillet G and Cullen J J. Fluorescence-based maximal quantum yield for PSⅡas a diagnostic of nutrient stress. Journal of Phycology,2001,37:517-529.
    [53].Petrou K, Kranz S A, Doblin M A, et al. Photophysiological responses of Fragilariopsiscylindrus (bacillariophyceae) to nitrogen depletion at two temperatures. Journal of Phycology,2012,48:127-136.
    [54].Redfield, A C. The biological control of chemical factors in the environment. AmericanScientist,1958,46:205–221.
    [55].Redfield A C, Ketchum B H and Richards F A. The influence of organisms on thecomposition of seawater. In: Hill M N, eds. The sea. New York: Interscience,1963. vol.2,26-77
    [56].Reichart W, Overbeck J and Steubing L. Free dissolved enzymes in lake waters. Nature,1967,216:1345-1347.
    [57].Ren L, Rabalais N N, Turner R E et al. Nutrient Limitation on Phytoplankton Growth in theUpper Barataria Basin, Louisiana: Microcosm Bioassays. Estuaries and Coasts,2009,32:958-974.
    [58].Rose C and Axler R P. Uses of alkaline phosphatase activity in evaluating phytoplanktoncommunity phosphorus deficiency. Hydrobiologia,1998,361:145-156.
    [59].R ttgers R. Comparison of different variable chlorophyll a fluorescence techniques todetermine photosynthetic parameters of natural phytoplankton. Deep-Sea Research Ⅰ,2007,54:437-451.
    [60].Ruban A V and Horton P. Regulation of non-photochemical quenching of chlorophyllfluorescence in plants. Australian Journal of Plant Physiology,1995,22:221-230.
    [61].Saito H, Tsuda A, Nojiri Y, et al. Nutrient and phytoplankton dynamics during the stationaryand declining phases of a phytoplankton bloom induced by iron-enrichment in the easternsubarctic Pacific. Deep-Sea Research Ⅱ,2006,53:2168-2181.
    [62].Schreiber U, Hormann H, Neubauer C, et al. Assessment of photosystem Ⅱ photochemicalquantum yield by chlorophyll fluorescence quenching analysis. Australia Journal of PlantPhysiology,1995,22:209-220.
    [63].Smith R C and Baker K S. The bio-optical state of ocean waters and remote sensing.Limnology and Oceanography,1978,23:247-259.
    [64].Steglich C, Behrenfeld M, Koblizek M, et al. Nitrogen deprivation strongly affectsPhotosystem Ⅱ but not phycoerythrin level in the divinyl-chlorophyll b-containingcyanobacterium Prochlorococcus marinus. Biochimica et Biophysica Acta,2001,1503:341-349.
    [65].Suggett D J, Moore C M, Hickman A E, et al. Interpretation of fast repetition rate (FRR)fluorescence: signatures of phytoplankton community structure versus physiological state.Marine Ecology Progress Series,2009a,376:1-19.
    [66].Suggett D J, tambler N, Prá il O, et al. Nitrogen and phosphorus limitation of oceanicmicrobial growth during spring in the Gulf of Aqaba. Aquatic Microbial Ecology,2009b,56:227-239.
    [67].Sylvan J B, Quigg A, Tozzi S, et al. Eutrophication-induced phosphorus limitation in theMississippi River plume: Evidence from fast repetition rate fluorometry. Limnology andOceanography,2007,52:2679-2685.
    [68].Timmermans K R, van Leeuwe M A, de Jong J T M, et al. Iron stress in the Pacific region ofthe Southern Ocean: evidence from enrichment bioassays. Marine Ecology Progress Serie,1998,166:27-41.
    [69].Turpin D H and Weger H G. Steady-state chlorophyll a fluorescence transients duringammonium assimilation by the N-limited green alga Selenastrum minutum. Plant Physiology,1988,88:97-101.
    [70].Vaillancourt R D, Sambrotto R N, Green S, et al. Phytoplankton biomass and photosyntheticcompetency in the summertime Mertz Glacier Region of East Antarctica. Deep-Sea ResearchⅡ,2003,50:1415-1440.
    [71].Wang B. Cultural eutrophication in the Changjiang (Yangtze River) plume: History andperspective. Estuarine, Coastal and Shelf Science,2006,69:471-477.
    [72].Wood M D and Oliver R L. Fluorescence transients in response to nutrient enrichment ofnitrogen-and phosphorus-limited Microcystis aeruginosa cultures and natural phytoplanktonpopulations: a measure of nutrient limitation. Australian Journal of Plant Physiology,1995,22:331-340.
    [73].Wykoff D D, Davis J P, Melis A, et al. The regulation of photosynthetic electron transportduring nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiology,1998,117:129-139.
    [74].Young E B and Beardall J. Photosynthetic function in Dunaliella tertiolecta (chlorophyta)during a nitrogen starvation and recovery cycle. Journal of Phycology,2003,39:897-905.
    [75].Zhao Y F, Yu Z M, Song X X, et al. Biochemical compositions of two dominant bloom-forming species isolated from the Yangtze River Estuary in response to different nutrientconditions. Journal of Experimental Marine Biology and Ecology,2009,368:30-36.
    [76].蔡燕红,项有堂.舟山海域具齿原甲藻赤潮初探.海洋环境科学,2002,2l(4):34-36.
    [77].曹欣中.浙江近海上升流季节变化过程的初步研究.水产学报,1986,10(1):51-69.
    [78].陈莉莉.青岛奥运帆船赛场海域环境质量分析及环境容量估算:[硕士学位论文].青岛:中国海洋大学,2005.
    [79].费尊乐.近海水域漫衰减系数的估算.黄渤海海洋,1984,2(1):26-29.
    [80].冯力霞.环境胁迫对4株微藻叶绿素荧光特性的影响:[硕士学位论文].青岛:中国海洋大学,2006.
    [81].付祥.中国近海浮游植物光合作用研究—初级生产力模型计算与活体叶绿素荧光测量:
    [博士学位论文].青岛:中国科学院海洋研究所,2007.
    [82].高生泉,林以安,金明明,等.春、秋季东、黄海营养盐的分布变化特征及营养结构.东海海洋,2004,22(4):38-50.
    [83].韩博平,韩志国,付翔.藻类光合作用机理与模型.北京:科学出版社,2003,58-70.
    [84].侯继灵,张传松,石晓勇,等.磷酸盐对两种东海典型赤潮藻影响的围隔实验.中国海洋大学学报,2006,36:163-169.
    [85].黄逸轩.利用叶绿素荧光参数评估浮游植物生长与营养盐限制的关系:[硕士学位论文].台湾:国立台湾海洋大学,2007.
    [86].金月梅.氮磷限制对8株微藻叶绿素荧光特性及生长的影响:[硕士学位论文].青岛:中国海洋大学,2008.
    [87].李金涛.长江口邻近海域营养盐对浮游植物生长的影响:[硕士学位论文].青岛:中国海洋大学,2004.
    [88].李瑞香,朱明远,王宗灵,等.东海两种赤潮生物种间竞争的围隔实验.应用生态学报,2003,14(7):1049-1054.
    [89].李瑞香,王保栋,王宗灵,等.青岛奥运帆船赛区理化、生物要素现状及富营养化诱发赤潮的围隔实验.生态学报,2004,24(4):837-842.
    [90].李铁,史致丽,仇赤斌,等.中肋骨条藻和新月菱形藻对营养盐的吸收速率及环境因素影响的研究.海洋与湖沼,1999,30(6):640-645.
    [91].吕颂辉,李英.我国东海4种赤潮藻的细胞氮磷营养储存能力对比.过程工程学报,2006,6:439-444.
    [92].许建平.浙江近海上升流区冬季水文结构的初步分析.东海海洋,1986,4(3):18-23.
    [93].王保栋.黄海和东海营养盐分布及其对浮游植物的限制.应用生态学报,2003,14(7):1122-1126.
    [94].王金辉.东海赤潮生物具齿原甲藻及其特征.浙江海洋学院学报,2003a,22(2):128-132.
    [95].王金辉,黄秀清.具齿原甲藻的生态特征及赤潮成因浅析.应用生态学报,2003b,14(7):1065-1069.
    [96].王萌,李瑞香,朱明远,等.利用围隔实验研究赤潮过程中藻细胞荧光能力.海洋科学进展,2006,24(4):489-494.
    [97].王昭玉,王江涛.叶绿素荧光检测技术在浮游植物营养盐限制研究中的应用.海洋科学,2008,32:97-101.
    [98].王正方,张庆,吕海燕.温度、盐度、光照强度和pH对海洋原甲藻增长的效应.海洋与湖沼,2001,32(l):15-18.
    [99].王宗灵,李瑞香,朱明远,等.半连续培养下东海原甲藻和中肋骨条藻种群生长过程与种间竞争研究.海洋科学进展,2006,24(4):495-503.
    [100].温莉霞.小青岛海域浮游植物群起的周年研究:[硕士学位论文].青岛:中国海洋大学,2007.
    [101].杨东方,王凡,高振会,等.长江口理化因子影响初级生产力的探索Ⅱ.磷不是长江口浮游植物生长的限制因子.海洋科学进展,2006,24(1):97-107.
    [102].杨世民,董树刚,窦明武,等.2004-2005年青岛前海定点54周次浮游植物群落结构特征.海洋科学进展,2009,27(4):523-536.
    [103].杨小龙,朱明远,库仑J J.光暗周期下一种海洋硅藻荧光特性和生化组成的研究: I.营养盐的影响.海洋学报,1991,13:822-830.
    [104].杨小龙,朱明远.光强和营养盐对伪矮海链藻昼夜节律变化的影响.海洋与湖沼,1993,24(1):87-92.
    [105].尹翠玲.营养盐限制对6株微藻叶绿素荧光特性的影响:[硕士学位论文].青岛:中国海洋大学,2006.
    [106].张诚,邹景忠.尖刺拟菱形藻氮磷吸收动力学以及氮磷限制下的增殖特征.海洋与湖沼,1997,28(6):599-603.
    [107].张传松.长江口及邻近海域赤潮生消过程特征及其营养盐效应分析:[博士学位论文].青岛:中国海洋大学,2008a.
    [108].张传松,王江涛,朱德弟,等.2005年春夏季东海赤潮过程中营养盐作用初探.海洋学报,2008b,30(2):153-159.
    [109].张洁帆,陶建华,李清雪,等.渤海湾氮磷营养盐年际变化规律研究.安徽农业科学,2007,35(7):2063-2064.
    [110].张平.长江口营养盐结构变化研究:[硕士学位论文].青岛:中国科学院海洋研究所,2001.
    [111].张璇.长江口及邻近海域营养盐的历史演变及其在赤潮中的作用研究:[硕士学位论文].青岛:中国海洋大学,2012.
    [112].赵保仁.长江口外的上升流现象.海洋学报,1983,15(2):108-114.
    [113].赵骞,田纪伟,赵仕兰,等.渤海冬夏季营养盐和叶绿素a的分布特征.海洋科学,2004,28(4):34-39.
    [114].赵卫红,王江涛,于金涛,等.长江口及邻近海域冬夏季浮游植物营养限制及其比较.海洋学报,2006,28(3):119-126.
    [115].赵艳芳,俞志明,宋秀贤,等.营养盐对长江口2种主要赤潮原因藻光合色素和光合作用影响的比较研究.环境科学,2009,30:700-706.
    [116].郑丙辉,秦延文,孟伟,等.1985~2003年渤海湾水质氮磷生源要素的历史演变趋势分析.环境科学,2007,28(3):494-499.
    [117].周健,高春蕾,李艳,等.磷酸盐不同补充方式对塔玛亚历山大藻生长和产毒的影响.海洋科学进展,2011,(10):487-497.
    [118].邹景忠,董丽萍,秦保平.渤海湾富营养化和赤潮问题初步探讨.海洋环境科学,1983,(2):41-54.
    [119].邹立,张经.渤海春季营养盐限制的现场实验.海洋与湖沼,2001,32(6):672-678.
    [120].朱明远,牟学延,李瑞香,等.铁对三角褐指藻生长、光合作用及生化组成的影响.海洋学报,2000,22(1):110-116.
    [121].国家海洋局.2010年中国海洋灾害公报.
    [122].国家海洋局.2011年中国海洋灾害公报.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700