用户名: 密码: 验证码:
西施舌人工育苗饵料藻种的选育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
优质饵料藻种的筛选与培育是西施舌(Coclomactra antiquate)人工育苗中亟待解决的问题之一,本文对西施舌苗期不同发育阶段的适口饵料藻进行初步筛选,为了进一步了解自然海区分离的野生藻株的饵料价值及应用于西施舌饵料生产上的可行性,对野生金藻XR-03-02的生理生态特性及主要的营养成分进行测定分析,并对其适用的培养基进行优化选择,对野生骨条藻XR-03-06的部分生理特性进行探索。本文还对2种野生藻株形态特征进行描述对其分类地位进行探讨。
     1.用12种已广为使用的饵料藻种和3种自然海区分离的野生藻株饲喂海蚌幼苗,通过测定幼虫的生长率和存活率对不同饵料藻进行饲喂效果比较。结果表明:湛江叉鞭金藻、金藻XR-03-02、小球藻和云微藻可作为西施舌面盘幼虫饵料藻,扁藻和塔胞藻可作为西施舌壳顶期的饵料藻,骨条藻XR-03-06和牟氏角毛藻是西施舌稚贝期后的适口饵料藻
     2.采用光学显微镜,扫描电镜和透射电镜对野生金藻XR-03-02的显微特征和超微结构进行观察。利用分光光度法对藻液进行吸收光谱的分析,采用国产硅胶G单向一次性层析法对金藻XR-03-02的色素提取物进行组成分析,结果表明:金藻XR-03-02的藻体为单细胞的运动个体,近圆形或长椭圆形,大小为(5—6)×(2—1)微米;营养细胞没有细胞壁,也无明显的外部附属物;运动细胞具2条顶生、等长的尾鞭型鞭毛,无眼点,未见附鞭及鞭毛基体;色素体一个、大型、周缘位,类囊体片层2个叠成一组;白糖素颗粒1—2个。藻液在440nm和470nm处具有最高的吸光值,初步判断金藻XR-03-02的主要色素为类胡萝卜素。分析色素提取物表明金藻XR-03-02主要含叶绿素a、c,β-胡萝卜素,岩藻黄素,叶黄素,硅藻黄素,硅甲藻黄素。根据形态学特征并查阅相关文献后初定金藻XR-03-02的分类位置为:金藻门(Chrysophyta),金鞭藻目(Chrysomonales),等鞭金藻科(Isochrysidaceae),叉鞭金藻属(Diorateria)。
     3.通过测定细胞密度、干重、生长速率、叶绿素、光合放氧速率和硝酸还原酶活性等指标对金藻XR-03-02的生理生态特性进行研究。结果表明:金藻XR-03-02与球等鞭金藻、湛江叉鞭金藻和3011球等鞭金藻的生长速率相近,但指数生长期较长,最高细胞密度可达1.7×10~7个/ml。在较低的光强下金藻XR-03-02的光合放氧速率超过球等鞭金藻、湛江叉鞭金藻的光合放氧速率。金藻XR-03-02硝酸酶活能力稍高于湛江叉鞭金藻和球等鞭金藻的酶活能力。该藻的生长适温范围为15-35℃,最适温度是25℃。在1000-10000Lux的光照强度范围内都能正常生长繁殖,最适光照强度范围为5000-8000Lux。对酸碱度的适应范围为pH值4-11,最适范围为pH值7-9。对盐度的适应范围广,适应范围为5‰-60‰最适盐度范围为20-33‰。
     4.采用微量凯氏定氮法测定蛋白质,索氏抽提法提取粗脂,氨基酸自动分析仪分析氨基酸的组成和含量,气相色谱法分析脂肪酸的组成和含量。结果表明:蛋白质含量占藻体干重的36%;氨基酸总的含量占藻体干重的28.07%,必需氨基酸占氨基酸总量的51.6%;粗脂含量占藻体干重的43.5%,主要含有饱和脂肪酸:肉豆寇酸C_(14:0)、棕榈酸C_(16:0)
    
    不!j硬!1旨酸C.,:。。不饱和脂肪酸有:棕搁油酸C、6:,、油酸C.,:l、亚油酸C,,:2不11亚麻酸C.,:3。
    其中不饱和脂肪酸占脂肪酸总量的72.3%,特别是亚麻酸,含最.片总脂肪酸的招.照%。
    其「I,丫一亚麻酸(丫一lin(,Ionic;、ci(J,(;IA).11沐7.44%。
     5.通过生氏指标的测定对企藻X只一():t一()2的生)亡中1培养丛进行筛选并通过ll{交分析
    的方法进一步优化,得金藻xl之一():卜()2的最毛I之生产卞I培养丛为e()(N一):一2()m片八、N。、闪():厂;弓5
    mg/卜、Kllul’().一3 .75 mg/l、I.’以划l们7一2.smg/卜、l考!一!Oou砰/I、}1.:一5。只/l。
     6.对野生,}十条藻X仪一():卜()6的撇微特征和超微结构迸行观察,结果表明:细)触广引(ll
    突起,呈凸透镜状,壳而花纹由多角形室孔组成,辐射状;细胞.汤5一6微米,l户〔杆3一魂
    微米,每个细胞具卜2载色体;相邻细胞间的距离宽,支持突外管长,明显可见,具纵
    的裂缝似槽状,对接点整齐。根据其形态学特征并查阅相关文献后确定其为中肋骨条藻
     (skeleton。。;、。ostatum)。通过L匕较野生骨条藻XR一03一06和生产用种中肋骨条藻的生
    长特性,发现野生分离的藻株具有产仁长较快,能达到较高生物量的特点。
It's one of the most desiderate difficulties to select high quality bait-algae and that be well cultivated to spat cultivation of Coelomactra antiquate. The paper studies Coelomactra antiquate, s decelicous bait-algae in three development stages and Diorateria XR-03-02 ,s bait value and the fcasibility on stream which separated form the sea area atchangle city, traverse about Diorateria XR-03-02 is the physiological and ecological characteristic ,main nutrient content , and the best culture medium. Part of physiological characteristic and systematic status of Skeletonema XR-03-06 are also studied at the same time. The mian results are follows:
    1. The breed effects of 12 bait-microlage which have been in common use and three wild algae on Coelomactra antiquate larva are compared. . Result is : Diorateria XR-03-02 , D. zhanjiangensis Chlorella sp and C. marine are the dainty bait for Coelomactra antiquate larva with vclum. Platymonas subcordiformisn. and Pyramimonas sp.fit Coelomactra antiqiiatalarva with umbo. Chaetoceros mulleri and Skeletonema XR-03-02 fit Coelomactra antiquate post-larva.
    2. Micromorphogical and ultrastructurocharacters of Diorateria XR-03-02 are examined by LM SEM and TEM. absorption spectrum of Diorateria XR-03-02 culture is scaned by spectrophotometer . pigment extraction is separated by TLC(thin-layer chromatography) with homemade iicagel . Results: Diorateria XR-03-02 is nakedness and free unicellular. 11, s (5?) X (2?) urn in size, sub-cycloidal or long-elliptical in shape. Vegetative cell of Diorateria XR-03-02 has an isometric whiplash type flagellum which is acrogenous and a big cyathiform chromatophore which occupy the whole cell nearly . the culture ofDiorateria XR-03-02 has maximum absorbency in 440 nm and 470 nm so the carotinoid is the main pigment can be estimated. Analysis shows the pigment extraction includes chlorophyll a chlorophyll c,B-carotene fucoxanthin diadinoxanthin, diatoxanthin and lutein.All above and referring to literature we conclude systematic status of Diorateria XR-03-02 is chrysophyta, Chrysophyta, Chrysomonales, Isochrysidaceae ,
    Diorateria.
    3. The physiological and ecological characteristic of Diorateria XR-03-02 is studied by analysis of cell density , biomass , growth rate, chlorophyll, photosynthesis oxygen evolution rate and nitratase
    
    
    activity. Results show: The growth rate of Diorateria XR-03-02 is near to Isochrysis sphacrica, Diorateria. zhanjiangensis and fsochrysis galbana 3011, s. but it has characteristic such as a longer exponential phase , and higest cell density 1.7X107/m.l . Diorateria XR-03-02, s photosynthesis oxygen evolution rate exceed the other two in the low light intensity .and it,s nitratase activity is also better than the other two . Diorateria XR-03-02 has a wide range of ecologic adaptation : moderate temperature 15-35C , optimal temperature 25C ; proper light density 1000-10000Lux , 5000-8000Lux is optimum; alkalinity acidity accommodation limit pH 4-11, pH 7-9 is optimum ; wide salinity range 5%-60%, 20-33%, is optimum.
    4. The nutrition components of Diorateria XR-03-02 are studued by chemical methods . Protein mensurated by Kjeldahl determination. Raw fat extracted by extractor, aminoacid anal ysed by automatic ami no acid analyzer and fatty acid analysed by GC (gas chromatography). The compostions are :crude protein 36%. DW, total amino acid 28.07% DW, essential amino acid 51. 6% total amino acid, crude fatty acid 43. 5% DW. The content of saturated fatty acid is : nutmeg, palmitic acid and stearic acid, unsaturated fatty acid :palmitoleic acid,oleic acid, linoleic acid and linolenic acid. The results show that the major components of unsaturated fatty acid, about 72.3% total fatty acid .especially linolenic acid 43.96% including r-Linolenic acid 37.44%.
    5.The optimal producibility medium culture of Diorateria XR-03-02 is CO (NH)2-20 mg /U NaNO3-35 mg/U KH2P04-3. 75 mg/K, FeC6H507-2. 5mg/U B1-100ug /L B12-5 ug/L, which has been selected from five prescriptions and optimized by quadrature analysis according t
引文
[1] 王本泉 涨鲜神品西施舌 中国烹饪 2000(8):25
    [2] 齐秋贞 高如承 西施舌的生活史 福建师范大学学报(自然科学版) 1995,11(4):82-88
    [3] 高如承 齐秋贞 盐度对西施舌幼虫和贝苗生长发育的影响 福建师范大学学报(自然科学版)1995,11(3):82-88
    [4] 刘德经 陈杰明 西施舌幼虫对几种单细胞藻类摄食效果的初步试验 动物学杂志 1997,32(4):7-9
    [5] 陈峰 姜悦 微藻生物技术 中国轻工业出版社 1999
    [6] Arad S. London and New york. Elsevier Applied Science. Algal Biotechnology. 1988, 65-88
    [7] 高亚辉 海洋微藻分类生态及生物活性物质的研究 厦门大学学报(自然科学版)2001,40(2):566-574
    [8] 张华军 封闭式光生物反应器亚心形扁藻光自养高密度培养研究 华东理工大学硕士学位论文 20020201
    [9] 马志珍 常用饵料微藻效果的综合评价 现代渔业信息 1992,7(11):12-19
    [10] Raymont,J.E.C. Planlton and proguctivty in the oceans(2nd edition) Vol 1 Phytoplankton 191-202. Pergamon Press
    [11] 李爱杰 我国对虾配合饵料研究概况 海洋渔业 1988,10(4):128-160
    [12] 徐新章等 河蟹溞状幼体的配合饵中蛋白质、脂肪、纤维素、糖的适宜含量的研究 江西水产科技 1988(4):30-38
    [13] Reitan K I. et al. Inflence of liquid composition of live feed on growth, survival and pigmentation of turbot Iarvae. Aquacult INT. 1994, 2(1): 33-48
    [14] Levine D M. et al. Significance of long chain polyunsaturated fatty acids to the zoel development of the brachyuran crab, Eurypanopeus depressus(smith). J Exp Biol Ecol. 1984, 84: 211-223
    
    
    [15] Pillsbury K S. The relative food value of and biochemical composition of five phytoplankton diets for queen conch strombus gigas larvoe. J Exp Mar Biol Ecol. 1985, 90: 221-232
    [16] Langdon C J, et al. The effect of algae and artificial diets on the growth snd fatty acid composition of Crassotrea glgas spart. J Mar Biol Ass U K. 1981, 61: 431-468
    [17] Enright C T, et al. Evaluation of phytoplankton as diets for juvenile Ostrea deulis. L. J Exp Mar Biol Ecol. 1986, 96: 1-13
    [18] Mai K S, et al. Comparative studies on the nutrition of two species of abalone,Haliotis ruberculata L. and Haliotis discus hannai. Ino. V. The rule of polyunsaturated fatty acid of microalgae in abalone nutrition. Aquaculture.1996, 39: 77-89
    [19] Lin D, et al. Nutritional lipid liver disease of grass carp(tenopharyngodon idellus-llet V.) China J Qceanol Limnol. 1990, 8: 262-274
    [20] 陈志杰 水产苗种饵料生物的营养补充 湛江海洋学院学报(自然科学版) 2001,20(增刊):59-61
    [21] Alonso D L, et al. Isolation of clones of Isochrysis galbana rich in eicosapentaenois acid. Aquaculture. 1992, 102: 363-371
    [22] 胡晗华 饵料微藻的特性及其CO2浓度变化的关系研究中国科学院理学博士学位论文20010601
    [23] 张宪孔等 作为不产饵料的微藻的研究 长江流域资源与环境(学报) 1999,8(增刊):152-156
    [24] 郭季芳等 一些可供海产动物幼体饵料的单胞绿藻及其培养方法初报 科学通报 1959,(11):368-369
    [25] 金德祥等 温度和盐度对三种海洋浮游硅藻生长繁殖的影响 海洋与湖沼 1965,7(4):373-384
    [26] 湛江水产专科学校主编 海洋饵料生物培养 农业出版社 1980
    
    
    [27]殷禄阁 四肩突四鞭藻在对虾育苗中的作用 河北渔业 1990(1):12-14
    [28]向曙光 增产素在亚心形扁藻生产上的应用 水产学报 1989,13(3):264-270
    [29]张庆 植物生长调节剂对几种饵料微藻影响 青岛海洋大学学报 1993,23(1):92-100
    [30]陈敏资 三十烷醇对几种单细胞藻生长影响的研究 海洋与湖沼 1994,25(5)510-514
    [31]James C M., Al-Hinty S, Salman A E. Growth and n-3 fatty acid, amino acid compostion of microalgae under different temperature regimes[J]. Aquaculture.1989, 77: 337-357
    [32]Hodgson P A. The effects of environmental on the lipid class and fatty acid composition of a marine microalgae Nannochloropsis oculata(Eustigmatopphyceae)(Droop) Hibbard[D]. ph.D.Thesis U K: Univeersity of stirling 1991
    [33]Renaud S M. et al Effect of light intensity on the prixomate biochemical and fatty acid composition of Isochrysis sp. And Nannochloropsis Oculata for use in tropical aquaculture[J] J Appl phycol. 1991, 3: 43-53
    [34]Kain J M. et al. Studies on the growth of marine phytoplankton. J Mar Biol Ass U K. 1958, 37: 781-788
    [35]Droop M. R. Auxotrophy and organic compounds in the nutrition of marine phytoplankton. J. Gen. Microbiol. 1957, 16: 286-293
    [36]陈椒芬等 等鞭金藻的生长及其主要营养成分研究 海洋与湖沼 1987,18(1):55-63
    [37]周汝伦等 金藻8701的分离、培养和应用初报 海洋与湖沼通报 1990,(1):38-40
    [38]周汝伦等 金藻8701人工培养的生态条件研究青岛海洋大学学报 1994,
    
    
    [38] 周汝伦等 金藻8701人工培养的生态条件研究青岛海洋大学学报 1994,24(2):181-186
    [39] Francisco Espinola Biochemical variability of the marine microalga Isochrysis galbana in relation to culture medium. Ring journal. 1999, 6: 58
    [40] Cristiane S. C. Pinto Development and population dynamics of Tisbebiminiensis (Copepoda. Harpacticoda) reared on different dists. Santos Aquaculture 2001,198(34): 253-254
    [41] Benemann J R. Microalgae aquaculture feeds. J. Appl Phycol. 1992, 4: 233-245
    [42] Muller-Feuga A. The role of microalgae in aquaculture: Situation and trends.J. Appl Phycol. 2000, 12: 527-534
    [43] Grima E M., Sanchez Prez J A, Camacho F G. Preservation of the marine microalga. Isochrysis galbana. 1994, 123: 377-385
    [44] Bicdenbach J M, Seith L L, Lawrence A L. Use of a new spray-dried algal product in penaeid larviculture. aquaculture. 1990, 86: 249-257
    [45] 华汝成编著 单细胞藻类的培养与利用 农业出版社 1986
    [46] 高锡伦等 单细胞藻类的两种简易分离法 水产养殖 1992(2):9-10
    [47] 张健等 藻类光生物反应器研究进展 水产科学 1999,18(2):35-39
    [48] 刘志伟等 微藻培养的光生物反应器 现代化工 2000,20(12):56-58
    [49] 李元广等 微藻大规模培养过程及光生物反应器特点分析海洋生物活性物质的研究与开发技术 青岛:青岛海洋大学出版社 2000
    [50] Brown M R, et al The ascorbic acid content of eleven species of microalgae used in mariculture. J Appl Phycol. 1992, 4: 205-215
    [51] Renaud S M, et al. The gross chemical composition and fatty acid composition of 18 species of tropioal Australion mieroalgae for possible use in mariculture. Aquaculture. 1999, 170: 147-159
    [52] Prit S.J.,et al. A tubular bioreactor for photosynthetic roduction of biomass from
    
    carbondioxide: design and performance. J. Chem Tech. Biotech, 1983, 33B: 35-38
    [53] Tredici M. R., et al. Efficiency of sunlight utilization: tubular versus flat photobioreactors. Bioteachnology and Bioengineering. 1998, 57: 187-197
    [54] Watanabe Y., etal. Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulma platensis. Biotechnology and Bioengineering. 1995, 47: 261-269
    [55] Richmond A., et al. A new tubular reactor for mass production of microalgae outdoors, Journal of Applied phycology. 1993, 5: 327-332
    [56] Lee Yuan-Kun, et al. Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnology and Bioengineering.1991, 38: 995-1000
    [57] 缪国荣 单胞藻薄膜袋封闭式培养技术的研究 青岛海洋大学学报 1987,19(3):119-124
    [58] 张志良 植物生理学实验指导 高等教育出版社 1990
    [59] 潘俊敏 藻类叶绿素和类胡卜素的快速薄板层析法 植物生理学通讯 1990(3):51-53
    [60] Carreau J. P, et al. Adaptation of macro-sclle method of the micro-scale for the fatty acid methl traseterification of biological lipid extracts. J chromatogr. 1978, 151: 384-390
    [61] V. J. chapman and D. J. chapman. The algae. The macmillan press Ltd. 1973
    [62] J. A. Hellebust and J. S. Craigie. Physioligical and Biochemical methods.Cambridge univetsity press. 1978
    [63] 王庆安等 多藻浅水体中pH值和溶解氧协同周期性变化初探 四川环境 2001,20(2):4-7,29
    [64] 胡晗华 一种海生黄藻的氨基酸和脂肪厔组成 应用与环境生物学报
    
    1999,5(5):487-490
    [65]史清河 支链氨基酸的营养饲料博览 2000(1):23-27
    [66]康庆浩 诱导皱纹盘鲍浮游幼虫附着和变态的物质 水产科学 2003,372):131-136
    [67]阮征 多不饱和脂肪酸的研究进展 中国油脂 2003,28(2):55-59
    [68]刘东艳等 不同N、P比例球等鞭金藻生长的影响 海洋水产研究 2002,23(1):29-32
    [69]张立言等 两种硅藻生长繁殖的条件研究 海洋水产研究 1982(4):79-80
    [70]贵州农学院主编 生物统计附试验设计 农业出版社 1980
    [71]程兆第 厦门港骨条藻属的记述 厦门大学学报 1992,31(3):295-297
    [72]Droop,R.N. Vitmamin B12 and Marine Ecology: The response of Monochrysis latheri. J. Mar. Biol. Assoc. U. K. 1961, 41: 69-76
    [73]Ford J E. B12-Vitmamin and growth of the flagellate ochromonas mathamonsis[J] J. Gen Microbid 1958, 19: 161-172
    [74]周汝伦等 等鞭金藻8701培养液的营养组成研究 海洋湖沼通报 1994(1):17-24
    [75]Parle M. W. studies on marine flagellates[J], J Mar Bio Ass U K. 1949,28: 255-285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700