用户名: 密码: 验证码:
海洋平台水动力系数反演方法及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋平台是一类为开发和利用海洋资源提供海上作业与生活场所的海洋工程结构物。近年来,由于世界各国对海洋资源的日益重视,海洋开发事业迅速发展,海洋平台的需求量越来越大,海洋平台设计的安全可靠性的要求也越来越高。波浪荷载是海洋平台设计的重要环境荷载之一,工程设计中大多数海洋平台上的波浪载荷采用莫里森方程来计算,莫里森方程计算波浪力的关键在于水动力系数的选取,而规范中系数的选取多来自经验或实验,并不能准确反映出计算平台所处海况下的情况,因此反演出当前海况下的水动力系数对平台安全设计具有重要意义。本文主要面向工程实际问题,对海洋平台水动力系数的反演方法进行了研究,并利用实测数据对西江23-1导管架海洋平台所处海况下的水动力系数进行了反演,具有重要的工程应用价值。
     本论文研究的主要工作:
     1)当在频域内进行载荷反演时,针对在自振频率附近频响函数矩阵出现病态的情况,提出了基于频谱特征的载荷反演方法,该方法适合于载荷谱特征已知的情况。数值算例通过比较验证了该方法的优越性。
     2)在线性波情况下对圆柱形结构响应施加了白噪声之后频域内对水动力系数进行识别。根据谱分析的方法,考虑线性波前后桩腿相位差的影响,比较了单个频点反演与采样频率内利用对频率取矩法反演结果的准确度,结果表明在已知波浪谱的情况下利用矩来进行反演识别有明显的优越性。
     3)将模型简化的思想应用到海洋平台水动力系数反演中去。根据位移同步性假设将海洋平台结构划分为若干个同步性区域,然后用准刚体模态去等效每个区域的位移模式,得到简化模型,并对简化模型进行变形修正,得到更为精确的简化模型。通过这个简化方法对海洋平台结构进行自由度减缩,利用简化后的模型对水动力系数进行反演,并对载荷反演中的病态问题进行了探讨,同时给出了反演结果的评估方法和反演中测量数据的选取依据。
     4)根据海洋平台实测数据对实际流场中的水动力系数进行了反演。针对监测项目内容参与研发了相应的监测设备,利用测得的载荷和海况对水动力系数进行了反演。并用反演的结果和测得的海况来计算海洋平台的结构响应,与实测结构响应相比较来验证反演结果,结果证明用现场实测数据反演的水动力系数值是正确的。
Offshore platform is a structure which provides the place for seafaring and offshore operation for the purpose of ocean exploitation and utilization of resources. Nowadays, ocean exploitation has been rapidly developed due to the more emphasis put by the countries of the world on sea resources. And the need of the offshore platform is increasingly demanded. The demand on the reliability of the design of the offshore platform is getting higher. Wave load is one of the important environmental loads in the design of the offshore platform. Most of the wave loads applied on the offshore platforms are computed through Morison equation in engineering design. The key of computing the wave force through Morison equation lies in the selection of the hydrodynamic coefficients which are basically acquired from the experience or experiments and can’t accurately reflect the actual sea condition acting on the offshore platforms. Thus, it is of great significance to identify the hydrodynamic coefficients in the current sea condition for the safety design of the offshore platform. Based on the engineering background, this dissertation is devoted to studying the identification method of the hydrodynamic coefficients of the offshore platform and identifying the coefficients in the sea condition acting on the Xijiang23-1 jacket offshore platform by using real-test data, which could be practically applied to the actual engineering problems.
     The main researches are as follows
     1) According to the ill-condition problem of the frequency response function appearing near the natural frequency during load identification in frequency domain, a new load identification method based on the characteristic of frequency spectrum is proposed. This method is applicable to the specific condition when the characteristic of load spectrum is given. And the advantage of this method is subsequently verified by comparison in the numerical example.
     2) The identification method of hydrodynamic coefficients in frequency domain is presented considering applying white noise to the cylindrical structural response under the circumstance of linear wave. Based on the spectrum analysis method, the effects of phase difference between the foremost and following legs of the linear wave are considered. Accuracy of the two identification methods is also compared between the single frequency and the quadrature about the frequencyωin the sampling frequency. The result shows that the identification method through the quadrature about the frequency has an obvious advantage over the condition that wave spectrum is given.
     3) The method of model reduction is applied into the identification of the hydrodynamic coefficients of offshore platform. Based on the synchronistic assumption, the structure of offshore platform can be divided into several displacement synchronous parts. Every synchronous part can be substituted by a quasi-rigid-body mode and the full-size models can be simplified. The more accurate reduction model can be acquired through deformation modification. The degrees of freedom of the offshore platform structure are reduced by the modification model. By using the simplified model, the hydrodynamic coefficients are subsequently identified. The ill-conditioned problem in force identification is discussed and both the assessment method of the identification result and the basis for acquiring the measurement data in the identification are given.
     4)On the basis of the real-test data from actual wave-current field, the hydrodynamic coefficients of offshore platform are identified. Corresponding monitoring equipments are developed for the need of monitoring program. By applying the measured load and data about wave field from Xijiang 23-1 offshore platform, the hydrodynamic coefficients are identified. The structural response of the offshore platform is computed by use of the identification results and data about wave field. The identification results are validated by comparison between the measured response and the computed response. The results prove the hydrodynamic coefficients identified by the real-test data are correct.
引文
[1] Morison J R, O'brien M P, Johnson J W, et al. The force exerted by surface waves on piles[J]. Petrol. Trans., AIME,1950, 189: 149~154.
    [2] Wiegel R L. Oceanographical engineering[M]. Englewood Cliffs, N.J.: Prentice-Hall Inc., 1964.
    [3] Keulegan G H, Carpenter L H. Forces on cylinders and plates in an oscillating fluid[J]. Journal of Research of the National Bureau of Standards,1958, 60(5): 423~440.
    [4] Sarpkaya Turgut, Isaacson Michael. Mechanics of wave forces on offshore structure[M]. New York: Van Nostrand Reinhold Co., 1981.
    [5] Sarpkaya Turgut. Forces on cylinders and spheres in a sinusoidally oscillating fluid[J]. Journal of Applied Mechanics-transactions of the ASME,1975, 42(1): 32~37.
    [6] Sarpkaya T. In-line and transverse forces on smooth and sand-roughened cylinders in oscillatory flow at high reynolds numbers[R]. Naval Postgraduate School Technical Report No. NPS-69SL76062, Monterey CA, 1976.
    [7] Sarpkaya T. Forces on cylinders near a plane boundary in a sinusoidally oscillating fluid[J]. Jour. of Fluids Engrg.,AMSE,1976, 98(1): 499~505.
    [8] Chakrabarti S K. Hydrodynamic coefficients for a vertical tube in an array[J]. Applied Ocean Research,1980, 3(1): 2~12.
    [9] Chakrabarti S K. Inline forces on fixed vertical cylinder in waves[J]. Jour. Waterways etc. Div.,ASCE,1980: 145~155.
    [10] Gaston J D, Ohmart R D. Effects of surface roughness on drag coefficients[J]. Civil Engineering in the Oceans IV,ASCE,1979: 611~621.
    [11] Bishop J R. R.M.S. Force coefficients derived from Christchurch Bay wave force data[R]. National Maritime Institute Report NMI-R-62, 1979.
    [12] Wheatley J H W. A British offshore research facility[J]. Trans. Roy. Inst. of Naval Architects,RINA,1976, 118
    [13] Heideman J C, Olsen O A, Johansson P I. Local wave force coefficients[J]. Civil Engineering in the Oceans IV,ASCE,1979: 684~699.
    [14]任佐皋.波-流场中孤立桩柱上作用力系数的研究[J].海洋学报,1985, 7(4):503~512.
    [15]康海贵.不同雷诺数下水平桩柱的水动力特征[J].水动力学研究与进展,1994, 9(4): 388~394.
    [16]康海贵,李玉成,王洪荣.垂直桩柱正向波流力的计算及水动力系数CD、CM分析方法的探讨[J].水动力学研究与进展,1990, 5(3): 91~101.
    [17]姚熊亮,陈起富,徐文景.高雷诺数时弹性圆柱的波流载荷[J].力学学报,1995, 27(1): 1~8.
    [18]姚熊亮,徐文景,陈起富.小波浪高雷诺数时垂直桩柱的波流力[J].海洋学报,1997, 19(1): 104~112.
    [19]王涛,李家春,呼和敖德等.波流相互作用对水动力系数的影响[J].水动力学研究与进展,1995, 10(5): 551~559.
    [20] Wataru Koterayama, Masahiko Nakamura. drag and inertia force coefficients derived from field tests[J]. International Journal of Offshore and Polar Engineering,1992, 2(3): 398~406.
    [21] Vengatesan Venugopal, Kamlesh S Varyani, Nigel D P Barltrop. Wave force coefficients for horizontally submerged rectangular cylinders[J]. Ocean Engineering,2006, 33(11): 1669~1704.
    [22] V Vengatesan, K S Varyani, N Barltrop. An experimental investigation of hydrodynamic coefficients for a vertical truncated rectangular cylinder due to regular and random waves[J]. Ocean Engineering,2000, 27(3): 291~313.
    [23] Venugopal V, Varyanil K S, Westlake P C. Drag and inertia coefficients for horizontally submerged rectangular cylinders in waves and currents[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment,2009, 223(1): 121~136.
    [24] J Wolfram, M Naghipour. On the estimation of Morison force coefficients and their predictive accuracy for very rough circular cylinders[J]. Applied Ocean Research,1999, 21(6): 311~328.
    [25] C Y Zhou, J M R Graham. A numerical study of cylinders in waves and currents[J]. Journal of Fluids and Structures,2000, 14(3): 403~428.
    [26] Li Yucheng, Ye Zhengfan. Random wave and current force on vertical cylinder[J]. Applied Ocean Research,1990, 12(3): 126~133.
    [27] Li Y C, Wang F L, Kang H G. Wave-current forces on slender circular cylinders[J]. china ocean engineering,1991, 5(3): 281~310.
    [28]李玉成,张春蓉.规则波和水流共同作用下圆柱受力的研究[J].水动力学研究与进展,1990, 5(2): 58~68.
    [29] Li Y C, Zhang F R. Wave-current Force on Vertical Pile[J]. Acta Oceanologica Sinica,1987, 6(3): 461~471.
    [30] Li Yucheng, Zhang Chunrong. Forces on cylinders in coexisting field of regular waves and currents[J]. China Ocean Engineering,1990, 4(1): 43~54.
    [31]李玉成,王凤龙,康海贵.作用于小尺度圆柱上的波浪、水流力[J].海洋工程,1993, 11(3): 46~59.
    [32]李玉成,张福然.作用于垂直桩柱上的波浪水流力[J].海洋学报(中文版),1986, 8(6): 751~761.
    [33] Li Y C, He M. Wave-current forces on small square cylinder(PartⅡ)[J]. china ocean engineering,1994, 8(4): 397~400.
    [34] Li Y C, He M. Wave-current forces on small square cylinder(PartⅠ)[J]. china ocean engineering,1994, 8(3): 269~284.
    [35]李玉成,王凤龙,何明.方柱水动力系数确定方法的探讨[J].海洋通报,1994, 13(2): 62~79.
    [36] Li Y C, Zhang N C. Hydrodynamic characteristics of submarine composite pipeline in a wave-current coexisting field[J]. china ocean engineering,1994, 8(3): 331~343.
    [37]滕斌,李玉成.倾斜杆件上的受力系数[J].海洋通报,1992, 8(3): 49~57.
    [38] Bin Teng, Yucheng Li. estimation of wave-current force coefficient on inclined cylinder in random waves[J]. Proceedings of the Institution of Civil Engineers: Water Maritime and Energy.,1992, 96: 1~7.
    [39] Bin Teng, Yucheng Li. Force coefficients on inclined cylinder in random waves and current[J]. Journal of Hydrodynamics,1991, 3(3): 26~34.
    [40] V Sundar, V Vengatesan, G Anandkumar, et al. Hydrodynamic coefficients for inclined cylinders[J]. Ocean Engineering,1998, 25(4-5): 277~294.
    [41] Ove T Gudmestad, Geir Moe. Hydrodynamic coefficients for calculation of hydrodynamic loads on offshore truss structures[J]. Marine Structures,1996, 9(8): 745~758.
    [42] Luis San Andres, Adolfo Delgado. Identification of force coefficients in a squeeze film damper with a mechanical end seal-centered circular orbit tests[J]. Journal of Tribology,2007, 129(3): 660~668.
    [43] S Chandrasekaran, A K Jain, N R Chandak. Influence of hydrodynamic coefficients in the response behavior of triangular TLPs in the regular waves[J]. Ocean Engineering 2004, 31(17-18): 2319~2342.
    [44] R Burrows, R G Tickell, D Hames, et al. Morison wave force coefficients for application to random seas[J]. Applied Ocean Research,1997, 19(3-4): 183~199.
    [45] S K Bhattacharyya, V Mathew, V G Idichandy. Inverse problem of Morison equation for a perforated-ball velocity meter: an improved method[J]. Applied Ocean Research,2000, 22(3): 183~189.
    [46] Yongjun Jian, Jiemin Zhan, Qingyong Zhu. Short crested wave-current forces around a large vertical circular cylinder[J]. European Journal of Mechanics - B/Fluids,2008, 27(3): 346~360.
    [47] G Najafian, R G Tickell, R Burrows, et al. The UK Christchurch Bay Compliant Cylinder Project- analysis and interpretation of Morison wave force and response data[J]. Applied Ocean Research,2000, 22(3): 129~153.
    [48]黄河宁.波浪任意方向入射情况下小尺度矩形桩柱惯性力系数的解析解[J].海岸工程,1990, 9(2): 8~14.
    [49]黄河宁.小尺度矩形柱上惯性力和惯性力系数的解析解[J].海洋通报,1988, 7(1): 83~88.
    [50] Yu Yuxiu, Zhang Ningchuan. Inline forces on vertical pile in irregular waves[J]. Proceedings of the international offshore mechanics and arctic engineering symposium 7th,1988, 2: 65~73.
    [51]俞聿修,史向宏.不规则波作用于群桩的水动力系数[J].海洋学报,1996, 18(2): 138~147.
    [52]俞聿修,张宁川.不规则波作用于垂直桩柱上的正向力[J].海洋学报(中文版),1988, 10(5): 609~617.
    [53]赵德廷.海底水平圆管正向波浪力系数(CD,CM)测试研究[J].中国海上油气(工程),1989, 1(5): 39~44.
    [54]马良.对莫里森方程中曳力系数CD浅析[J].中国海洋平台,1998, 13(3): 16~18.
    [55]刘春山.桩柱拖曳力系数测定的复摆法[J].石油工程建设,1989, 15(4): 1~4.
    [56]刘德辅,王超,林欣.波浪力系数Cd, Cm的不确定性分析[J].中国造船,1991,(2): 29~37.
    [57] Tikhonov A, Arsenin V. Solutions of ill posed problems[M] John Wiley and Sons,Inc., 1977.
    [58]王登刚,刘迎曦,李守巨.弹性力学非线性反演方法概述[J].力学进展,2003, 33(2): 166~174.
    [59]黄文虎,马兴瑞,陶良等.弹性动力学反问题的研究进展[J].哈乐滨工业大学学报,1997, 29(1): 1~5.
    [60]傅志芳.振动模态分析与参数辨识[M].北京:机械工业出版社, 1990.
    [61] Stevens K K. Force identification problems-an overview[J]. Proceedings of the SEM Spring Conference on Experimental Mechanics,1987: 838~844.
    [62] Dobson B J, Rider E. A review of the indirect calculation of excitation forces from measured structural response data[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,1990, 204(2): 69~75.
    [63] Yi Liu, W Steve Shepard Jr. Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain[J]. Journal of Sound and Vibration,2005, 282(1-2): 37~60.
    [64] Srinivas Varadan, Elham B. Makram. Harmonic load identification and determination of load composition using a least squares method[J]. Electric Power Systems Research 1996, 37(3): 203~208.
    [65] J. A. Fabunmi. Effects of structural modes on vibratory force determination by the pseudoinverse technique[J]. AIAA Journal,1985, 24(3): 504~509.
    [66] Starkey J M, Merrill G L. On the ill-conditioned nature of indirect force measurement techniques[J]. International Journal of Analytic and Experimental Modal Analysis,1989, 4(3): 103~108.
    [67]许锋,陈怀海,鲍明.动载荷识别的广义域模态模型及其精度分析研究[J].计算力学学报,2003, 20(2): 218~222.
    [68] Karlsson S E S. Identification of external structural loads from measured harmonic response[J]. Journal of Sound and Vibration,1996, 196(1): 59~74.
    [69] S Granger, L Perotin. An inverse method for the identification of a distributed randomexcitation acting on a vibrating structure Part 1: theory[J]. Mechanical Systems and Signal Processing,1999, 13(1): 53~65.
    [70] O'callahan J, Piergentili F. Force estimation using operational data[J]. Proceedings of the 14th International Modal Analysis Conference,1996, 2768: 1586~1592.
    [71]刘恒春,朱德懋,孙久厚.振动载荷识别的奇异值分解法[J].振动工程学报,1990, 3(1): 24~33.
    [72] Lin J H, Guo X L, Zhi H, et al. Computer simulation of structural random loading identification[J]. Computers and Structures,2001, 79(4): 375~387.
    [73]林家浩,钟万勰.关于虚拟激励法与结构随机响应的注记[J].计算力学学报,1998, 15(2): 217~223.
    [74]智浩,郭杏林,林家浩.平稳随机振动荷载识别的逆虚拟激励法(二)[J].计算力学学报,1998, 15(4): 395~400.
    [75]林家浩,智浩,郭杏林.平稳随机振动荷载识别的逆虚拟激励法(一)[J].计算力学学报,1998, 15(2): 127~136.
    [76]李东升,郭杏林.逆虚拟激励法随机载荷识别试验研究[J].工程力学,2004, 21(2): 134~139.
    [77] Desanghere G, Snoeys R. Indirect identification of excitation forces by modal coordinate transformation[J]. Proceedings of the 3rd IMAC,1985: 685~695.
    [78] Ory G, Glaser H, Hlzdeppe D. The reconstruction of force function based on aeroelasticity and structural dynamics[C]. in Proceedings of 2nd Int. Symp. On aeroelasticity and structural dynamics,Aschen,FRG, 1985, 164~168.
    [79]唐秀近.动态力识别的时域方法[J].大连理工大学学报,1987, 28(1): 21~27.
    [80]唐秀近.时域识别动态载荷的精度问题[J].大连理工大学学报,1990, 30(1): 31~38.
    [81]文祥荣,智浩,缪龙秀.基于模态分析法的结构动载荷识别研究[J].北方交通大学学报,2000, 24(4): 11~14.
    [82]初良成,曲乃泗,邬瑞锋.动态载荷识别的时域正演方法[J].应用力学学报,1994, 11(2): 9~18.
    [83]徐倩,文祥荣,孙守光.结构动态载荷识别的精细逐步积分法[J].计算力学学报,2002, 19(1): 53~57.
    [84]王晟,林哲.精细时程积分在载荷识别中的应用[J].船舶力学,2004, 8(4): 55~60.
    [85]文祥荣,缪龙秀.由实测应变响应识别结构动态载荷[J].铁道学报,2000, 22(6):36~36.
    [86]张运良,林皋,王永学等.一种改进的动态载荷时域识别方法[J].计算力学学报,2004, 21(2): 209~215.
    [87]赵凤遥,张运良,马震岳.动载荷的时域识别方法及其应用[J].水电能源科学,2005, 23(1): 8~10.
    [88]张方,朱德懋.动态载荷时域识别的级数方法[J].振动工程学报,1996, 9(1): 1~8.
    [89] Kreitinger T J, Luo H L. Force identification from structural responses[C]. in Proceedings of the 1987 SEM Spring Conference, 1987, 851~855.
    [90] Kreitinger T J, Wang M L, Schreyer H L. Non-parametric force identification from structural response[J]. Soil Dynamics and Earthquake Engineering,1992, 11(5): 269~277.
    [91]路敦勇,吴森.动态载荷识别的SWAT方法研究[J].振动与冲击,1999, 18(4): 78~94.
    [92]陈莲,周海亭.动态载荷识别的计权加速度法[J].噪声与振动控制,2002, 22(3): 14~16.
    [93]魏星原,宋斌,郑孝忠.载荷识别的逆系统方法[J].振动、测试与诊断,1995, 15(3): 35~43.
    [94]傅志方,饶柱石,周海亭.一种动态载荷的识别方法[J].上海交通大学学报,1997, 31(3): 5~7.
    [95] Inoue H, Kishimoto K, Shibuya T, et al. Estimation of impact load by inverse analysis[J]. JSME International Journal, Series 1: Solid Mechanics, Strength of Materials,1992, 35(4): 420~427.
    [96]饶柱石,施勤忠,荻原一郎.基于逆系统分析法的多输入多输出的动载荷优化估计[J].振动与冲击,2000, 19(2): 8~12.
    [97]王慧儒,谢晓竹,吴淼.基于逆传系统法的动态载荷识别研究[J].装甲兵工程学院学报2005, 19(3): 79~82.
    [98] Liang Y C, Zhou C G, Wang Z S. Identification of restoring forces in non-linear vibration systems based on neural networks[J]. Journal of Sound and Vibration,1997, 206(1): 103~108.
    [99]张方,朱德懋.基于神经网络模型的动载荷识别[J].振动工程学报,1997, 10(2): 156~162.
    [100]孙道桓,胡俏.力学反问题的神经网络分析方法[J].计算结构力学及其应用,1996,13(3): 308~312.
    [101] X Cao, Y Sugiyama, Y Mitsui. Application of artificial neural networks to load identification[J]. Computers & Structures,1998, 69(1): 63~78.
    [102]李守巨,刘迎曦,何翔等.基于人工神经网络的爆炸冲击荷载参数识别方法[J].岩石力学与工程学报,2003, 22(11): 1870~1873.
    [103]白金泽,孙秦.基于神经网络方法的鸟撞飞机风挡冲击载荷反演[J].固体力学学报,2005, 26(1): 77~82.
    [104]林近山,窦春红,马汝建.基于神经网络的海洋平台振动载荷识别[J].石油机械,2007, 35(9): 95~97.
    [105]窦春红,林近山,寇兴磊.基于BP神经网络的海洋平台振动载荷识别[J].石油矿场机械,2007, 36(7): 11~15.
    [106]高宝成,张征,杨叔子.基于神经网络的结构荷载识别研究[J].振动、测试与诊断,1996, 16(1): 14~19.
    [107]吴大宏,赵人达.基于神经网络的混凝土桥梁荷载识别方法研究[J].中国铁道科学,2002, 23(1): 25~28.
    [108]赵玉成,袁树清,李舜酩等.动态载荷的小波正交算子变换识别法[J].机械强度1998, 20(2): 127~130,133.
    [109]杨萍,李鹤岐,李有堂.动态载荷识别的小波正交算子变换法[J].甘肃工业大学学报,2001, 27(2): 102~105.
    [110]满洪高,袁向荣.由广义正交多项式函数逼近法识别桥上移动载荷[J].工程力学,1999, 3(a03): 169~174.
    [111]袁向荣,卜建清,满红高等.移动荷载识别的函数逼近法[J].振动与冲击,2000, 19(1): 58~60.
    [112]陈锋,袁向荣,李明.移动载荷识别的B-样条函数逼近法[J].石家庄铁道学院学报,2003, 16(1): 11~14.
    [113]王彦卫,赵玫.一种新的动态载荷识别方法[J].噪声与振动控制,2003, 23(3): 11~13.
    [114]袁向荣.梁振动响应曲线滑动拟合法及在移动荷载识别中的应用[J].噪声与振动控制,2006, 26(3): 42~43,69.
    [115]李忠献,陈锋.简支梁桥与多跨连续梁桥上移动荷载的识别与参数分析[J].工程力学,2006, 23(12): 91~99.
    [116]姜增国,孙艳茹.三次样条函数在桥梁移动荷载识别中的应用[J].振动与冲击,2006,25(6): 124~126.
    [117]张方,朱德懋,张福祥.动荷载识别的时间有限元模型理论及其应用[J].振动与冲击,1996, 17(2): 1~4.
    [118]竺艳容.几种波浪理论适用范围的分析[J].海岸工程,1983,(2) : 10~12.
    [119]李玉成. Morison方程水动力系数归一化的探讨[J].水动力学研究与进展,1998, 13(3): 329~337.
    [120] Iwagaki Yuichi, Asano Toshiyuki. Hydrodynamic force on a circular cylinder due to combined wave and current loading[C]. in Proceedings of the Nineteenth Coastal Engineering Conference, 1985, 2857~2874.
    [121]竺艳蓉.海洋工程波浪力学[M].天津:天津大学出版社, 1991.
    [122] Sy/T 10030-2002.海上固定平台规划、设计和建造的推荐作法—工作应力设计法(增补1)[S].北京:石油工业出版社,2002.
    [123]张韶光,范勇,马汝建等.海洋平台振动载荷识别研究进展[J].济南大学学报,2004, 18(4): 332~336.
    [124]瞿伟廉,王锦文.振动结构动态荷载识别综述[J].华中科技大学学报(城市科学版),2004, 21(4): 1~4,8.
    [125]智浩,文祥荣,缪龙秀等.动态载荷的频域识别方法[J].北方交通大学学报,2000, 24(4): 5~10.
    [126]董庆锋,徐兴平,畅元江等.对海洋平台进行动态载荷识别的研究[J].中国海洋平台,2005, 20(6): 24~26.
    [127] L Yu, Tommy H T Chan. Moving force identification based on the frequency–time domain method[J]. Journal of Sound and Vibration,2003, 261(2): 329~349.
    [128]冯玉珍,范存新,张毅.动态载荷识别的研究进展[J].商丘师范学院学报,2008, 24(9): 56~61.
    [129]徐志英,廖旭晖.动态载荷识别及其进展[J].常州工学院学报,2006, 19(4): 13~18.
    [130]张学志,黄维平,李华军.考虑流固耦合时的海洋平台结构非线性动力分析[J].中国海洋大学学报,2005, 35(5): 823~826.
    [131] Brebbia C A, Walker S. Dynamic Analysis of Offshore Structures[M]. London: Newnes-Butterworths, 1979.
    [132]王登刚,刘迎曦,李守巨.弹性力学非线性反演方法概述[J].力学进展,2003, 33(2): 166~174.
    [133]滕斌,李玉成.倾斜杆件上的波流力谱——理论分析[J].大连理工大学学报,1992, 32(5): 578~583.
    [134] R. S. Langley. The linearisation of three dimensional drag force in random seas with current[J]. Applied Ocean Research,1984, 6(3): 126~131.
    [135] Julian Wolfram. On alternative approaches to linearization and Morison's equation for wave forces[J]. Proc. R. Soc. Lond,1999, 455(1988): 2957~2974.
    [136] Bin Teng, Yucheng Li. The linearization of drag force and the error estimation of linear force spectrum[J]. Coastal Engineering,1999, 14(2): 173~183.
    [137] Qu Z Q, Selvam R P, Jung Y. Model condensation for non-classically damped systems-part II: iterative schemes for dynamic condensation[J]. Mechanical Systems and Signal Processing,2003, 17(5): 1017~1032.
    [138]陈陆平.动态系统的模型简化方法[J].力学进展,1994, 24(1): 88~97.
    [139] Guyan R J. Reduction of stiffness and mass matrices[J]. AIAA Journal,1965, 3(2): 380.
    [140] Irons B. Structural eigenvalue problems: elimination of unwanted variables[J]. AIAA Journal,1965, 3(5): 961~962.
    [141] Edward J Kuhar, Clyde V Stahle. Dynamic transformation method for modal synthesis[J]. AIAA Journal,1974, 12(5): 672~678.
    [142] O'callahan J C. A procedure for an improved reduced system (IRS) model[C]. in Proceedings of the 7th International Model Analysis Conference, Las Vegas, 1989, 17~21.
    [143]张德文,魏阜旋.模型修正与破损诊断[M].北京:科学出版社, 1999.
    [144]楼梦麟.结构动力分析的子结构方法[M].上海:同济大学出版社, 1997.
    [145]邵永松,刘洪波,谢礼立等.平面与空间钢框架结构的简化柱梁模型[J].工程力学,2004, 21(1): 1~8.
    [146]吕明云,瞿伟廉,陈伟.基于有限元的升船结构简化力学模型[J].武汉理工大学学报,2002, 24(5): 55~57.
    [147] Chi Chao Tung, Norden E Huang. Combined effects of current and waves on fluid force[J]. Ocean Engineering,1973, 2(4): 183~193.
    [148] Dean R G, Dalrymple R A, Hudspeth R T. Force Coefficients From Wave Project I and II Data Including Free Surface Effects [J]. Society of Petroleum engineering,AIME,1981, 21(6): 779~786.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700