用户名: 密码: 验证码:
饱和粗砂的真三轴试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土体具有复杂的应力应变特性,如剪胀性、各向异性、受应力路径和应力历史影响的特性等。真三轴仪是研究土体在三维应力状态下的重要测试仪器,为探寻土体的应力应变关系十分有效的工具。本文对饱和粗砂进行一系列不同围压、不同中主应力系数、固结排水和不排水剪切的真三轴试验,并在此的基础上,对真三轴系统采集的试验数据进行分析和探讨,其研究工作的主要内容如下:
     首先介绍真三轴试验仪器的国内外研究现状以及发展回顾并对试验仪器本身所存在的问题进行阐述;从土体应力应变关系的角度出发,介绍了应力应变关系的研究方法与研究进展,同时在此基础上,对砂土的剪胀特性、屈服和强度特性以及砂土在固结排水剪切和不排水剪切下的应力应变特性进行了重点的阐述。
     其次对砂土真三轴试验准备工作、试验方案以及试验方案的实现进行了阐述,介绍了真三轴试验的试验步骤。之后,在真三轴试验的基础上,对其试验结果进行分析与探讨,得出砂土在不同围压、不同中主应力系数、排水与不排水情况下的剪切特性,并分析造成这种不同的原因。同时,基于大主应力方向与沉积方向不同夹角的试验结果,初步探讨了应力诱发的各向异性以及原始各向异性对砂土变形和强度的影响。
     最后以Lade-Duncan弹塑性模型理论为基础,分析和探讨饱和粗砂在不同中主应力系数下屈服功与塑性势的关系;不同围压下塑性功与屈服势以及塑性势与屈服势的关系。并进一步结合Matsuokaka-Nakai破坏准则,分析饱和砂土在不同中主应力系数下的强度与变形特性,利用这两种应用比较广泛的破坏准则对土体的破坏强度进行预测。
The soil has a complex stress-strain characteristic, such as dilatancy, anisotropy, the stress path and stress history characteristics. As a very effective tool to explore the soil stress-strain relationship, true triaxial apparatus is a very important test equipment to study the soil under the three-dimensional stress state. A series of true triaxial tests were performed on the saturated coarse sand under different confining pressures, different intermediate principal stress coefficient, and under consolidated drained and undrained shear true. Then, on the basis of experimental data collected by the system,this paper analyzes and discusses it. The main content of the research work are as follows.
     Firstly, this paper introduced the research status of the true triaxial test apparatus, as well as development review and the test instrument itself the problems described and explains stress-strain relationship of the research methods and research progress from the angle of the soil stress-strain relationship, On this basis, this paper focuses on the dilatancy characteristics of sand, yield and strength properties, as well as consolidated drained shear and undrained stress-strain behavior under shear.
     Then, this paper describes the test preparations, test program and test program to achieve the true triaxial test test steps.While, on the basis of the test results analysis and discussion, this paper deduces and obtaines stress-strain behavior of the sand under different confining pressures, different intermediate principal stress coefficient, drained and undrained and analyze the cause of this different reasons. Results based on the angle of major principal stress direction and deposition in a different direction of the stress-induced anisotropy and the original anisotropy on the deformation and strength of sand.
     Finally, based on the Lade-Duncan elastic-plastic model theory, this paper analyzes and discusses the relationship between the yield function and plastic potential under different intermediate principal stress; the relationship between the plastic work and the potential yield and plastic potential; the relationship between plastic potential and yield potential under different confining pressures. And further to combine Matsuokaka-Nakai failure criterion, this paper analyzes the strength and deformation characteristics of saturated sand under principal stress coefficient, at the end, this paper predicts the failure strength of the soil by using of more extensive application of these two failure criteria.
引文
[1]黄文熙.土的工程性质[M].北京:中国水利水电出版社,1983.
    [2]王桃桃.新型真三轴仪改进及饱和砂土力学特性测试分析[D].西安理工大学.2010.
    [3]孙红,袁聚云,赵锡宏.软土的真三轴试验研究[J].水利学报,2002,46(12):74—78.
    [4]迟明杰,李小军,周正华等.中主应力对砂土强度影响的细观机制研究[J].岩土力学,2010,31(12):3751—3757.
    [5]扈萍等.粉细砂的真三轴试验与强度特性[J].岩土力学.2011.32(2):第465-470页.
    [6]Shibata T, Kraube D.Influence of the Variation of the intermediate principal stress on The mechanical properties of normally consolidation Clays [A].Pro.of the 6th ICSMFE [C], Montresl, Sep.8-15, Univ.of Toronto Press,tToronto,1965,1; 359-363.
    [7]Yong R N, Mekyes E. Yielding of Clay in a complex stress field [A]. Proc.of 3rd Pan American Conf..on Soil Mechanics and Foundation Engineering[C]. Caracas, Venezuela,1967,1:131-143.
    [8]Sutherland H B, Mesdary M S。the influence of intermediate principal stress of sand [A]. Proceedings of the 7th ICSMFE [C]. Mexico,1969,1:391-399.
    [9]Lade P V, Duncan J M. Cubical triaxial tests on cohesionless soil [J]. ASCE, SM,1973, 10:793-812.
    [10]Nakai T, Mastuoka H.Shear of behavior of sand and clay under three-dimensional stress conditions, soils and foundation [J].soils and Foundation, Janpanse society of Soil Mechanical and Foundation Engineering,1983,23(2),27-42.
    [11]Murayama S A, Theoretical consideration on a behavior of sand [A]. Proc, IUTAM Symposiumon rheology and Soil Mechanics [C]. Grenoble,1964,146-159.
    [12]Masuoka H, Nakai T. Stress deformation and strength characterastics of soil under three different principal stress[A]. Proc., JSCE [C].1974,232,59-70.
    [13]Chu J, Lo S C R and Lee, I K. strain softening and shear band formation of sandin multi-axial testing [J]. Geotechique,1996,46(1):63-82.
    [14]Callisto L, Calabresi G. Mechanical behavior of a natural soft clay [J]. Geotechnique 1998,48(4),495-513.
    [15]方开泽.土的破坏准则-考虑中主应力的影响[J].华东水利学院学报究,1986.6,14(2):70-81.
    [16]李广信.土的三维本构关系的探讨与模型验证[D].北京:清华大学,1985.
    [17]徐东俊.中主应力对岩石变形和强度的影响[J].岩石力学,1987,15,16(合订本):90-98.
    [18]陈晓光,许广庚等.电液控制真三轴仪的研究[J].应用科学学报,1990,8(2):158-164.
    [19]李广平,陶振宇.真三轴条件下岩石微观损伤力学模型[J].岩土工程学报,1995,17(1):25-31.
    [20]姜洪伟.软土的三维各向异性弹塑性/弹粘塑性本构关系理论及其应用研究[D].上海:同济大学,1995.
    [21]朱俊高,卢海华,殷宗泽.土体侧向变形性状的真三轴试验研究[J].河海大学学报,1995,23(6):28-33.
    [22]朱思哲,刘虔等.三轴试验原理与应用技术[M].北京,中国电力出版社.2003.
    [23]殷建华,周万欢等.新型混合边界真三轴仪加载装置及岩土材料试验结果[J].岩土工程学报,2010(4):第493-499页.
    [24]GREEN G E.Strength and compressibility of granular materials under generalized strain conditions [D]. London:university of London,1969.
    [25]徐志伟.土体各向异性变形特性真三轴试验研究[D].河海大学,2003.
    [26]徐干成,谢定义,郑颖人.饱和砂土循环动应力应变特性的弹塑性模拟研究[J].岩石力学与工程学报,1995,17(2):1—12.
    [27]迟明杰.砂土的剪胀性以及本构模型的研究[D].北京交通大学,2008.
    [28]沈珠江.理论土力学[M].北京,中国水利水电出版社.2000.
    [29]Konder, R.L..., Hyperbolic stress-strain response:cohesive soils[J]. Jounal of the Soils Mechanics and Foundations Division,1963,89(SM1):115-143.
    [30]Duncan, J.M, Chang, C.Y.., Nonlinear analysis of stress and strain in soils[J]. Jounal of the Soils Mechanics and Foundations Division,1970,96(SM5):1629-1653.
    [31]沈珠江.土的弹塑性应力应变关系的合理形式[J].岩土工程学报,1980,2(2):11-19.
    [32]沈珠江.考虑剪胀性的土和石料的非线性应力应变模式[J].水利水运科学研究, 1986,4:1-14.
    [33]Domaschuk, L.Valliappan, Nonlinear settlement analysis by finite element [J]. Jounal of the Soils Mechanics and Foundations Division,1975,101(GT7):601-614.
    [34]殷宗泽.土工原理[M].北京:中国水利水电出版社,2007.
    [35]Drucker, DC, Prager, W. Extended limit design theorems for continuous media [J]. Quarterly of Applied Mathematics,1952,9:381-389.
    [36]Drucker, D C, Prager, W. Soil Mechanics and plastic analysis or limit design [J]. Quarterly of Applied Mathematics,1952,10:157-165.
    [37]Drucker, DC, Gibson, RE, Henkel, D J. Soil mechanics and work-harding theories of plasticity [J]. Transaction ASCE,1957,122:338-346.
    [38]Roscoe, K H, Schofield, A N. Yielding of clays in states wetter than critical [J]. Geotechnique,1963,13(3):211-240.
    [39]Roscoe, K H, Burland, J B. On the generalized stress-strain behavior of wet clay [J]. Cambridge University press, London,1968:535-609.
    [40]Schofield, AN, Wroth, C P. Critical state soil Mechanics [J]. Mc Graw-Hill,1968, New York.
    [41]魏汝龙.正常压密粘土的本构定律[J].岩土工程学报,1981,3(3):10-18.
    [42]Lade, P.V, Duncan, J.M. Elasto-plain stress-strain theroy for cohesionless soil [J]. Journal of GeotechniealEnglneerin,1975,101(10):1037-1064.
    [43]Lade, P.V, Nelson, R.B, stress-strain theroy for cohesionless soil with curved yield surfaces[J]. Journal of GeotechniealEnglneerin,1977,13(11):1019-1035.
    [44]Matsuoka, H. A microscopic study on shear mechanism of granular maters [J]. Soils and Foundations,1974,14(1):29-43.
    [45]Matsuoka, H. Stress-strain relations of sands based on the mobilized plane [J]. Soils and Foundations,1974,14(2):47-61.
    [46]Lade,P.V, Kim,M K. Single hardening constitutive model for frictional materials 2.yield criterion and plastic work contours [J]. Computers and Geotechnics,1988,6:13-29.
    [47]Lade, P.V,Kim, M K. Single hardening constitutive model for frictional materials 3.yield criterion and plastic work contours [J]. Computers and Geotechnics,1988,6:31-47.
    [48]沈珠江.土体变形特性的损伤力学模拟[C].第五届全国岩土力学数值分析与解析 方法的讨论会论文集(第一卷).武汉测绘科技出版社:1994:1-8.
    [49]魏汝龙.论土的剪胀性[J].水利学报,1963(6):128-134.
    [50]蔡正银,李相菘.砂土的剪胀理论及其本构模型的发展[J].岩土工程学报,2007(8):第1122-1128页.
    [51]Li, X. S, Dafallias, Y. S. Dilatancy for cohensionless soils [J]. Geotechnique.2000, 50 (4):449-460.
    [52]Li, X. S. A sand model with state-dependent dilitancy [J]. Geotechnique.2002,52 (3):173-186.
    [53]Manzari, M.T, Dafalias, Y. F. Critical state two-surface plasticity model for sands[J]. Geotechnique,1997,47(2):255-275.
    [54]Gajo, A. and Muir Wood, D. Severn-Trent sand:a kinematic-hardening constitutive model:the q-p formulation [J]. Geotechnique,1999,9(5):595-614.
    [55]Wan R G, Guo P G.A simple constitutive model for granular soils:Modified stress-dilatancy approach [J]. Computers and Geotechnics,1998,22(2):109-133.
    [56]陈仲颐,周景星等.土力学[M].北京,清华大学出版社.2010.
    [57]尚守平,卢华喜等.粉质粘土动剪切模量的试验对比研究[J].岩土工程学报,2006,3:410-414.
    [58]郭莹,陈珍.成样方法对饱和中砂静力三轴固结排水剪切试验结果的影响[J].土木工程学报,2010(S2):第306-311页.
    [59]Sonja Z, KENJI I. Normalized behavior of very loose non-plastic soils:effects of fabric, soils and foundation [J].soils and Foundation, The janpanse geotechnical society, Vol.37, No.4,47-56, Dec.1997.
    [60]杨仲轩,李相崧等.砂土各向异性和不排水剪切特性研究[J].深圳大学学报(理工版),2009(2):第158-163页.
    [61]施维成,朱俊高,刘汉龙.中主应力对砾石料变形和强度的影响[J].岩土工程学报,2008(10):第1449-1453页.
    [62]周建.岩土工程有限元分析:理论[M].北京:科学出版社,2010.
    [63]CASAGRANDE A, L. CARILLON. Shear failure of anisotropicmaterials [J]. Boston Society of Civil Engineers,1944,31(4):74—87.
    [64]ARTHUR J R F, MENZIES B K. Inherent anisotropy in a sand [J]. Geotechnique, 1972,22(1):115—128.
    [65]Ishihara K.地震中的液化和流动破坏[J].岩土工程学报,1993,43:351-415.
    [66]Vaid Y P, Sivathayalan S.单剪和三轴试验条件下Fraser Delata砂的静态和循环液化势研究[J].岩土工程学报,1996,33:281-289.
    [67]Riemer M R, Seed R B.临界状态线位置的影响因素[J].岩土与环境工程学报,1997,123:281-288.
    [68]Yoshmine M, Ishihara K.砂土液化时的流动特性[J].土与基础,1998,38:189-198.
    [69]Lade, P V. and Duncan, J M. Cubical triaxial Tests on Cohesionless soil [J]. Journal of the Soil Mechanics foundation division:ASCE, Vol.99, No, SMIO, Oct,1975b.
    [70]Lade, P V. and Duncan, J M. Elastoplastic stress-Strain Theory for Cohesionless soil [R]. Journal of Geothnical Eng. Divvision, ASCE. Vol, No GT10, oct,1975a.
    [71]屈智炯,刘恩龙.土的塑性力学[M].北京,科学出版社.2011.
    [72]RICHART F E, J R, HALL J R, WOODS、R D. Vibration of soils and Foundations [R]. Englewood Cliffs:Prentice-Hall Inc,1970.
    [73]曾玲玲,陈晓平.软土在不同应力路径下的力学特性分析[J].岩土力学,2009(5):第1264-1270页.
    [74]LADE P V, L. DUNCAN J M, Stress-path dependent behavior of cohesionless soil [J]. Journal of the Geotechnical Engineering Division, ASCE,1976,102(GT1):42—48.
    [75]杨雪强.不同应力路径下土体的变形特性与破坏特性[J].岩土力学,2006(12)::第2181-2185页.
    [76]杨雪强.朱志政,何世秀等.对Lade-Duncan, Mastuoka-Nakai和Ottosen等破坏准则的认识[J].岩土工程学报,2006(3):第337-342页.
    [77]杨雪强.对土样强度破坏标准的探讨[J].湖北工业大学学报,2006(5):第1-5页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700