用户名: 密码: 验证码:
夹层玻璃等效厚度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻璃以其优秀的透明性和装饰性而广泛用于建筑物中,特别是支撑整个建筑物荷重的钢、钢筋混凝土的广泛应用,使得不再要求建筑物的外墙承担建筑物的负荷,推动玻璃幕墙、玻璃屋顶、玻璃拱肩等组成材料的迅速发展和广泛应用。虽然玻璃不承担建筑物的重量,但是却必须经受风、雪、气温变化、结构元件(如玻璃幕墙的铝合金框、支架等的重量)及其它因素所引起的冲击负荷,作为建筑物组成部分的玻璃的使用安全性或可靠性必须考虑。夹层玻璃正在日益广泛地应用于建筑工程,如玻璃幕墙、高层窗、玻璃门、浴室及运动场所,对夹层玻璃的研究是建筑玻璃应用技术研究的一个热点。
     典型的层合结构的玻璃是由两片玻璃和一个中间层组成,中间层可以是气体材料(如空气、氩气)即中空玻璃,也可以是固体材料(如胶片)即夹层玻璃。夹层玻璃的强度和破碎特性与玻璃的种类、厚度、中间层的类型、厚度等有密切关系,这种关系对于夹层玻璃的设计及其使用安全性的预测是很有用的,然而,这种关系的计算却很复杂。本文则研究了夹层玻璃的力学特性。
     为了简化夹层玻璃强度的计算,通常采用W?lfel E提出的等效厚度法。等效厚度法认为,在力学行为方面,夹层玻璃等效于一个单片玻璃,即在同样负荷的条件下,夹层玻璃和该单片玻璃所产生的应变是相同的。该单片玻璃的材质和夹层玻璃的玻璃片一样,而厚度则由计算得到,称为等效厚度,这个单片玻璃称为等效玻璃片。
     由参考文献计算得到的等效厚度所计算出的弯曲强度总是低于测量值,即设计结果偏于保守。本文提出一种计算等效厚度的方法。在中间层PVB胶片厚度为0.76mm和1.52mm时,由本文方法计算得到的等效厚度所计算出的弯曲变形量与测量值比较符合,而在PVB胶片厚度为0.38mm时,计算结果与实测结果相差6%左右。
     此外,研究结果表明,随着PVB中间层材料厚度的增加,其传递剪应力的能力降低,使PVB夹层玻璃的抗弯性能下降;而SGP中间层材料厚度的增加却提高了夹层玻璃的抗弯性能。
     夹层玻璃的应力分布显示,常温下PVB夹层玻璃存在两个中性层(或零应力层),并且中性层的位置都靠近中间层胶片;而SGP夹层玻璃只拥有一个中性层,中性层的位置在夹层玻璃厚度方向的几何中心。这就是PVB夹层玻璃抗弯性能比SGP夹层玻璃低的原因。
     利用应力的有限元方法分析了不同温度下夹层玻璃的应力分布,研究表明,在20℃时,PVB夹层玻璃最大主应力区域为板中心附近的一个圆形区域,随着温度的升高,该圆形区域逐步向板的边部扩展,并变为花瓣形。在20℃时,SGP夹层玻璃的最大主应力集中在对角线附近的矩形区域,随着温度的升高,矩形区域长大,变为方形区域。这说明,随着使用环境温度的不同,夹层玻璃产生应力集中的区域会发生变化,此时玻璃可能产生的破碎状态也会发生变化。
Glass is used as structural materials in building construction widely, such as glass curtain wall, glass roof, glass spandrel, and so on, due to best transparency and decoration, in particular the widespread use of structural steel and reinforced concrete, which supports whole loads of building, and hence the exterior walls of buildings are no longer required for structural support. But the glass is imposed by the loads caused by the wind, snow, changes in temperature, weight of structural elements (that is the weight of the mullions, anchors, and other structural components in case of the curtain wall), and other factors. Safety or reliability must be considered while using glass as structural materials. Nowadays, laminated glasses are wildely used in building construction, such as glass curtain walls, high building windows, glass doors, bathrooms and stadiums. More reasearcher are focus on the applied technology of architecture glass.
     A sandwich glass is typically made up of two glass pieces with an interlayer. The interlayer can be gas materials, such as atmospheric air, inert gases (i.e. argon) (so-called insulating glass). It can be also solid materials, such as films (so-called laminated glass). Therefore, strength and crashing performance of sandwich glass is dependent on performance and thickness of the glass pieces and interlayer. The relationship between them is very useful in design of the sandwich glass, and the prediction of its service safety. However, calculation of the relationship is very complex. The mechanical performance of laminated glass was investigated in this paper.
     Effective thickness (ET) method brought forward by W?lfel E was developed for simplifying calculation on strength of laminated glass. It is assumed in ET method that a laminated glass can be represented by a monolithic glass in mechanical behavior. The strains in the monolithic glass and the laminated glass cased by a load are same. This monolithic glass is same as glass pieces in the laminated glass but thickness is calculated, and is called as effective thickness of the laminated glass. The monolithic glass is called as laminated glass piece.
     Bending strength calculated by ET calculated by reference is lower than measured values. That is to say, the ET result calculated by reference is conservative. A model calculating ET is proposed here. Bending strength calculated by ET calculated by this model is in good agreement with measured value for interlayer PVB film with thickness of 0.76 mm to 1.52 mm. It deviates from measured value by ~6% while thickness of interlayer PVB film is less than 0.38mm.
     In addition, research results demonstrate that bending strength increases with as PVB interlayer thickness decreased, and, however, it decreases SGP interlayer thickness increased.
     It was shown in stress distribution in laminated glass that two zero-stress planes exist for PVB laminated glass, and only one zero-stress plane exists for SGP laminated glass at room temperature. All the zero-stress planes are near the interlayer in PVB laminated glass, and the zero-stress planes are in the interlayer in SGP laminated glass. It is reason the bending strength for PVB glass is lower than for SGP glass.
     Stress distribution in laminated glass at several temperatures was investigated by finite element method of stress. Investigating results indicate that maximum main stress concentrates in a small circular area in middle part of PVB laminated glass plate for temperature of ~20℃. The circular stress central area increases toward the edge of the plate and becomes a petal shape with temperature raised. Stress in SGP laminated glass in temperature of ~20℃is a rectangular area on diagonal of the plate. As temperature rises, the rectangular stress area increases, and becomes a square area. This shows that, under different environmental temperature, the stress concentration area in laminated glass is difference and the glass broken state may be various.
引文
[1]沈观林、胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [2]石新勇主编.安全玻璃[M].北京:化学工业出版社,2006.
    [3] Matthias Haidimann. Fractures strength of structural glass elements analytical and numerical modeling, testing and design [M]. Lausanne, EPTL, London, 2006.
    [4] The institution of structural engineers, Structural use of glass in buildings [M]. London, 1999.
    [5] J. A. Hooper. On the bending of architectural laminated glass [J]. Int. J. Mech. Sci., 1973, 15: 309-323.
    [6] R. A. Behr, J. E. Minor, M. P. Linden. Load duration and interlayer thickness effects on laminated glass [J]. J. Struct. Engrg. 1986, 112(6): 1441-1453.
    [7] R. A. Behr, J. E. Minor, M. P. Linden et al. Laminated glass units under uniform lateral pressure [J]. J. Struct. Engrg. 1985, 111(5): 1037-1050.
    [8] R. A. Behr, J. E. Minor, H. S. Norville. Structural behavior of architectural laminated glass [J]. J. Struct. Engrg. 1993, 119(1): 202-222.
    [9] C. V. G. Vallabhan, Y. C. Das, M. Magdi et al. Analysis of laminated glass units [J]. J. Struct. Engrg. 1993, 119(5): 1572-1585.
    [10] C. V. G. Vallabhan, J. E. Minor, S. R. Nagalla. Stresses in layered glass units and monolithic glass plates [J]. J. Struct. Engrg. 1987, 113(1): 36-43.
    [11] C. V. G. Vallabhan, M. Z. Asik, K. Kandil. Analysis of structural glazing systems [J]. Computers & Structures, 1997, 65(2): 231-239.
    [12] Y. C. Das, C. V. G. Vallabhan. A mathematical model for nonlinear stress analysis of sandwich plate units [J]. Mathematical Computer Modelling, 1988, (11): 713-719.
    [13] N. M. Safy Ei-Din, D. W. Sabaa. Thermal degradation of poly (vinyl butyral) laminated safety glass [J]. Polymer Degradation and Stability, 1995, 47: 283-288.
    [14]欧阳鬯,马文华主编.弹性、塑性有限元[M].长沙:湖南科学技术出版社,1983.
    [15] F. W. Flocker, L. R. Dharani. Stresses in laminated glass subject to low velocity impact [J]. Engineering Structures, 1997, 19(10): 851-856.
    [16] P. V. Grant, W. J. Cantwell, H. Mckenzie et al. the damage threshold of laminated glass structures [J]. Inr. J. Impact Engrg. 1998, 21(9): 737-746.
    [17] R. A. Behr, P. A. Kremer, L. A. Dharani et al. Dynamic strains in architectural laminated glass subjected to low velocity impacts from small projectiles [J]. J. Mater. Sci. 1999, 34: 5749-5756.
    [18] M. Seshadri, S. J. Bennison, A. Jagota et al. Mechanical reponse of cracked laminated plates [J]. Acta. Materialia, 2002, 50: 4477-4490.
    [19] M. Z. Aski, C. V. G. Vallabhan. On the convergence of nonlinear plate solutions [J]. Computers & Structures, 1997, 65(2): 225-229.
    [20] M. Z. Aski. Laminated glass plates: revealing of nonlinear behavior [J]. Computers & Structures, 2003, 81: 2659-2671.
    [21] M. Z. Aski, S. Tezcan. A mathematical model for the behavior of laminated glass beams [J]. Computers & Structures, 2005, 83: 1742-1753.
    [22] M. Z. Asik, S. Tezcan. Laminated glass beams: strength factor and temperature effect [J]. Computers & Structures, 2006, 84: 364-373.
    [23] P. A. D. Bois, S. Kolling, W. Fassnacht. Modeling of safety glass for crash simulation [J]. Computational Materials Science, 2003, 28: 675-683.
    [24] J Wei, L. R. Dharani. Fracture mechanics of laminated glass subjected to blast loading [J]. Theoretical and Applied Fracture Mechanics, 2005, 44: 157-167.
    [25] J. Wei, M. S. Shetty, L. R. Dharani. Failure analysis of architectural glazing subjected to blast loading [J]. Engineering Failure Analysis, 2006, 13: 1029-2043.
    [26] j. Wei, L. R. Dharani. Response of laminated architectural glazing subjected to blast loading [J]. Inter. J. of Impact Engrg. 2006, 32: 2032-2047.
    [27] J. Wei, M. S. Shetty, L. R. Dharani. Stress characteristics of a laminated architectural glazing subjected to blast loading [J]. Computers & Structures, 2006, 84: 699-707.
    [28] Shuangmei Zhao, L. R. Dharani, Li Chai et al. Analysis of damage in laminated automotive glazing subjected to simulated head impact [J]. Engineering Failure Analysis, 2006, 13: 582-597.
    [29] A. Fam, S. Rizkalla. Structural performance of laminated and unlaminated tempered glass under monotonic transverse loading [J]. Constructions and Building Materials, 2006, 20: 761-768.
    [30] Y. Koutsawa, E. M. Daya. Static and free vibration analysis of laminated glass beam on viscoelastic supports [J]. Inter. J. of Solids and Struct. , 2007, 44:8735-8750.
    [31] M. Timmel, S. Kolling, P. Osterrieder et al. A finite element model for impact simulation with laminated glass [J]. Inter. J. of Impact Engineering, 2007, 34: 1465-1478.
    [32] D. Deline, D. Callewaert, W. Vanlaere et al. Plastic deformation of polymer interlayer during post-breakage behavior of laminated glass-Part 1: experimental validation [J]. Inter. J. of Modern Phy. B, 2008, 22(31&32): 5447-5452.
    [33] J. Belis, D. Deline, D. Callewaert et al. Plastic deformation of polymer interlayer during post-breakage behavior of laminated glass-Part 2: analytical approach [J]. Inter. J. of Modern Phy. B, 2008, 22(31&32): 5509-5514.
    [34] J. Belis, D. Deline, D. Callewaert et al. Failure mechanisms and residual capacity of annealed glass/ SGP laminated glass beams at room temperatures [J]. Engineering Failure Analysis, 2009, 16(6): 1866-1875.
    [35] J. Belis, J. Depauw, D. Delince et al. Experimental failure investigation of a hybrid glass/steel beam [J]. Engineering Failure Analysis, 2009, 16: 1163-1173.
    [36] Z, Kazanci, Z. Mecitoglu. Nonlinear dynamic behavior of simply supported laminated composite plates subjected to blast load [J]. J. of Sound and Vibration, 2008, 317: 883-897.
    [37] R. Karakuzu, N. Taylak, B. M. Ictem et al. Effects of geometric parameters on failure behavior in laminated composite plates with two parallel pin-loaded holes [J]. Composite Structures, 2008, 85: 1-9.
    [38] G. Royer-Carfagni, M. Silvestri. Fail safe point fixing of structural glass. New advances [J]. Engineering Structures, 2009, 31(8): 1661-1676.
    [39] A.V. Duser, A. Jagota, S. J. Bennison. Analysis of glass/polyvinyl Butyral laminates subjected to uniform pressure [J]. J. of Engrg. Mech., 1999, 125(4): 435-442.
    [40] H. S. Norville, K. W. King, J. L. Sworfford. Behavior and strength of laminated glass [J]. J. Engrg. Mech., 1998, 124(1): 46-53.
    [41] Paolo Foraboschi. Behavior and strength of laminated glass [J]. J. Engrg. Mech., 2007, 133(12): 1290-1301.
    [42] Richard A. Behr. Design of architectural glazing to resist earthquakes [J]. J. Arch. Engrg., 2006, 12(3): 122-128.
    [43] J. E. Minor, H. S. Norville. Design of window glass for lateral pressures [J]. J. Arch. Engrg., 2006, 12(3): 116-121.
    [44] N. D. Kaiser, R. A. Behr, J. E. Minor, et al. Impact resistance of laminated glass using“sacrificial ply”design concept [J]. J. J. Arch. Engrg., 2000, 6(1): 24-34.
    [45] D. C. Weggel, B. J. Zapata. Laminated glass curtain walls and laminated glass lites subjected to low-level blast loading [J]. J. Struct. Engrg., 2008, 134(3): 466-477.
    [46] T. J. Saxe, R. A. Behr, J. E. Minor, et al. Effects of missile size and glass type on impact resistance of“Sacrificial ply”laminated glass [J]. J. Arch. Engrg., 2002, 8(1): 24-39.
    [47] C. W. Ehrenstein,聚合物材料-结构、性能、应用,张萍,赵树高译[M].北京:化学工业出版社,2007.
    [48]董聪.点支撑夹层玻璃的抗弯性能研究[J].工程力学增刊,2003,481-485.
    [49]马眷荣,臧曙光,丁丽梅.夹层玻璃力学模型的探讨[J].航空材料学报,1998,18(3): 57-61.
    [50]赵西安.点支式玻璃幕墙设计[J].建筑技术,1999,30(9): 610-613.
    [51]高轩能,王书鹏.建筑夹层玻璃在静力及爆炸载荷下的挠度[J].硅酸盐学报,2008,36(10): 1477-1488.
    [52]马赢.点支式玻璃板结构受弯承载性能及其设计方法研究,清华大学博士学位论文,2006.
    [53]中华人民共和国标准, GB15763.3-2009,夹层玻璃[S].北京:中国标准出版社, 2009.
    [54]中华人民共和国行业标准, JGJ102-2003,玻璃幕墙工程技术规范[S].北京:中国建筑工业出版社, 2003.
    [55]徐芝纶.弹性力学(上、下册)第二版[M].北京:人民教育出版社,1982.
    [56] S.铁摩辛柯,S.沃诺斯基.板壳理论[M].《板壳理论》翻译组.北京:科学出版社,1977.
    [57]王龙甫.弹性理论[M].北京:科学出版社,1979.
    [58]陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社,2001.
    [59]王兴业,杨孚标,曾竟成等.夹层结构复合材料设计原理及其应用[M].北京:化学工业出版社,2007.
    [60]中国科学院北京力学研究所固体力学研究室板壳组.夹层板壳的弯曲稳定和振动[M].北京:科学出版社,1977.
    [61]周履,范赋群.复合材料力学[M].北京:高等教育出版社,1991.
    [62]杜庆华主编.工程力学手册[M].北京:高等教育出版社,1994.
    [63]马眷荣,罗忆,刘忠伟.建筑玻璃应用技术[M].北京:化学工业出版社,2005.
    [64] W(?)lfel E. Nachgiebiger erbund eine n?herungsl?sung und deren anwendungsm?glichkeiten [J]. Stahlbau, 1987, 6:173-180.
    [65] European Committee for Standard. prEn 13474-1:1999, Glass in building-Design of glass panes-Part 1: General basis of design[S]. London: British Standard Association, 1999.
    [66] European Committee for Standard. prEn 13474-2:2000, Glass in building-Design of glass panes-Part 2: Design for uniformly distributed loads[S]. London: British Standard Association, 2000.
    [67]张福范.复合材料层间应力[M].北京:高等教育出版社,1993.
    [68]刘润泉,石勇,朱锡等.夹层复合材料的弯曲理论分析与计算方法研究[J].玻璃钢/复合材料,2006,(6):6-9.
    [69]石勇,朱锡,梅志远.横向载荷作用下夹层梁力学性能分析[J].船舶力学,2008,12(4):624-628.
    [70]刘鸿文.材料力学(上册)[M].北京:高等教育出版社,2001.
    [71]欧迎春,马眷荣.界面性质对夹层玻璃粘结性能的影响[J].化学与粘合,2004,(4):191-194.
    [72]张钧林,严彪,王德平等.材料科学基础[M].北京:化学工业出版社,2006.
    [73] C. V. G. Vallabhan, Y. C. Das, M. Ramasamudra. Properties of PVB interlayer used in laminated glass [J]. J. Mater. In Civ. Engrg. 1992, 4(1): 71-76.
    [74]马赢,石永久,王元清等.点支式中空夹层玻璃板受弯承载性能分析[J].武汉理工大学学报,2008,30(5):91-94.
    [75]张其林,殷永炜,黄庆文.点支式幕墙夹层玻璃承载性能的试验研究[J].结构工程师,2003,3:76-81.
    [76]石永久,马赢,王元清.点支撑夹层玻璃板承载性能的有限差分分析法[J].计算力学学报,2007,24(5):664-668.
    [77]汤伟方,吕令毅.夹层玻璃蜕变的可靠性分析[J].低温建筑技术,2006,111(3):53-55.
    [78] R. A. Behr, P. A. Kremer. Performance of laminated glass units under simulated windborne debris impacts [J]. J. Arch. Engrg. 1996, 2(3): 95-99.
    [79] D. C. Weggel, B. J. Zapata, M. J. Kefer. Properties and dynamic behavior of glass curtain walls with split screw spline mullions [J]. J. Struct. Engrg. 2007, 133(10): 1415-1425.
    [80] S. R. Ledbetter, A. R. Walker, A. P. Keiller. Structural use of glass [J]. J. Arch. Engrg. 2006, 12(3): 137-149.
    [81] H. S. Norville, P. M. Bove, D. L. Sheridan et al. Strength of new heat treated window glass lites and laminated glass units [J]. J. Struct. Engrg. 1993, 119(3): 891-901.
    [82] S. J. Bennison, V. Gizzi. Structural properties of laminated gass[D]. GPD2007.
    [83] S. J. Bennison. Structural behavior of laminated glass/ppt, 2008, 9.
    [84]中国建筑材料检验认证中心.门窗幕墙及其材料检测技术[M].北京:中国计量出版社,2008.
    [85]西北轻工业学院主编.玻璃工艺学[M].北京:轻工业出版社. 1982.
    [86] M. Seshadri. Mechanics of glass-polymer laminates using multi length scale cohesive zone models [D]. Carnegie Mellon University, 2001.
    [87] V. K. Venkata. Development and testing of hurricane resistant laminated glass fiber reinforced composite window panels [D]. University of Missouri-Columbia, 2004.
    [88]杨挺青.材料力学研究的若干进展[M].国际学术动态,2001,2:33-35.
    [89] P. C. Powell. Engineering with polymers, Chapman and Hall, London, 1983.
    [90] C. Mittelstedt, W. Becker. Interlaminar stress concentrations in layered structures: PartⅠ-A selective literature survey on the free-edge effect since 1967[J]. J. of Composite Materials, 2004, 38(12): 1037-1062.
    [91] C. Mittelstedt, W. Becker. Interlaminar stress concentrations in layered structures: PartⅡ-closed-form analysis of stresses at laminated rectangular wedges with arbitrary non-orthotropic lay-up[J]. J. of Composite Materials, 2004, 38(12): 1063-1090.
    [92]瞿承玮,郑百林. Glare层板鸟撞数值模拟分析[J].力学季刊,2007,28(1): 65-69.
    [93]张志林,姚卫星.飞机风挡鸟撞动力响应分析方法研究[J].航空学报,2004,25(6):577-580.
    [94]臧曙光,马眷荣,秦海霞等.无机/有机复合圆弧风挡抗鸟撞能力数值模拟[J].航空材料学报,2003,23:183-185.
    [95] J. E. Minor, P. L. Reznik. Failure strengths of laminated glass [J]. J. Struct. Engrg. 1990, 116(4): 1030-1039.
    [96] S. J. Bennison, M. H. X. Qin, P. S. Davies. High-performance laminated glass for structurally efficient glazing, Innovative light-weight structures and sustainable facades, Hong Kong, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700