用户名: 密码: 验证码:
石油污染含水介质水动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界对石油需求的不断增长,石油类已成为地下水-土环境中一类重要的有机污染物。特别是轻质石油制品(如各种燃料油、润滑油等),由于其粘滞系数较低,在土壤中的迁移能力较强,因此轻质石油的泄漏对地下水-土环境具有更大的污染潜力。本文以淄博重大石油化工区为研究背景,以标准石英砂及该区典型砂土、壤土作为代表性含水介质,以CD15W-40机油、0#柴油、93#汽油作为代表性轻质石油制品,系统研究了石油污染含水介质的水动力特性,探讨了石油污染对含水介质表面润湿性、毛细特性和水-盐动力学特性的影响机制,为石油污染场地的治理、修复等提供科学理论依据。通过一系列的试验研究,主要取得了以下几个方面的新认识和结论:
     (1)改进了石油污染含水介质含水量和含油量的测定方法。通过引入油烘干损失系数,改进了测定含水量的传统烘干法和测定含油量的萃取-紫外分光光度法,并提出了相应的新计算公式,解决了由于油、水相互干扰,难以简单、准确测定石油污染含水介质中油、水含量的难题,为后续理论研究提供了准确的数据支持。采用改进后的方法测定石油污染含水介质中含水量和含油量准确可靠,测定误差均仅为0.5%左右,主要产生于不可避免的仪器误差,且适用范围广,不受石油种类和挥发性的影响。
     (2)弄清了石油污染含水介质的表面润湿性变异规律。采用测定土壤斥水性的方法,研究了不同含油量下机油和柴油污染含水介质的湿润性变化规律。结果显示,随着石油污染程度的提高,介质斥水性显著提高。当介质中含油量达到一临界值时,介质表面润湿性开始发生变异,由亲水性变为疏水性。试验测得石英砂和粗砂产生斥水性的临界机油含量分别为0.3%、0.5%左右,临界柴油含量则分别为20%、14%左右;亚粘土产生斥水性的临界机油含量约为8%,而柴油污染对亚粘土斥水性的影响不显著。介质组成和油品组成对含水介质润湿性变化特征具有重要影响。
     (3)研究了石油污染含水介质表面的润湿反转特征。当油污介质中的含水量达到某一临界值时,介质表面润湿性可再次发生反转,由疏水表面变回亲水表面,斥水性消失。对于油污砂性土,较低的含水率即能使其润湿性再次发生改变,润湿反转的含水量阈值约为0.4~0.8%;对于机油污染亚粘土,其临界含水量随含油率的升高而增大,且两者在数值上近似相等。
     (4)系统研究了毛细水上升动力学和毛细带水分垂向分布规律。随着石油含量的增加,含水介质中毛细水上升高度和赋水能力显著降低,主要是由于石油污染含水介质的表面被油分吸附,使界面润湿接触角增大,表面疏水性增强,且由于油分填充在介质颗粒之间,堵塞了毛细水上升的通道。与柴油污染相比,机油污染对介质毛细性的影响更为强烈,而石油污染对粗砂毛细性的影响远大于对亚粘土的影响
     (5)建立了毛细水上升高度和速率的动力学表达式。不同机油、柴油含量下,砂土和亚粘土的毛细水上升高度和时间的对数关系分别可用二次多项式关系和线性关系拟合,据此推导得到毛细水上升速率的动力学表达式。砂性土和粘性土的毛细水稳定高度与石油含量分别成乘幂和二次多项式关系。
     (6)系统研究了石油污染含水介质的水-盐动力学特性。通过室内一维水动力弥散试验,得到了不同含油砂土渗透性、有效孔隙度、弥散系数和弥散度的变化规律。柴油污染对砂土有效孔隙度、渗透性的影响比机油更加显著。随着石油含量的增加,石英砂、粗砂和粉砂的有效孔隙度均呈线性减小,而渗透性的降低趋势则逐渐变缓。相同含油率条件下,粉砂的渗透系数比石英砂和粗砂的渗透系数低2至3个数量级,主要是由于粉砂中水的流速较小,使得机械弥散作用相对较弱。相对于石油污染,含水介质的固有性质对其水-盐动力学特性的影响更显著。
With the growing demand for oil around the world, petroleum has become an important kind of organic pollutants in groundwater system. Oil pouring or leaking occurs inevitably during petroleum exploitation, refining, transportation and utilization, which can result in serious pollution in the underground water and soil environment. Especially for the low-density oil (e.g. fuel oil, lubricating oil), its migration ability is stronger due to the low viscosity coefficient, which has greater pollution potential once leaked into underground environment.
     This study is based on petrochemical area of Zibo City. Standard sand and typical soils in this area were taken as representative aquifer medium. CD15W-40 oil, 0 # diesel and 93 # gasoline were taken as representative low-density oil products. The changing rugulations and influence mechanism of surface wettability, capillary characteristics and water-salt dynamics characteristic of oil-contaminated aquifer medium were researched systematically, which can provide important references for evaluation, control and in-situ rehabilitation of oil-polluted sites. The main new understandings and conclusions obtained in this research were shown as follows:
     (1) Determination method of water and oil content of oil-polluted aquifer medium were established. The traditional drying method for water content and extraction-ultraviolet spectrophotometry for oil content were improved by measuring oil drying loss coefficient and new calculating formulas were also put forward. The new methods can solve the problems caused by mutual interference of oil and water, which can support the subsequent theoretical research with accurate data. Inspection test results showed that, the measuring error of these new methods was just about 0.5%, which mainly result from inevitable instrument errors. Therefore, these improved methods are proeved to be accurate and reliable. In addition, it won’t be influenced by oil types or volatility and thus have wide application range.
     (2) The surface wettability of oil-contaminated aquifer medium variation rule was obtained. The water repellency of oil- contaminated aquifer medium with different engine oil and diesel oil contents was determined. Results showed that the water repellency level increased dramatically, with the increase of oil pollution degree. Once the oil content reaches a certain critical value, the wettability will begin to change from hydrophilic into hydrophobic. The critical engine oil content of quartz sand and coarse sand is respectively around 0.5% and 0.3%, while their critical diesel oil content is respectively around 20% and 14%. The critical engine oil content of clay is about 8%, while diesel pollution hasn’t significant influence on clay. In addition, composition of medium and oil both have important influence on the variation characteristics of wettability of aquifer medium.
     (3) The wettability reversal feature of oil-contaminated aquifer medium was also studied, and the critical water content of wettability reversal was obtained. The results showed that when the water content reaches a certain critical value, the surface wettability will change again, from hydrophobic surface to hydrophilic surface, and the repellency of medium is disappeared. Low water content can reverse the wettability of oil-contaminated sand, the threshold value of which is about 0.4~0.8%. With the increase of oil content, the critical water content of engine oil-contaminated clay increases, and the value of water and oil contents is equal approximately.
     (4) The capillary water rising dynamics and capillary zone water vertical distribution rule were studied systematically. The results showed that, with the increase of oil content, both the capillary water rising height and water storage capacity reduced significantly. The reason is problebly that some oil was absorbed on the aquifer medium surface, which can increase the interface wetting contact angle and enhance the surface hydrophobicity. Besides, some oil can exsit among the medium particles and thus block the effective capillary water rising channels. In addition, compared with diesel pollution, engine oil pollution has stronger influence on medium capillarity, and the influence of oil pollution on coarse sand is much stronger than clay.
     (5) The mathematical expressions of capillary water rising height and rate were established as well. Under different conditions of engine oil and diesel contents, logarithmic relationship between capillary water rising height of sand and time can be expressed by quadratic polynomial, and that of clay can be expressed by linear relationship. Accorading to logarithmic relationship between capillary water rising height and time, the relationship between capillary water rising rate and time can also be deduced. The relationships between capillary water stability height and oil content of sand and clay were power and quadratic polynomial respectively.
     (6) The water-salt dynamics of porous media polluted by oil were studied. Through hydrodynamic dispersion experiment, permeability, effective porosity, diffusion coefficientand and dispersion variation were obtained. The results showed that the effect of diesel pollution on sand effective porosity and permeability was more significant than that of engine oil. With the increase of oil content, effective porosities of quartz sand, coarse sand and silt showed linear decreases. Permeability decreased gradually with a sluggish tendency and permeability coefficient of clay was two or three orders of magnitude lower than that of quartz sand and coarse sand with the same oil content. Dispersion had no apparent change. Hydrodynamic dispersion coefficient of oily silt was one order of magnitude lower than that of oily quartz sand and coarse sand, because pore water velocity in silt was lower and the role of mechanical dispersion was smaller. Relative to oil pollution, the inherent properties of porous media had a more significant influence on its water-salt dynamics.
引文
[1].何强,井文涌,王翊亭,等.环境学导论(第三版)[M].北京:清华大学出版社, 2004.
    [2].郑西来,王秉忱,佘宗莲,等.土壤-地下水系统石油污染原理与应用研究[M].北京:地质出版社,2004
    [3].郑西来.地下水污染控制[M].武汉:中国科技大学出版社, 2009.
    [4].谢重阁.环境中石油污染物的分析技术[M].北京:中国环境科学出版社,1987.
    [5].韩长绵.水中石油污染的特点及分析中的若干问题[J].环境科学与技术, 1988, 3: 20~22.
    [6].张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社. 2000.
    [7]. Lowe, D.F., C.L. Oubre and Ward C.H. Surfactants and cosolvents for NAPL remediation, Lewis Publishers, Boca Raton, FL. 1999, pp. 412.
    [8]. StandnesDC, AustadTor. Wettability alteration in carbonates interaction between cationic surfactant and carboxylate sasakey factor in wettabilit y alteration from oil-wet to water-wet conditions[J]. Colloids and surfaces A: Eng Aspects, 2003, 216: 243-259.
    [9]. Liu L, Buckley J S. Alteration of wetting of micasurfaces[J]. Journal of Petroleum Science & Engineering, 1999, 24: 75-83.
    [10]. StandnesDC, Austad Tor. Wettability alteration in chalk1. Preparation of core material and oil properties[J]. Journal of Petroleum Science and Engineering, 2000, 28:111-121.
    [11]. Susan E. Powers. Wettability of porous media after exposure to synthetic gasolines[J]. Journal of Contaminant Hydrology,1995(19):105~125.
    [12]. Rezaei GomariK.A., Hamouda A.A.. Effect of fatty acids, water composition and pH on the wettability alteration of calcite surface[J]. Journal of Petroleum Science and Engineering, 2006, 50:140-150.
    [13]. Wu Y, Shuler PJ, Blanco M. A study of wetting behavior and surfactant EOR in carbonates with model compounds[C]. SPE99612, 2006SPE/DOE symposiumonim -proved oil recovery in Tulsa, Oklahoma U.S.A.
    [14].李美蓉,孙向东,桂召龙.胜利油田郝现联合站油罐底泥的污染物分析与评价[J].石油化工环境保护, 2005, 28(1): 51-54.
    [15].宋莉晖,金文标,李秀珍.油气田地面溢油污染及治理措施[J].油气田地面工程, 1996,15(6): 22-23.
    [16].李凌波,林大泉,曾向东等.某石油化工厂区有机污染物的表征[J].土壤.石油学报(石油加工), 2001, 04: 87-96.
    [17].戴竹青,申开莲,林大泉.石油化工厂区土壤中总石油烃分布的研究[J].石油化工环境保护, 2000, 04: 40-44.
    [18].刘晓艳,李兴伟,纪学雁等.油田城市地表土壤石油污染特点及其防治对策[J].国土与自然资源研究. 2004, 04: 68-69.
    [19].张兴儒,张士权.油气田开发建设与环境影响[M].北京:石油上业出版社, 1998, 129-1[1]
    [20].刘志群,白玉兴,黄春富.落地油泥污染及油土分离处理的工艺研究[J].环境保护科学, 2004, 30(122): 43-45.
    [21].张亚学,耿安松,廖泽文.地表稠油污染物地球化学研究现状[J].矿物岩石地球化学通报, 2004, 23( 2): 155-159.
    [22]. Bear, J. Dynamics of Fluids in Porous Media. Dover Publication, Inc. NY,1972pp. 764.
    [23]. Chevalier, L.R. and J. M. Fonte. Correlation model to predict residual immiscible organic contaminants in sandy soils[J]. J. Hazard. Material., 2000,B72:39-52.
    [24]. MERCER JW , COHEN RM. Review of immiscible fluids in the subsurface: ropertiesmodels characterization and remediation[J]. JContam Hydro, 1990, 6: 107-163.
    [25]. Lowe, D.F., C.L. Oubre and C.H. Ward. Surfactants and Cosolvents for NAPL Remediation[J]. Lewis Publishers, Boca Raton, FL. 1999: 412.
    [26]. Lord, D.L., Demond A.H.. Influence of organic acid solution chemistry on subsurface transport properties capillary pressure-saturation[J]. Environ. Sci. Technol. 1997,31(7): 2052-2058.
    [27]. Zheng, J. and Powers S.E.. Identifying the effect of polar constituents in coal-derived NAPLs on interfacial tension[J]. Environ. Sci. Technol. 2003, 37(14): 3090-3094.
    [28]. Powers, S.E., Anckner W.H.. Wettability of NAPL-contaminated sands[J]. J. Environ. Eng., 1996, 10: 889-896.
    [29]. Anderson, W. G. Wettability literature survey-Part 1. Rock/oil/brine interactions, and the effects of core handling on wettability[J]. J. Pet. Technol., 1986, 10: 1125-1149.
    [30]. Lowe, D.F., Oubre C.L. and Ward C.H.. Surfactants and Cosolvents for NAPL Remediation[J]. Lewis Publishers, Boca Raton, FL. 1999: 412.
    [31]. Quyum A., Achari G, Goodman R.H.. Effect of wetting and drying and dilution on moisture migration through oil contaminated hydrophobic soils[J]. The Science of the Total Environment, 2002, 296: 77-87.
    [32].蒋平,张贵才,葛际江,等.润湿反战机理的研究进展[J].西安石油大学学报(自然科学版). 2007,22(6): 78-84.
    [33]. Henryk Czachor. Modeling the effect of pore structure and wetting angles on capillary rise in soils having different wettabilities[J]. Journal of Hydrology. 2006, 328: 604– 613
    [34].杨邦杰, Blackwell P S, Nicholson D F.土壤斥水性引起的土壤退化、调查方法与改良措施研究[J].环境科学, 1993, 15 (4): 88-90.
    [35]. Van Dam J C, Hendrickx J M H, Van Ommen H C, et al . Water and solute movement in a coarse-textured water-repellent field soil[J]. J. of Hydrology. 1990, 120: 359-379.
    [36].杨邦杰, Blackwell P S, Nicholson D F.斥水性土壤中的水热运动规律与数值模型[J].土壤学报, 1996, 33(4): 351-359 .
    [37]. Dekker L W, R itsema C J. How water moves in a water repellent sandy soil[J ]. Water Resources Research, 1994, 30: 2507-2517.
    [38]. Carrillo M L K, Letey J, Yates S R. Unstable water flow in a layered soil [J].Soil Sci Soc Am J, 2000, 64: 450-455.
    [39]. Doerr S H, Shakesby R A, Walsh R P D. Soil water repellency: its causes, characteristics and hydrolgeomorphological significance[J]. Earth-Sci. Rev. 2000, 51: 33-65.
    [40]. Thwaitesa L A, Rooij G H. Near-surface distributions of soil water and water repellency under three effluent irrigation schemes in a blue gum (Eucalyptus globules) plantation[J]. Agricultural water management. 2006, 86: 212-219.
    [41]. McKissock. The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work[J]. Hydrol. 2000: 231-232, 323-332.
    [42]. McGhie D A, Posner A M. The effects of plant top material on the water repellence of fired sands and water repellent soils[J]. Agric. Res. 1981, 8(32): 609-620.
    [43]. Moody J A, M art in D A. Initial hydrologic and geomorphic response following a wildfire inthe Colorado Front Range. Earth Surf[J]. Processes Landform s, 2001, 26: 1049-1070 .
    [44]. Graham R T. Hayman fire case study [M]. U SDA Forest Service Gen. Tech. Rep. RMRS-GTR-114 U SDA Forest Service Fort Collins, CO. 2003.
    [45]. Robichaud P R, Beyers J L, Neary D G. Evaluating the effectiveness of postfire rehabilitation treatments[M]. U SDA Forest Service Gen.Tech. Rep. RMRS2GTR263. U SDA Forest Service Fort Collins, CO. 2000 .
    [46]. Huffman E L, MacDonald L H, Stednick J D. Strength and persistence of fire induced soil hydrophobicity under panderosa and lodgepole pine, Colorado Front Range[J]. Hydrol. Proc, 2001, 15: 2877-2892.
    [47]. Wallach R, Ben Arie, Graber E R. Soil water repellency induced by long term irrigation with treated sewage effluent [J] .Environ.Qual.2005.34: 1910-1920.
    [48].陈俊英,张智韬,等.不同污染程度的水对土壤斥水性的影响[J].节水灌溉. 2009(10): 13-17.
    [49]. Travis M J, et al. Accumulation of oil and grease in soils irrigated with grey water and their potential role in soil water repellency[J]. Sci Total Environ. 2008:1-7.
    [50]. Roy J L, McGill W B. Characterization of disaggregated non-wettable surface soils found at old crude oil spill sites[J]. Can J Soil Sci. 1998, 78: 331–344.
    [51]. Roy J L, McGill W B. Flexible conformation in organic matter coatings: an hypothesis about soil water repellency[J]. Can J Soil Sci.2000, 80: 143–152.
    [52]. Quyum A., Achari G., et al, Effect of wetting and drying and dilution on moisture migration through oil contaminated hydrophobic soils[J]. The Science of the Total Environment 2002, 296: 77–87.
    [53].唐正光,王苏达,吴培关,等.碎石的可压实性及压实对渗透性能的影响[J].昆明理工大学学报(理工版),2006,31(1): 61~64.
    [54].齐明亮,王有乐,等.土地快速渗滤系统的水力负荷研究[J].甘肃环境研究与监测, 1999 12(4): 169~172.
    [55].张宏理,李昌哲,杨立文.林地土壤渗透实验研究[J]. .森林实用技术, 1991, (1l):23~25.
    [56].顾中华,高广远,王结虎.结构性对上海软土渗透系数影响的试验研究[J].探矿工程, 2004(5):1~3.
    [57].孙凯年,李可任.尾砂粒度对充填物理力学性质的影响[J].有色金属, 1983,35(3):14~21.
    [58].余斌,刘坚,杨和平.粗颗粒充填料渗透性能试验及其影响因素[J].冶金矿山设计与建设.2007,32(6):7~9.
    [59].徐增辉,刘光廷,叶源新等.温度对软岩渗透系数影响的试验研究[J].三峡大学学报,2006,28(4):301~306.
    [60]. Huang S.Y., Fredlund D.G., Barbour S.L.asure, entsofeoefficientofPermeability of unsaturated. ProeslstInt ConfonUnsat [J].The Netherlands, A A BaIkema,1995:505~511.
    [61].郝振良,马捷,王明育.热应力作用下的有效压力对含水介质渗透系数的影响[J].水动力学研究与进展,2003,18(6): 792~797.
    [62]. MCLACHLAN A, HARTY B. Effects of crude oil on the supralittoral meiofauna of a sandy beach [J]. Marine Environmental Research, 1982, 7(1): 71~79.
    [63]. KHAMEHCHIYAN M, CHARKHABI A H, TAJIK M. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils [J].Engineering Geology, 2007, 89:220~229.
    [64].李梅,郑西来,童玲,等.石油污染对土壤渗透性的影响研究[J].中山大学学报, 2009, 48(2): 119~123.
    [65].邵辉煌,李广贺,章卫华,等.包气带油污土层生物修复现场控制性因素的评价[J].中国环境科学, 2001, 21(6):519~522.
    [66].武强,王志强,杨淑君,等.地下水曝气工程技术研究—以德州胜利油田地下水石油污染治理为例[J].地学前缘, 2007, 14(6): 214~221.
    [67].薛禹群.地下水动力学[M].北京:地质出版社, 1997.
    [68].郑西来,王秉忱,佘宗莲,等.土壤-地下水系统石油污染原理与应用研究[M].北京:地质出版社,2004.
    [69].张宇峰,张雪英,徐炎华,等.土壤中水动力弥散系数的研究进展[J].环境污染治理技术与设备, 2003, 4(7):8~12.
    [70].魏新平,王文焰,王全九.用对流扩散方程确定非饱和土壤水动力弥散系数[J].灌溉排水, 2000,19(2):48 ~51.
    [71].祁敏.佳木斯地区地下水弥散实验研究[J].水文地质工程地质, 1996, 6: 48~51.
    [72].张红梅.氟在土中运移规律的动态试验研究[J].岩土工程学报, 2006, 28(9):1159~1162.
    [73].张明泉,曾正中,等.室内二维弥散试验研究[J].兰州大学学报, 1993, 29(4): 274~278.
    [74].陈建峰,王政友.大同地区地下水弥散试验研究[J].地下水, 2002, 4: 168~169.
    [75].赵雪琼,卞建民,杨坡,等.长春西部串湖含水介质弥散试验及污染质运移研究[J].地下水, 2008, 30(5): 12~14.
    [76].吴耀国,田春声.本钢郑家屯潜水含水层弥散试验研究[J].西安地质学院学报, 1995, 17(1):56~60.
    [77].岳梅.淮南市区浅层地下水水质污染预测模型探讨[J].地下水, 2002, 2: 77-78.
    [78].吴耀国,田春生,李俊亭.对弥散试验的几点新认识[J].西安地质学院学报, 1995, 17(4): 37~40.
    [79].马建良,陈喜,程勤波,等.一维变密度溶质运移实验及参数推求[J].水资源保护, 2008, 24(3):8~11.
    [80].郑西来,钱会,杨喜成.地下水含水介质的弥散度测定[J].西安工程学院学报, 1998, 20(4): 33~36.
    [81].刘德军,范显华,章英杰,等.粉碎型花岗岩的弥散度测定[J].核化学与放射化学, 2004, 26(2): 108~113.
    [82].成建梅.考虑可信度的弥散度尺度效应分析[J].水利学报, 2002,2(2): 90~94.
    [83]. Gelhar L W, Welty C, Rehfelot K R. A critical review of data on field-scale dispersion in aquifers[J]. Water Resource Research, 1992, 28(7):1955~1974.
    [84].杨金忠,蔡树英,叶自桐.区域地下水溶质运移随机理论的研究与进展[J].水科学进展, 1998, 9(1): 84~88.
    [85].郑冰,陈家军等.非饱和土壤轻油污染多相流研究进展[J].环境污染治理技术与设备. 2004,5(4) :13-18.
    [86].王大纯,张人权,等.水文地质学基础[M].北京:地质出版社, 1995.
    [87]. Aiban, A. The effect of temperature on the engineering properties of oil-contaminated sand [J]. Journal of Environmental International, 1998, 24: 153-161.
    [88]. Alsanad H.A., Eid W.K., Ismael N.F.. Geotechnical properties of oil contaminated Kuwaiti sand[J]. Journal of Geotechnical Engineering. ASCE,1995,121(5): 407-412.
    [89]. Mashalah K., Amir H. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils[J]. Engineering Geology, 2006, 89: 220-229.
    [90]. Lowe D.F., Oubre C.L. and Ward C.H.. Surfactants and Cosolvents for NAPL emediation[J]. Lewis Publishers, Boca Raton, FL. 1999: 412.
    [91]. Anderson, W. G.. Wettability literature survey-Part 1. Rock/oil/brine interactions, and the effects of core handling on wettability[J]. J. Pet. Technol. 1986, 10: 1125-1149.
    [92]. Quyum A., Achari G., Goodman R.H.. Effect of wetting and drying and dilution on moisture migration through oil contaminated hydrophobic soils[J]. The Science of the Total Environment, 2002, 296: 77-87.
    [93]. Parker J. C., Lenhard R. J., Kuppusamy T. A parametric model for constitutive properties governing multiphase flow in porous media[J]. Water Resour. Res., 1987, 23 (4): 618-624
    [94]. Host, Madsen J., Hogh J. Laboratory and numerical investigations of immiscible multiphase flow in soil[J]. Journal of Hydrology, 1992, 135: 13~52.
    [95].支银芳,陈家军.含水介质两相系统毛细压力与饱和度关系试验研究[J].水科学进展. 2007, 18(2): 151-157.
    [96].董斌,张喜发等.毛细水上升高度综合试验研究[J].岩土工程学报. 2008, 30(10): 1569-1574.
    [97].姚华,张喜发,张冬青.影响粗粒土毛细水上升高度的因素研究[J].勘察科学技术. 2007,1: 10-12, 26.
    [98].冯炜炜,陆会清,姚力.浅谈土的不同物质组成对毛细性的影响[J].新疆有色金属. 2004,2: 16-18
    [99].李瑞峰.竖管法和负水头法毛细水上升高度的比较研究[J].山西建筑. 2008, 34(25):150-151.
    [100]朱学愚,刘建立,朱俊杰等.山东淄博裂隙岩溶水中石油污染物分布和迁移特征[J].中国科学, 2000, 30(5):479-485.
    [101]陈余道,朱学愚,朱学顺等.岩溶裂隙含水层中石油类污染物的迁移与水力截获[J].环境科学学报, 2000, 20(4): 406-409.
    [102]徐品,宋长清,丁慎怡.淄博市大武水源地地下水环境问题及防治对策[J].山东地质, 2000: 9.
    [103]胡志峰.土-水系统苯系物化学和生物行为研究[D].青岛:中国海洋大学, 2007.
    [104]吕华,马振民,邱鲁军.地下水油类污染系统形成机制研究-以某石油化工研究区为例[J].煤田地质与勘探, 2005, 33(6): 38-41.
    [105]刘孝义,依艳丽.土壤物理学基础及其研究法[M].沈阳:东北大学出版社, 1998.
    [106] Mashalah Khamehchiyan, Amir Hossein Charkhabi, Majid Tajik. Effects of crude oil contamination on geotechnical Properties of clayey and sandy soils[J]. Engineering Geology, 2007, 89: 220-229.
    [107]童玲.石油污染多孔介质的水理和力学特征研究[D].青岛:中国海洋大学, 2008.
    [108]李梅.多孔介质中石油的残留及其水理性质研究[D].青岛:中国海洋大学, 2008.
    [109]李纪云,李丽,冯成武.超声-紫外法测定土壤中石油类物质含量[J].石油大学学报:自然科学版, 1999, 23(6): 82-83,93
    [110]周武举.超声波提取-红外光度法测定土壤中石油类、动植物油含量的试验研究[J].安全与环境工程, 2009, 16(6): 52-54.
    [111]李钟玮,肖荣欣,张建华.两种萃取方法测定土壤中石油类的对比实验[J].黑龙江环境通报, 2006, 30(4): 57-59.
    [112] Mashalah Khamehchiyan, Amir Hossein Charkhabi, Majid Tajik. Effects of crude oil contamination on geotechnical Properties of clayey and sandy soils[J]. Engineering Geology, 2007, 89: 220-229.
    [113]吴延磊,李子忠,龚元石.两种常用方法测定土壤斥水性结果的相关性研究[J].农业工程学报, 2007, 23(7): 8-13.
    [114] Stefan, H. D., 1998. On Standardizing the‘water drop penetration time’and the molarity of an ethanol droplet’techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surf. Process. Landforms, (23): 663-668.
    [115] Quyum A., Achari G., et al.. Affect of wetting and drying and dilution on moisture migration through oil contaminated hydrophobic soils[J]. The Science of the Total Environment, 2002, 296: 77–87.
    [116] Letey J., Carrillo M.L.K., Pang X.P. Approaches to characterize the degree of water repellency. Journal of Hydrology. 2000, 231–232: 61–65.
    [117] McKissock,I., Walker, E.L., Gilkes, R.J., et al. The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work[J]. Journal of Hydrology, 2000, 231-232: 323-332.
    [118] Sonneveld, M.P.W., Backx, M.A.H.M., Bouma, J., 2003. Simulation of soil water regimesincluding pedotransfer functions and land-use related preferential ?ow. Geoderma 112: 97-110.
    [119]丁晓峰,管蓉,陈沛智.接触角测量技术的最新进展[J].理化检验-物理分册. 2008, 44(2): 84-89.
    [120]储鸿,崔正刚.粉体接触角的测定方法[J].化工时刊. 2004,18(10): 4-47.
    [121] Santos , Mohamed , Bannwart , et al . Contact angle measurement s and wet ting behavior of inner surfaces of pipelines exposed to heavy crude oil and water [J]. JPet rol Eng , 2006, 51 (1/ 2) : 9.
    [122] Tavana , Simon , Grundke , et al . Interpretation of contact angle measurement s on two different fluoropolymers for the determination of solid surface tension[J ]. J Colloid Interf Sci , 2005, 291(2): 497 - 506.
    [123]朱步瑶,等.界面化学基础[M ].北京:化学工业出版社, 1996.
    [124]艾德生,等.用透过高度法测定粉体的润湿接触角[ J ].理化检验-物理分册, 2001, 37(3): 110-112.
    [125]姚荣兴,王瑛,王迎,等.测量粉体润湿接触角的实验装置的设计及应用[J].玻璃与搪瓷. 2005,33(2): 39-42.
    [126]沈冬梅,肖举强,陈晓娟.高度法和压力法测定粉末接触角的比较[J].硫磷设计与粉体工程. 2007, (1):9-12.
    [127]李义昌.地下水动力学[M].北京:中国矿业大学出版社, 1995: 222.
    [128]郑西来,张俊杰,梁春.石油污染多孔介质水动力效应研究[J].中国矿业大学学报.2011,40(02): 286-291.
    [129]张俊杰.多孔介质中石油残留及其水动力效应研究[D].青岛:中国海洋大学, 2008.
    [130]张兴儒,张士权.油气田开发建设与环境影响[M].北京:石油上业出版社,1998,129-148.
    [131]李美蓉,孙向东,桂召龙.胜利油田郝现联合站油罐底泥的污染物分析与评价.石油化环境保护[J], 2005, 28(1): 51-54.
    [132]宋莉晖,金文标,李秀珍.油气田地面溢油污染及治理措施[J].油气田地面工程, 1996, 15(6): 22-23.
    [133]李凌波,林大泉,曾向东等.某石油化工厂区有机污染物的表征土壤[J].石油学报(石油加工), 2001,04: 87-96.
    [134]戴竹青,申开莲,林大泉.石油化工厂区土壤中总石油烃分布的研究[J].石油化工环境保护, 2000, 4: 40-44.
    [135]刘晓艳,李兴伟,纪学雁等.油田城市地表土壤石油污染特点及其防治对策[J].国土与自然资源研究. 2004,04: 68-69.
    [136]刘志群,白玉兴,黄春富.落地油泥污染及油土分离处理的工艺研究[J].环境保护科学, 2004, 30(122): 43-45.
    [137]刘起霞,等.环境工程地质[M].郑州:黄河水利出版社, 2001.
    [138]谬林昌,刘松玉.环境岩土工程学概论[M].北京:中国建材工业出版社,2005.
    [139]国家水利部. SL 237-1999,土工试验规程[S].北京:中国水利水电出版社,1999.
    [140]刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社, 1996.
    [141]中国科学院南京土壤研究所.土壤理化分析[M.上海:上海科学技术出版社,1 978.
    [142]李学垣.土壤化学[M].北京:高等教育出版社,2001.
    [143]于天仁.土壤化学原理[M].北京:科学出版社,1987.
    [144]李永盛,高广运.环境岩土工程理论与实践[M].上海:同济大学出版社, 2002.
    [145]国家地质矿产部. DT-92,土工试验规程[S].北京:地质出版社, 1992.
    [146]郑西来.地下水石油污染机理及其应用研究[D].西安,西安工程学院,1997.
    [147]李玉瑛.土-水系统石油污染物挥发和降解过程研究[D].青岛:中国海洋大学, 2005.
    [148]赵东风,赵朝成,王联社等.石油污染物在土壤中的迁移渗透规律[J].石油大学学报, 2003, 24(3):64-67.
    [149]连会青,武强,李铎.石油污染物在浅层孔隙介质中的吸附与迁移[J].辽宁工程技术大学学报, 2005,24(6): 36-39.
    [150]刘晓艳,史鹏飞,孙德智等.大庆土壤中石油类污染物迁移模拟[J].中国石油大学学报(自然科学版), 2006, 30(2): 120-124.
    [151]岳战林,蒋平安,贾宏涛.石油类在环境非敏感区土壤中的迁移规律研究[J].新疆农业大学学报, 2006, 29(2): 62-64.
    [152]岳战林,蒋平安.石油类污染物的特性及环境行为[J].石化技术与应用, 2006, 24(4): 307-308.
    [153]沈平平.油水在多孔介质中的运动理论与实践[M].北京:石油工业出版社, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700