用户名: 密码: 验证码:
神府—东胜采煤塌陷区包气带水分运移及生态环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神府—东胜矿区(神东矿区)位于我国西北干旱半干旱地区,生态环境脆弱,水资源天然不足。随着煤炭资源的持续开采,地表产生大面积塌陷,地下水位大幅下降,生态环境破坏问题越来越突出。如何有效利用包气带土壤水资源成为保证矿区农业植被生理需水和塌陷区生态再建的关键问题。针对神东采煤塌陷区生态再建的科学问题,以干旱区生态再建的限制性因素——包气带土壤水为出发点,通过野外地质调查、室内物理模拟试验、野外原位试验以及野外测试对神东采煤塌陷区包气带水分运移及生态环境效应进行了研究。取得的主要进展和认识如下:
     (1)塌陷非稳定阶段,塌陷裂隙对土壤水分散失具有重要影响,与塌陷区非裂缝带土壤水相比,塌陷裂缝部位(及塌陷裂缝发育带)土壤水分损失几乎达50%,接近或低于凋萎系数,对植被生存、生长构成威胁。
     (2)与非塌陷区相比,塌陷稳定区有更强的接纳降水的能力,表现在采煤塌陷稳定区土壤含水量明显高于非塌陷区,对区域生态再建有利。但在春旱季节,塌陷稳定区浅层(30cm左右)土壤储水量低于非塌陷区,对浅根系植被萌芽不利。
     (3)塌陷稳定阶段,地表塌陷裂缝被填充,但包气带中下部或多或少存在隐伏裂隙,但几乎不起导水作用,在对该阶段的孔隙—裂隙包气带水分运动进行模拟时,可直接利用孔隙结构体进行代替。
     (4)室内实验结果表明,定雨强降雨入渗过程中,细砂和粗砂中湿润锋移动都分为两个阶段:降雨期间,湿润锋前移距离与深度呈线性关系;降雨结束后(水分再分配阶段),湿润锋前移距离与深度呈幂函数关系。入渗水分迁移速度随深度增加呈指数衰减。表明塌陷稳定阶段降雨通过深厚包气带对地下水补给是一个漫长的过程。
Shenfu-Dongsheng mining area is located in the arid and semi-arid region of northwest of China, with frangible entironment and deficient water resources. With the durative development of coal mine resources, it made the ground collapsing extensively and ground water level decreasing to a large extent and the geological and entironmental problem is increasingly prominent. How to use soil water resources reasonably and efficiently is highly important for physiological water requirement of vegetation and entironmental reconstruction of subsidence area. In consideration of the entironment reconstruction in Shendfu-Dongsheng subsidence area, soil water of mining area, as a limiting factor of entironment reconstruction, is focused on. Using geologic survey, physical simulation in laboratory, in situ field experiments and field measurement, this paper researches the migration of soil water and entironment effect in Shenfu-Dongsheng subsidence area. The main results are as follows:
     (1) In unsteady phase, ground fissures caused by collapsing facilitate the loss of soil water. The soil water content of fissure district is about 50% less than that of non-fissure district of subsidence area, which close to or below wilting coefficient. This will be a great threat for the survival and growth of vegetation.
     (2) Contrast to non-subsidence area, the steady subsidence area has stronger ability to accept precipitation, which can be concluded from the truth that soil water content of steady subsidence area is apparently larger than that of non-subsidence area. This will be helpful to the entironment reconstruction of subsidence area. But in dry spring, the steady subsidence area has a lower water-storing capacity in shallow layer (above 30cm) than that of non- subsidence area, which will be a disadvantage for the budding of short-root vegetation.
     (3) In steady phase, fissures in shallow layer of unsaturated zone are filled up, but some hidden fissures are still exist in middle and deep layer, which are no use for transmitting water in unsaturated condition. Thus, we used pore structure instead of pore-fissure structure in the simulation of soil water migration in steady phase.
     (4) In the condition of constant rainfall intensity, the process of wetting front moving in fine sand and coarse sand can be divided into two phases. In the first phase (i.e. during rainfall), the depth of wetting front is linear with rainfall time. In the second phase (i.e. after rainfall or the course of soil water redistribution), power function works. Migration velocity of infiltration water is an exponential decline with depth. It shows that the recharge of groundwater by rainfall needs a very long time in the condition of thick unsaturated zone in steady phase.
引文
毕经伟,张佳宝,陈效民,等. 应用 HYDRUS-1D 模型模拟农田土壤水渗漏及硝态氮淋失特征[J].农村生态环境,2004,20(2):28-32.
    曹巧红,龚元石. 降水影响冬小麦灌溉农田水分渗漏和氮淋失模拟分析[J]. 中国农业大学学报,2003,8(1):37~42.
    陈洪松, 邵明安. 推求非饱和土壤水分运动参数的间接方法[J]. 应用基础与工程科学学报,2002,10(2):103-109.
    陈庆秋,薛星梅.土壤水势零通量面埋深的样条函数确定方法[J].华北水利水电学院学报,17(1):71-77.
    池宝亮,黄学芳,张冬梅,等. 点源地下滴灌土壤水分运动数值模拟及验证[J]. 农业工程学报,2005,21(3):56-59.
    段中会.榆神府矿区环境地质问题及开发效应[J].陕西煤炭,2001,(2):1-3.
    范立民,杨宏科.神府矿区地面塌陷现状及成因研究[J].陕西煤炭技术,2000,(1):7-9.
    高学田.神府-东胜矿区侵蚀环境特征[J]. 水土保持研究.1999,6(2):81-87.
    龚元石,李保国.应用农田水量平衡模型估算土壤水渗漏量[J].水科学进展,1995,6(1):16-21.
    侯新伟,张发旺,李向全,等.神府东胜矿区主要地质生态环境问题及效应[J].地球与环境,2005,33(4):43-46.
    侯忠杰等.浅埋采场矿压及覆岩破断规律[J].矿山压力与顶板管理,1998,(3):9-11.
    胡安焱,董新光,刘燕,等.零通量面法计算土壤水分腾发量研究[J]. 干旱地区农业研究,2006.24(2):119-121.
    胡振琪等,采煤沉陷地的土地资源管理与复垦[M],煤炭工业出版社,1995.
    黄庆享,钱鸣高,石平五.浅埋煤层顶板周期来压结构分析[J].煤炭学报,1999,24(6):581-585.
    纪万斌,我国采煤塌陷生态环境的恢复及其开发利用[J],中国地质灾害与防治学报,1998,9,增刊:47-51.
    荆恩春,费 瑾,张孝和,等.1994.土壤水分通量法实验研究[M].北京:地震出版社,53-60.
    雷通文,夏玉成,白红梅.大柳塔煤矿采动损害特征及形成机理研究[J].矿冶工程,2005,25(5):15-18.
    雷志栋,胡和平,杨诗秀. 土壤水研究进展与评述[J]. 水科学进展,1999,10(3):311-318
    雷志栋,杨诗秀,倪广恒.地下水位埋深类型与土壤水分动态特征[J].水利学报,1992,(2):1-6.
    雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988
    李保国,龚元石,左 强,等.2000.农田土壤水的动态模型及应用[M].北京:科学出版社,40-56.
    李道西,罗金耀. 地下滴灌土壤水分运动数值模拟[J].节水灌溉,2004,(4):4-7.
    李惠娣,杨琦等. 土壤结构变化对包气带土壤水分参数的影响及环境效应[J],水土保持学报,2002(6):100-104.
    李惠娣. 采矿塌陷作用引起的地下水环境效应研究—以大柳塔媒为例[M]. 2001.
    李茜,冷俊杰,高佩玲,等. 零通量面法用于农田蒸发蒸腾量的研究[J].干旱区资源与环境.2006,2:176-179.
    李锐,唐克丽.神府—东胜矿区一、二期工程环境效应考察[J].水土保持研究, 1994, 1(4):5-17,53.
    李树志. 西部煤炭开发引起的主要生态问题及防治对策[J].选煤技术,2003,(1):1-3.
    李志忠, 康世勇.神府东胜矿区供水泉域水土流失治理技术[J].煤矿环境保护.2001,15(1):45-47.
    林素兰等. 采矿业对环境影响效应研究[J],水土保持通报,2005,25(1)88~91.
    刘昌明.土壤-植物-大气系统水分运行的界面过程研究[J].地理学报,1997,52(4): 366-373.
    刘昌明.自然地理界面过程与水文界面分析.见:中国科学院地理研究所编.自然地理综合研究-黄秉维学术思想探讨[M].北京:气象出版社,1993.19-28.
    刘增进,柴红敏,徐建新. 冬小麦土壤水分运动数值计算[J]. 灌溉排水学报,2004,23(2):73-76.
    马娟娟,孙西欢,李占斌. 单坑变水头入渗条件下均质土壤水分运动的数值模拟[J]. 农业工程学报,2006,22(6):205-207.
    聂振龙,张光辉,礼金河.采矿塌陷作用对地表生态环境的影响——以神木大柳塔矿区为研究区[J].勘察科学技术,1998,(4):15-20.
    逄春浩.有关土壤水零通量面的探讨[J].地理学与国土研究,1990,6(4):51-55.
    彭建萍,邵爱军,段生贵.田间非饱和土壤水分运动的数值模拟(Ⅱ):数学模型和数值模拟[J].河北地质学院学报,1995,18(6):554-565.
    邱景唐.非饱和土壤零通量面的研究[J].水利学报,1992,(5):27-32.
    任理. 野外条件下非饱和土壤水力传导度的确定[J].水利学报,1989,(11):49~55.
    任理.有限解析法在求解非饱和土壤水流问题中的应用[J].水利学报,1990,10:55~61.
    邵爱军,张发旺,等.煤矿地下水[M].北京:地质出版社,2005.
    邵明安.根据土壤水分的再分布过程确定土壤的导水参数[J].中国科学院水利部西北水土保持研究所集刊,1985,2:47~53
    沈振荣,等.水资源科学实验与研究- 大气水、地表水、土壤水、地下水相互转化关系[M].北京:中国科学技术出版社,1992..
    师本杰,侯忠杰. 榆神府矿区保水采煤的实验与数值模拟研究[J].矿业安全与环保,2005,32(4):11-13.
    万力,曹文炳,周训,等. 包气带中温度变化对水分分布影响的实验研究[J].水文地质工程地质,2004,31(4): 25-28.
    王安.现代化亿吨矿区生产技术[M].北京:煤炭工业出版社,2005.
    王文科,等.包气带水分运移规律研究[R].2006.1:49.
    王文龙,李占斌,李鹏,等. 神府东胜煤田原生地面放水冲刷试验研究[J].农业工程学报, 2005, 21 (Supp.) :59-62.
    王文龙,李占斌,张平仓. 神府东胜煤田开发中诱发的环境灾害问题研究[J]. 生态学杂志,2004,23(1):34-38.
    王小治,高 人,朱建国,等. 麦季施用不同尿素的氮排水和渗漏损失[J]. 农村生态环境 2005,21(1):24-29.
    王义.神华神东矿区生态环境保护及治理技术[J].西北地质,2003,36(增,全国矿山环境保护学术研讨会论文集):41-47.
    武 强,安永会,刘文岗,等. 神府东胜矿区水土环境问题及其调控技术[J]. 煤田地质与勘探. 2005, 33 (3): 54-57.
    邢大韦,张卫,王百群.1994 神府—东胜矿区采煤对水资源影响的初步评价[J].水土保持研究,1(4):92-99.
    许兆义,赵英杰,陈家军. 包气带水流中黄土裂隙作用机制研究[J],长春地质学院学报,1993,23(3):326-329.
    杨鹏,冯武林. 2002.神府东胜矿区浅埋煤层涌水溃沙灾害研究[J].煤炭科学技术, 30(增):65-69.
    杨选民,丁长印.神府东胜矿区生态环境问题及对策[J].煤矿环境保护,2000,14(1):69-72.
    张发旺等.干旱地区采煤条件下煤层顶板含水层再造与地下水资源保护[M]. 北京:地质出版社,2006.
    张光辉,殷夏,张洪平,等.零通量面方法的改进[J].水利学报,1992,(1):36-42
    张平仓,王文龙,唐克丽,等.神府——东胜矿区采煤塌陷及其对环境影响初探[J].水土保持研究,1994,1(4): 35-44.
    张蔚榛.地下水与土壤水动力学[M].北京:中国水利水电出版社,1996.
    张永波等.水工环研究的现状与趋势[M].北京:地质出版社,2001.
    张瑜芳.土壤水运移理论的研究和应用[J].灌溉排水,1992,11(4):1-7
    赵红梅. 采矿塌陷条件下包气带土壤水分布及动态变化特征.硕士论文,2006.
    赵明鹏等,阜新矿区地面塌陷灾害对土地生产力的影响[J].中国地质灾害与防治学报,2003,14(1).
    朱安宁,张佳宝. 黄潮土的土壤水渗漏及硝态氮淋溶研究[J]. 农村生态环境 2003,19(1):27-30.
    朱学愚,谢春红等.非饱和流动问题的 SUPG 有限元素数值法[J].水利学报,1994,6:37~42.
    左强.改进交替方向有限单元法求解对流弥散方程[J].水利学报,1993,3:1~10.
    A. L. B. Hurtado, Q. de Jong van Lier. Uncertainty of Hydraulic Conductivity under Field Conditions and at Fixed Pressure Heads and Water Contents. VADOSE ZONE J.,2005,4:151-162.
    Arya LM, Farrell DA, Blake GR (1975a) A field study of soil water depletion patterns in presence of growing soybean roots. I. Determination of hydraulic properties of the soil. Soil Sci Soc Am Proc 39:424–430.
    Assouline S, Tessier D, Bruand A. A conceptual model of the soil water retention curve[J].Water Resour Res,1998,34 (2):223~231.
    Beven K, Germann P. 1982. Macropores and water flow in soils. Water Resour Res, 18(5): 1311-1325.
    Bouma J. 1981. Soil morphology and preferential flow along macropores. Agric Water Manage, 3: 235-250.
    Broadbridge P, White I, 1988, Constant rate rainfall infiltration: A versatile nonlinear model, 1. Analytical solution. Water Resour. Res. 24: 145–154.
    Bronswijk JJB, Hamminga W, Oostindie K (1995) Rapid nutrient leaching to groundwater and surface water in clay soil areas. Eur J Agr 4:431–439.
    Butters G L, W A Jury. Field scale transport of bromide in an unsaturated soil, 2 Dispersion modeling [J]. Water Resour. Res., 1989,25(7):1583-1589.
    Catt JA, Howse KR, Christian DG, Lane PW, Harris GL, Goss MJ (2000) Assessment of tillage strategies to decrease nitrate leaching in the Brimstone farm experiment, Oxfordshire, UK. Soil Tillage Res 53:185–200.
    Cooper JD, Gardner CMK, MacKenzie N (1990) Soil controls on recharge to aquifers. J Soil Sci 41:613–630.
    D.A. Swanson, G. Savci ,G. Danziger. Predicting the soil-water characteristics of mine soils[J]. Tailings and Mine Waste ’99:345-349.
    G. Cassiani, A. Binley. Modeling unsaturated flow in a layered formation under quasi-steady state conditions using geophysical data constraints[J]. Advances in Water Resources 28 (2005) 467–477.
    Glen R. Walker ? Lu Zhang ? Tim W. Ellis, et al.. Estimating impacts of changed land use on recharge: review of modelling and other approaches appropriate for management of dryland salinity [J]. Hydrogeology Journal (2002) 10:68–90.
    Goncalves, M.C., Almeida, V.V., Pereira, L.S., 1999. Estimation of hydraulic parameters for Portuguese soils. In: Van Genuchten, M.Th., Leij, F.J., Wu, I. (Eds.), Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media. U.S. Salinity Laboratory, Riverside, and University of California,Riverside, pp. 1199–1209.;
    Goncalves, M.C., Pereira, L.S., Leij, F.J., 1997. Pedo-transfer functions for estimating unsaturated hydraulic properties of Portuguese soils. European Journal of Soil Science 48, 387– 400.
    Gordon I (2000) Land and water salinity—a threat or a reality? In: Proceedings of the 10th Australian cotton conference, 16–18 August, Brisbane, Qld’. Australian Cottongrowers’ Research Association, Orange, NSW, pp 361–369.
    Harris GL, Catt JA (1999) Overview of the studies on the cracking clay soil at Brimstone Farm, UK. Soil Use Manage 15:233–239.
    Hosty M, Mulqueen, J (1996) Soil moisture and groundwater drawdown in a dryland grassland soil. Irish J Agric Food Res 35:17–24.
    J.C. Fontesa, M.C. Gonc?alvesb, L.S. Pereira. Andosols of Terceira, Azores: measurement and significance of soil hydraulic properties[J]. Catena,2004,56:145-154.
    Jury W A, G Sposito. A transfer function model of solute transport through soil, 1 Fundamental concepts [J]. Water Resour. Res., 1986,22(2):243-247.
    Jury W A, L H Stolzy, P Shouse. A field test of the transfer function model for predicting solute transport [J]. Water Resour. Res., 1982,18:369-375.
    Jury W A. Simulation of solute transport using a transfer functions model [J]. Water Resour. Res., 1982,18(2):363-368.
    K S HARI PRASAD, M S MOHAN KUMAR, M SEKHAR. Modelling flow through unsaturated zones: Sensitivity to unsaturated soil properties[J]. S?dhan? Vol. 26, Part 6, December 2001, pp. 517–528. ? Printed in India
    K.A.Thomas et. Al. Soil Horizon Development on a Mountaintop Surface Mine in Southern West Virginia. Green Lands.2000, 30(3):41-52.
    Karmeli, D., Slazar, L.J. & Walker, W.R. 1978. Assessing the Spatial Variability of Irrigation Water Application. Oklahoma, USA.
    Kinzelbach W.Aeschbach W.,Alberich C. and et. al, A Survey of Methods for Groundwater Recharge in Arid and Semi-arid regions. Early Warning and Assessment Report Series, UNEP/DEWA/RS.02-2. United Nations Environment Programme, Nairobi, Kenya. ISBN 92-80702131-3.
    Mazda Kompani-Zarea, Hongbin Zhanb, Nozar Samani. Water flow from a horizontal tunnel in an unsaturated zone[J]. Journal of Hydrology 303 (2005) 125–135.
    Meissner R, Rupp H, Seeger J, Schonert P (1995) Influence of mineral fertilizers and different soil types on nutrient leaching: results of lysimeter studies in East Germany. Land Degr Rehab 6:163–170.
    Miller JJ, Lamond BJ, Sweetland NJ, Larney FJ (2000) Preferential leaching of water and chloride in a clay loam soil as affected by tillage and rainfall intensity. Water Qual Res J Can 35:711–734.
    Miller, C.T., Williams G.A., Kelly, C.T., Tocci, M.D.. 1998.Robust solution of Richards’ equation for non-uniform porous media[J]. Water Resour. Res.34:2599-2610.
    Milly, P.C.D., Moisture and heat transport in hysteretic, inhomogeneous porous media: A matric head-based formulation and a numerical model, Water Resour. Res., 18(3), 489-498, 1982.
    Moss J, Gordon I, Zischke R (1999) Vertosols do ‘‘leak’’!—Water and solute movement below irrigated cotton. In: Proceedings in the Murray-Darling basin groundwater workshop, 14–16 September 1999, Griffith. pp. 298–303 (MDBC: Griffith, NSW)
    Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resour Res,1976, 12:593~622.
    Nielsen D R, J W Biggar, K T Erh. Spatial variability of field measured soil-water properties Hilgardia. 1973,42(7):215~260
    Oostindie K, Bronswijk JJB (1995) Consequences of preferential flow in cracking clay soils for contamination-risk of shallow aquifers. J Environ Manage 43:359–373.
    Pachepsky Y A, Timlin D, Varallyay G. Artificial neural networks to estimate soil water retention from easily measurable data [J].SoilSciSocAmJ,1996,60:727~733.
    Parlange J 1972 Theory of water movement in soils, 6, Effect of water depth over soil. Soil Sci. 113:308–312. Philip J R, 1969, Theory of infiltration. Adv. Hydrol. Sci. 5: 215–296.
    Philip J R. Plant Water Relations: Some Physical Aspects[ J]. Annual Review of Plant Physiology, 1966,17: 245-268.
    Philip J.R: and D.A. de Vries, Moisture movement in porous media under temperature gradients, Transactions American Geophysical Union, 38(2), 222- 231,1957.
    Philip, J.R. 1957. The theory of infiltration 4. Sorptivity and algebraic infiltration equation. Soil Sci. 84:257–264.
    R. Ragab,J. Finch,R. Harding. Estimation of groundwater recharge to chalk and sandstone aquifers using simple soil models[J]. Journal of Hydrology 1997,190:19-41.
    R. Romá n,R. Caballero,. Bustos. Field Water Drainage under Traditional and Improved Irrigation Schedules for Corn in Central Spain. SOIL SCI. SOC. AM. J.,1999. 63:1811-1817.
    Roman R, Cabellero R, Bustos A, Diez JA, Cartagena MC, Vallejo A, Cabellero A (1996) Water and solute movement under conventional corn in central Spain: I. Water balance. Soil Sci Soc Am J 60:1530–1536.
    Schaap M G, Bouten W. Modeling water retention curves of sandy soils using neural networks[J].Water Resour Res,1996,32:3033~3040.
    Schaap M G, Leij F J. Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten model[J]. Soil Sci Soc Am J,2000,64:843~851.
    T. B. Weaver ,N. R. Hulugalle , H. Ghadiri. Comparing deep drainage estimated with transient and steady state assumptions in irrigated vertisols[J]. Irrig Sci ,2005, 23: 183–191.
    Tabuada, M.A., Rego, Z.J.C., Vachaud, G., Pereira, L.S., 1995. Two-dimensional infiltration under furrow irrigation. Modelling, its validation and applications. Agricultural Water Management 27, 105–123.
    Tocci M.D., Kelly C.T., Miller C.T.,1997, Accurate and economical solution of the pressure-head form Richards’ equation by the method of lines. Adv. Water Resour.20:1-14.
    Tyner JS, Brown GO, Vogel JR, Garbrecht VJ (2000) Chloride mass balance to determine water fluxes beneath KCl-fertilized crops. Trans ASAE 43:1553–1559.
    U. Schindler, L. Mueller. Comparison of deep seepage estimations of a virtual with a real lysimeter by means of TDR-measurements[J]. Int. Agrophysics, 2004, 19:1-5.
    Ulèn B (1999) Leaching and balances of phosphorus and other nutrients in lysimeters after application of organic manures or fertilizers. Soil Use Manage 15:56–61.
    Uwe Buczko and Horet H.Gerke, Estimating spatial distributions of hydraulic parameters for a two-scale structured heterogeneous lignitic mine soil [J], Journal of Hydrology 312(2005) 109-124.
    Warrick AW, Islas A, Lomen D O 1991 An analytical solution to Richards equation for time varying infiltration. Water Resour. Res. 27: 763–766.
    Wellings SR (1984) Recharge of the upper chalk aquifer at a site in Hampshire, England. 1. Water balance and unsaturated flow. J Hydrol 69:259–273.
    Willis TM (1995). An evaluation of deep percolation resulting from cotton irrigation in the Lower Macquarie Valley. M App Sc thesis, Charles Sturt University. Willis TM, Black AS (1996) Irrigation increases groundwater recharge in the Macquarie Valley. Aust J Soil Res 34:837–847
    X. Zhou, L. Wan, B. Fang, and et al. Soil moisture potential and water content in the unsaturated zone within the arid Ejina Oasis in Northwest China[J]. Environmental Geology (2004) 46:831–839.
    Xiaoxian Zhang, A. Glyn Bengough, John W. Crawford, et al.. Efficient methods for solving water flow in variably saturated soils under prescribed flux infiltration[J]. Journal of Hydrology, 2002, 260:75-87.
    Yl?ranta T, Uusi-Kamppa J, Jaakkola A (1996) Leaching of phosphorus, calcium, magnesium and potassium in barley, grass and fallow lysimeters. Acta Agric Scand B 46:9–17.
    Z. Yu, B. Hu. Studies on Water Movement and Solute Transport in Arid Regions[J]. Journal of Hydrology 275 (2003) 139–140.
    ZERIHUN BEKELE ,KETEMA TILAHUN. On-farm performance evaluation of improved traditional small-scale irrigation practices: A case study from Dire Dawa area, Ethiopia[J]. Irrigation and Drainage Systems,2006,20: 83–98.
    Zischke R, Gordon I (2000) Addressing the issues of root zone salinity and deep drainage under irrigated cotton. In: Proceedings of the 10th Australian cotton conference, 16–18 August, Brisbane, Qld (Australian Cottongrowers’ Research Association: Orange, NSW), pp 371–377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700