用户名: 密码: 验证码:
不同水动力下水生植物群落底泥磷素迁移特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国长江中下游地区浅水湖泊众多,拥有面积1km2以上的湖泊651个,占全国淡水湖泊总面积的60%。大量研究表明,浅水湖泊沉积物易受波浪和湖流的共同作用而频繁发生再悬浮-沉降的交替过程,造成上覆水中污染物浓度突然上升。同时,水生植物是湖泊生物圈层中重要的结构组成部分,在营养盐的循环、迁移和归宿中扮演了重要的角色。因此,水动力作用下水生植物对沉积物磷素环境效应的研究具有重要的理论和实践意义。
     本文以太湖为研究对象,通过野外采样和室内模拟实验相结合的方法,采用沉积物再悬浮装置模拟研究大型水生植物对太湖沉积物再悬浮的抑制以及对磷素的环境效应。室内模拟采用一种自行研制的串联圆筒式的再悬浮模拟装置,设计在0.2~0.5 N.m"2的切应力和60~1800s的振荡持续时间条件下,对太湖沉积物类原状样本的再悬浮特征开展室内模拟实验研究,从引起沉积物再悬浮的水动力学机制出发,构建水体底部切应力水平和作用时间与沉积物再悬浮通量的定量关系,并揭示沉积物—水界面底泥再悬浮过程中磷素的释放特征。
     本文实验重点根据太湖水生植物种群分布特征,选择伊乐藻和芦苇两种太湖水生植物优势种,分别作为沉水植物和挺水植物的代表,并通过水培试验,每种水生植物设置不同种群密度的三种对照(伊乐藻覆盖度90%、60%、30%,芦苇种植密度150棵/m2、80棵/m2、50棵/m2),包括无植物在内,共设置七组对照,研究不同水生植被种群密度对沉积物再悬浮及上覆水中磷素含量的影响。
     实验研究发现,悬浮物浓度随扰动时间呈缓慢上升的趋势,随着切应力的逐渐增大,上升趋势更加明显;有植物对照的SPM浓度随时间的增加幅度明显小于无植物对照。太湖悬浮物静沉降特征显示,沉积物被扰动后SPM的静沉降过程总体上呈现前期快速下降、中期缓慢下降和后期基本稳定三个阶段。相对于无植物对照,有植物对照的缓慢下降过程的持续时间有所缩短,基本在5h浓度即达到稳定。
     在沉积物再悬浮和沉降随时间变化特征研究的基础上,分析了水生植物种群密度对悬浮物分布特征的影响机制。结果表明:随伊乐藻覆盖度的不断增加,各切应力对应的上覆水中SPM浓度呈逐渐下降的趋势;随着切应力增加,上覆水中SPM浓度随水生植物种群密度的增加而下降的幅度逐渐增大;并且挺水植物芦苇对沉积物再悬浮较强的抑制作用强于沉水植物伊乐藻。水生植物对SPM浓度垂向分布特征的研究表明,水生植物对SPM浓度的垂向分布具有一定的抑制作用,水生植物的存在干扰了外力扰动产生的能量向下传递,使得上覆水SPM浓度降低并趋于均化。随着外力扰动的进一步增强,各种对照情况的垂向梯度均不明显。
     总磷、磷酸盐、BAP三种形态磷素在有无植物对照的条件下,其浓度与切应力和外力扰动时间的关联不大。对比各形态磷素浓度可知,上覆水总磷浓度显著高于磷酸盐,BAP浓度亦普遍高于磷酸盐。BAP与磷酸盐的比值随植株密度的增加而减小,随切应力增加而增大。
There are many shallow lakes in the middle or lower reaches of the Yangtze river, own more than 1km2 lakes 651, accounting for 60% of the total freshwater lakes. A mass of researches indicated that sediment in shallow lakes were vulnerable to waves and lake flows joint with action and frequent suspension, the alternate process caused water pollutant concentration rised abruptly. Meanwhile, aquatic plants plays an important role in the biological epitomizes, cycle of nutrient, migration and inmigration of lakes. Therefore, the research on phosphorus of sediments by aquatic plants to environmental effects under dynamic actions of important theoretical and practical significance.
     This paper take Tai Lake as the research object, through field sampling and indoor simulation experiments, using the method that combining sediments suspended device simulate large aquatic plants in Tai Lake against sediment suspension and phosphorus environmental effects. A series of cylindrical suspended analogue devices developed for indoor simulation, designed 0.2~0.5 N·m-2 shear and 60~1800s oscillations duration condition, to study the sediment suspension characteristics of original core samples from Tai Lake, from a water resuspension caused by sediments, based on dynamic mechanism of constructing water bottom shear stress level and duration and sediment resuspension the quantitative relation flux, and reveals sediments-water process of sediment suspension again interface phosphorus release features.
     The experiment of aquatic plants on population distribution according to the characteristics of Tai Lake, choosing waterweeed and reed from Tai Lake, submerged plant and quite as representatives of water plants, and through the hydroponic experiments, each aquatic plant set up different population density contrast (waterweeed coverage 90%,60%,30%, reed planting density 150 trees/m2,80 trees/m2,50 trees/m2), including no plants as constrast, totally seven groups, The effects on phosphorus content of different aquatic vegetations density to sediment resuspension and overlying water.
     This study found that suspended sediment concentration rised slowly with disturbing time, remarkbally rise with shear stress increased; The concentration of a plant controls over time SPM rises obviously less than no plant controls. Tai Lake suspended sediment characteristics shows, static settlement after static SPM is disturbed presents on the settlement of the overall process of falling fast, medium-term slow drop and later basically stable three stages. No plants comparison, relative to a plant controls the duration of slow drop process shorten, somewhat 5h concentration achieve namely in basically stable.
     Again in sediment suspension and settlement changes with time characteristics on the basis of study of aquatic plants, analyzes the population density distribution characteristics of the mechanism of the effect of material. Results show that:waterweeed growing algae coverage, the shear stress overlying water corresponding SPM a trend of gradual decrease concentration; Along with the shear stress overlying water increased, with aquatic plants SPM concentration of population density decreases gradually increased the range; And quite water plants of sediment suspension again reed strong inhibition submerged plant waterweeed better than them. Aquatic plants SPM concentration of the vertical distribution characteristics of aquatic plants study shows that the concentration of SPM vertical distribution has certain inhibition and aquatic plants exists interfere with external disturbance energy produced downward transmission, makes the overlying water and tends to reduce SPM concentration homogenization. Along with the further strengthen external disturbance, various control situation are not obvious vertical gradient.
     The total phosphorus, phosphate, BAP without plants, have no relevant with shear stress and external disturbances time. Compared with different forms of phosphorus concentration, overlying water total phosphorus significantly higher than phosphates, BAP phosphate of general prep above also. BAP and phosphate decreased with plant density ratio increasing and increased with of shear stress enhance.
引文
[1]任友昌,吕斌,皋忠安.湖泊富营养化治理技术进展[J].能源与环境,2009,(3):92-93,109.
    [2]王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998,3-21.
    [3]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193-202.
    [4]罗玉兰.城市内河沉积物营养盐污染特性及释放规律研究[D].河海大学硕士论文,南京,2007.
    [5]Achman D R, Brownawell B J, Zhang L. Exchange of polychlorinated biphenyls between sediment and water in the Hudson River Estuary[J].Estuaries,1996,19(4):950-965.
    [6]Domagalski J L, Kuivila K M. Distribution of pesticides and organic contaminants between water and suspended sediment,San Francisco Bay,California[J].Estuaries,1993,16(3A):416-426.
    [7]Schneider A,Porter E,Baker A.Polychlorinated biphenyl release from resuspended hudson river sediment[J].Environ Science Technology,2007,41(4):1097-1103.
    [8]Robarts R D, Waiser M J, Hadas O, et al. Relaxation of pHospHorus limitation due to typHoon-induced mixing in two morpHologically distinct basins of Lake Biwa,Japan [J]. Limnology OceanograpHy,1998,43(6):1023-1035.
    [9]Scheffer M, Vanden B M, Breukelaar A, et al., Vegetated area with clear water in turbid shallow lakes[J].J Aqua Bot, 1994,49:193-196.
    [10]杨荣敏,李宽意,王传海等.大型水生植物对太湖底泥磷释放的影响研究[J].农业环境科学学报,2007,26(增刊):274-278.
    [11]朱斌,陈飞星,陈增奇.利用水生植物净化富营养化水体的研究进展[J].上海环境科学,2002,21(9):564-567.
    [12]董昌华,杨肖娥,濮培民.水生植物控制湖泊底泥营养盐释放的效果与机理[J].农业环境科学学报,2003,22(6):673-676.
    [13]秦伯强,胡维平,高光,等.太湖沉积物悬浮的动力机制及内源释放的概念性模式[J].科学通报,2003,48(17):1822-1831.
    [14]秦伯强,胡维平,陈伟民,等.太湖水环境演化的过程与机理[M].北京:科学出版社,2004.
    [15]朱广伟,秦伯强,高光.风浪扰动引起大型浅水湖泊内源磷爆发性释放的直接证据[J].科学通报,2005,50(1):66-71.
    [16]Carrick H J, Aldridge F J, Schelske C L. Wind influences pHyto-plankton biomass and composition in a shallow,productive lake [J]. Limnology OceanograpHy,1993,38:1179-1192.
    [17]Reddy K R,Fisher M M,Ivanoff D. Resuspension and diffusive flux of nitrogen and pHospHorus in a hypereutropHic lake [J]. Jurnal Environment Quality,1996,25:363-371.
    [18]Sendergaard M, Kristensen P, Jeppesen E. PHospHorus release from resuspended sediment in the shallow and wind exposed Lake Arreso, Denmark [J]. Hydrobiologia,1992,228:91-99.
    [19]Bachmann R W, Hoyer M V, Canfield Jr D E. Internal heterotropHy following the switch from macropHytes to algae in Lake Apopka, Florida [J]. Hydrobiologia,2000,418:217-227.
    [20]Lindman R L. The tropHic-dynamic aspect of ecology[J]. Ecology,1942,23:399-417.
    [21]陈宜瑜.湖泊富营养化的定义和演化历史重建[C].香山科学会议第202次学术讨论会,浙江,湖州,2002.
    [22]Leavitt P R, Hann B J, Smol J P, et al., Paleolimnological analysis of whole lake experiments:an overview of results from Experi-mental Lakes Area Lake 227[J]. Canadian Journal of Fisheries and Aquatic Science,1994,51:2322-2332.
    [23]Stockner J G, Benson W W. The succession of diatom assemblages in the recent sediment of Lake Washington[J]. Limnology OceanograpHy,1967,12:513-532.
    [24]Wetzel R G. Limnology, Lake and River Ecosystems[J]. London, Academy Press,2001.245-260.
    [25]沈吉,张祖陆,孙庆义,等.南四湖沉积剖面中色素与有机碳同位素特征的古环境意义[J].湖泊科学,1998,10(2):17-22.
    [26]羊向东,王苏民,沈吉,等.近0.3 ka来龙感湖流域人类活动的湖泊环境响应[J].中国科学,D辑,2001,31(12):1031-1038.
    [27]羊向东,沈吉,董旭辉,等.长江中下游浅水湖泊历史时期营养态演化及其与水生生态系统的关系—以龙感湖、太白湖为例[J].中国科学,D辑,2005,35(增刊Ⅱ),45-54.
    [28]董旭辉,羊向东,潘红玺.长江中下游地区湖泊现代沉积硅藻分布基本特征[J].湖泊科学,2004,16(4):298-304.
    [29]Jeppesen E,Jensen J P,Kristensen P,et al.. Fish manipulation as a lake restoration tool in shallow,eutropHic temperate lakes 1:cross-analysis of three Danish case-studies[J].Hydrobiologia,1990,61:205-218.
    [30]Havens K E, Jin K R, Rodusky A J, et al.. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level[J].Science World,2001,1:44-70.
    [31]秦伯强,杨柳燕,陈非洲,等.湖泊富营养化发生机制与控制技术及其应用[J].科学通讯,2006,51(16):1857-1859.
    [32]金相灿主编.中国湖泊环境[M].北京:海洋出版社.1995,15-19.
    [33]李佩成.试论人类活动的新思维[J].中国工程科学,2000,2(2):5-9.
    [34]白峰青.湖泊生态系统退化机理及修复理论与技术研究-以太湖生态系统为例[D].长安大学,博士论文,2004.
    [35]宋金明.中国近海沉积物—海水界面化学[M].北京:海洋出版社,1997.
    [36]吴丰昌,万国江,蔡玉蓉.沉积物—水界面的生物地球化学作用[J].地球科学进展,1996,11(2):191-197.
    [37]金相灿.沉积物污染化学[M].北京:中国环境科学出版社,1992.
    [38]张运林,秦伯强,陈伟民,等.太湖水体中悬浮物研究[J].长江流域资源和环境,2004,13(2):266-271.
    [39]胡春华,胡维平,张发兵,等.太湖沉积物再悬浮观测[J].科学通讯,2005,50(22):2541-2545.
    [40]罗潋葱,秦伯强,朱广伟.太湖沉积物的分布和动力扰动下最大侵蚀深度的确定[J].泥沙研究,2004,2(1)9-14.
    [41]宋静,骆永明,赵其国,等.沉积物--水界面营养盐释放研究Ⅰ.根际土壤溶液采样器在底泥氮释放研究中的应用[J].土壤学报,2000,37(4):515-520.
    [42]吴丰昌,万国江,蔡玉蓉.沉积物-水界面的生物地球化学作用[J].地球科学进展,1996,11(2):191-197.
    [43]Garban B, Olliovon D, Poulin M, et al. Exchanges at the sediment-water interface in the Rive Seine, downstream from Paris[J].Water Resources,1995,29 (2):473-481.
    [44]范成新,张路,秦伯强,等.风浪作用下太湖悬浮颗粒物中磷的动态释放估算[J].中国科学,D辑,2003,33(8):760-768.
    [45]朱广伟,秦伯强,张路.太湖底泥悬浮中营养盐释放的波浪水槽实验[J]湖泊科学,2005,17(1):61-68.
    [46]秦伯强,胡维平,高光,等.太湖沉积物悬浮的动力机制及内源释放的概念性模式[J].科学通报.2003,48(17):1822-1831.
    [47]孙小静,朱广伟,罗潋葱,等.浅水湖泊沉积物磷释放的波浪水槽实验研究[J].中国科学,2005,35(增刊Ⅱ):81-89.
    [48]逢勇,庄巍,韩涛,等.风浪扰动下的太湖悬浮物实验与模拟[J].环境科学,2008,29(10):2743-2748.
    [49]张彬,李涛,刘会娟,等.模拟扰动条件下太湖水体悬浮物的结构特性[J].环境科学,2007,28(1):70-74.
    [50]李涛,王东升.模拟扰动条件下太湖沉积物悬浮特征及对磷酸盐的吸附[C].中国化学会第八届水处理化学大会暨学术研讨会,2006.
    [51]尤本胜,王同成,范成新.太湖沉积物再悬浮模拟方法[J].湖泊科学,2007,19(5):611-617.
    [52]Mohamed A, Abdelrhman, John F P,Wayne R D. Analysis procedure for and application of a device for simulating sediment entrainment[J].Marine Geology,1996,129:337-350.
    [53]Tsai C H, Lick W. Portable device for measuring sediment resuspension[J].Journal of Great Lakes Research,1986, 12(4):314-321.
    [54]LATIMER J S, DAVIS W R, KEITH D J. Mobilization of PAHs and PCBs from in-place contaminated marine sediments during simulated resuspension events [J]. Estuarine, Coastal and Shelf Science,1999,49(4):577-595.
    [55]Cantwell M G,Burgess R M,Kester D R. Release and phase partitioning of metals from anoxic estuarine sediments during periods of simulated resuspension[J].Environ Sci Technol,2002,36(24):5328-5334.
    [56]王鹏,姚琪,王胜艳,等.模拟扰动条件下太湖沉积物的再悬浮特征[J].水科学进展,2010,21(3):399-404.
    [57]高永霞,孙小静,张战平,等.风浪扰动引起湖泊磷形态变化的模拟实验研究[J].水科学进展.2007,18(5):668-673.
    [58]李一平,逢勇,陈克森,等.风浪作用下太湖底泥起动规律研究[J].水科学进展,2004,15(6):770-774.
    [59]逢勇,韩涛,李一平.太湖底泥营养盐要素动态释放模拟和模型计算[J].环境科学,2007,28(9):1960-1964.
    [60]Latime G.Th.M.van Eck and J.G.C.Smits, Calculation of Nutrient Fluxes Across the Sediment-Water Interface in Shallow Lakes In Peter, G.S.(Editor)Sediment/water interactions, Proceedings of the third international symposium on Interactions between sediments and water, Springer-Verlag[J]. New York,1984:289-301.
    [61]Koji Amano, Takehiko Fukushima & Osami Nakasugi. Diffusive exchange of linear alkybenzenesulfonates (LAS) between overlying water and bottom sediment[J].Hydrobiologia,1992,235/236:491-499.
    [62]王谦谦.太湖风成流的数值模拟[J].河海大学学报,1997,(增刊2):11-18.
    [63]朱永春,蔡启铭.太湖梅梁湾三维水动力学的研究[J].海洋与湖泊.1998,29(1):79-85;29(2):169-174.
    [64]胡维平,濮培民,秦伯强.太湖水动力学三维数值实验研究—风生流和风涌增减水的三位数值模拟[J].湖泊科学,1998,10(4):17-34.
    [65]秦伯强,胡维平,陈伟民,等.太湖梅梁湾水动力及相关过程的研究[J].湖泊科学,2000,12(4):327-334.
    [66]Padisak J, Reynolds C S. Selection of pHytoplankton associations in Lake Balaton, Hungary, in response to eutropHication and restoration measures,with special reference to cyanoprokaryotes[J].Hydrobiologia,1998,384:41-53.
    [67]Nixdorf B, Deneke R. Why "very shallow" lakes are more successful opposing reduced nutrients loads[J]. Hydrobiologia,1997,342/343:269-284.
    [68]金相灿.沉积物污染化学[M].北京:中国环境科学出版社,1992.
    [69]秦伯强,朱广伟.长江中下游地区湖泊水和沉积物中营养盐的赋存、循环及其交换特征[J].中国科学,D辑.地球科学,2005,35(增刊Ⅱ):1-10.
    [70]Mortimer C H. Chemical Exchanges between Sediments and Water in the Great Lakes Speculations on probable regulatory mechanisms[J]. Limnology OceanograpHy,1971,16(2):387-404.
    [71]Moore P A, Reddy K R. Role of Eh and pH on pHospHorus geochemistry in sediments of Lake Okeechobee, Florida[J]. Journal of Environmental Quality,1994,23:955-964.
    [72]王庭健,苏容,金相灿,等.城市富营养湖泊沉积物中磷负荷及其释放对水质的影响[J].环境科学研究,1994,7(4):12-19.
    [73]王晓蓉,华兆哲,徐菱,等.环境条件变化对太湖沉积物磷释放的影响[J].环境化学,1996,15(1):15-19.
    [74]秦伯强,高光,胡维平,等.浅水湖泊生态系统恢复的理论与实践思考[J].湖泊科学,2005,17(1):9-16.
    [75]日本化学会.化学总说(陆水化学)[M].1992,(14):103-112.
    [76]柳建生.就将甘棠湖底泥磷释放研究[J].环境科学与技术,1998,40(1):12-14.
    [77]Lillie R A, Budd J. Habitat architecture of MyriopHyllun I. as an index to haitat quality for fish and macroinverlebrates[J]. Journal of Freshwater Ecology,1992,7:113-125.
    [78]Jones C G, Lalvton J H, Shachak M. Organisms as ecosystem engineers[J]. Oikos.1991.69:373-386.
    [79]徐德兰,刘文正,雷泽湘,等.大型水生植物对湖泊生态修复的作用机制研究进展[J].长江大学学报(自然版),2005,2(2):14-18.
    [80]刘超翔,胡洪营,张建,等.不同深度人工复合生态床处理农村生活污水的比较[J].环境科学,2003,24(5):92-96.
    [81]朱广伟,秦伯强,高光.等.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系[J].环境科学学报,2004,24(3):281-288.
    [82]Dunbabin J S.Bowmer K H.Potential use of construsted wetlands for treatment of indust-rial wastematers containing metals [J].The Science of the Total Environmcnt,1992,111:151-168.
    [83]史建君,杨子银,陈晖.水生植物对水体中低浓度95Zr(锆)的富集效应[J].核农学报,2004,18(1):51-54.
    [84]Crawford R L, Crawford D L. Biorcmediation:principies and a]aplications[C]. London:Cambridge University Press,1996.312-340.
    [85]彭肯林,敖沽,曾经.水生植物塘中的溶解氧变化及对污水处理研究[J].长沙电力学院学报(自然科学版),2004,19(1):79-81.
    [86]王学雷,刘兴土,吴宜进.洪湖水环境特征与湖泊湿地净化能力研究[J].武汉大学学报(理学版),2003,49(2):217-220.
    [87]韩沙沙,温琰茂.富营养化水体沉积物中磷的释放及其影响因素[J].生态学杂志,2004,23(2):98-101.
    [88]辛晓云,马秀东.氧化塘水生植物净化污水的研究[J].山西大学学报(自然科学版),2003,26(1):85-87.
    [89]Reilly J F. Nitrate removal from a drinking water supply with large free-surface constructed wetlands prior to groundwater recharge[J].Ecological Engineering,2000,14:33-47.
    [90]Jensen H S, Andersen F Q. Importance of temperature.nitrate.and pH for pHospHate rdease from aerobic sediments of four shallow.eutropHic lake[J].Limnology OceanograpHy,1992,37:577-589.
    [91]Moore B C, Lafer J E, Funk W H. Influence of aquatic macropHytes on pHospHorus and sediment porewater chenifstry in a freshwater wetland[J]. Aquatic Botany,1994,49:137-148.
    [92]简敏菲,弓晓峰,游海,等.水生植物对铜、铅、锌等重金属元素富集作用的评价研究[J].南昌大学学报(工科版),2001,26(1):85-88.
    [93]Alloway B J. Heavy metals in soils[C]. London:Blackie.1995,284-305.
    [94]Scheffer M. The effect of aquatic vegetation on turbidity:how important are the filter feedters[J]. Hydrobiologia,1999, 408(109):307-316.
    [95]吴洁.西湖浮游植物的演替及富营养化治理措施的生态效应[J].中国环境科学,2001,21(6):540-544.
    [96]何池全,赵魁义,叶居新,等.石菖蒲净化富营养化水体的研究[J].南昌大学学报,1999,23(1):73-76.
    [97]尚土友,杜健民,李旭英,等.草型湖泊沉水植物收割工程对生态改善的实验[J].农业工程学报,2003,19(6):95-100.
    [98]吴振斌,邱东茹.沉水植物重建对富营养水体氮磷营养水平的影响[J].应用生态学报,2003,14(8):1351-1353.
    [99]胡春华,濮培民,王国祥,等.冬季净化湖水的效果与机理[J].中国环境科学,1999,19(6):561-565.
    [100]吴振斌,邱东茹,贺锋,等.水生植物对富营养化水体水质净化作用研究[J].武汉植物学研究,2001,19(4):299-303.
    [101]颜索珠.中国水生高等植物图说[M].北京:科学版社,1983,132-138.
    [102]范成新,张路,王建军,等.湖泊底泥疏浚对内源释放影响的过程与机理研究[J].科学通报,2004,49(15):1523-1528.
    [103]唐松林,周黎,等.日本人工湿地和河湖岸带修复技术概况[J].江苏环境科技,2006,19(4):43-45.
    [104]詹旭,邹路易.湖泊水体中营养盐控制技术研究进展[J].环境科技,2009,22(4):60-65.
    [105]Bachand P A M,Home A J. Denitrification in constructed fret-water surface wetland[J].Ecologiacl Engineering, 2000,11:9-32.
    [106]D'Angelo E M, Reddy K R. Diagnosis of organic matter in a wetland receiving hypereutrophic lake water[J]. Journal of Environ mental Quality,1994,23:928-943.
    [107]Denny P. Implementation of constructed wetlands in developing countries[J]. Water Science and Technology, 1997,35(5):27-31.
    [108]Bodelier P L E, Meima-Franke M, Zwart Q et al.. New DGGE strategies for the analyses of methanotropHic microbial communities using different combinations of existing 16S rRNA-based primers[J]. FEMS Microbiology Ecology,2005,52(2): 163-174.
    [109]Mays P A,Edwards G S. Comparison of heavy metal accuntulalion in a natural wetland and constructed wetlands receiving acid mmc drainage[J].Ecological Engineering,2001,16:487-500.
    [110]孙顺才,黄猗平,太湖[M].北京:海洋出版社,1993.
    [111]杨桂山,王德建.太湖流域经济发展、水环境、水灾害[M].北京:科学出版社,2003.
    [112]雷泽湘.太湖大型水生植被及其环境效应研究[D].暨南大学,博士论文,2006.
    [113]张圣照,王国祥,濮培民.太湖藻型富营养化对水生高等植物的影响及植被的恢复[J].植物资源与环境,1998,7(4):52-57.
    [114]彭湘荣.太湖水生生物多样性急剧减少[EB/OL].新华网湖北频道,http://www.hb.xinhuanet.com/zhuanti/2009-11/06/ content_18153557.htm,2009-11-06.
    [115]逢勇,濮培民.太湖风生流三维数值模拟实验[J].地理学报,1996,51(4):322-328.
    [116]范成新,李元波,陈荷生等.太湖底泥蓄积量估算及分布特征探讨[J].上海环境科学,2000,19(2):72-75.
    [117]陈荷生.太湖底泥的生态疏浚工程.水利水电科技进展.2004,24(6):34-37.
    [118]曲仲湘.无锡太湖初次实习报告明,科学世界,1948,17(12):430-438
    [119]中国科学院南京地理所.太湖综合调查初步报告[M].北京:科学出版社,1961:51-57
    [120]许兆明.西太湖水生维管束植物调查报告(铅印本).1981.
    [121]曹萃禾.东太湖水生维管束植物调查报告(铅印本).1981.
    [122]鲍建平,缪为民,李劫夫,等.太湖水生维管束植物及其合理开发利用的调查研究.大连水产学院学报,1991,6(1):13-20
    [123]张圣照,王国祥,蹼培民,等.东太湖水生植被及其沼泽化趋势[J].植物资源与环境,1999,8(2):1-6
    [124]谷孝鸿,张圣照,白秀玲,等.东太湖水生植物群落结构的演变及其沼泽化[J].生态学报,2005,25(7):1541-1548.
    [125]于丹.水生植物群落动态与演替的研究[J].植物生态学报.1994.18(4):372-378.
    [126]雷泽湘.太湖大型水生植被及其环境效应研究.暨南大学博士学位论文.2006,6.
    [127]刘伟龙,胡维平,陈永根,等.西太湖水生植物时空变化.生态学报,2007,27(1):159-170.
    [128]TSAI C H, LICK W. A portable device for measuring sediment resuspension[J]. Journal of Great Lakes Research,1986, 12(4):314-321.
    [129]Wade PM, Bowles F. A comparison of the efficiency of fresh water macrophyte surveys carried out from underwater with those from the shore or aboat Prog Underwater Sc.i,1981,6:7-11.
    [130]Madsen, Boomfiled, Sutherland J W, etal. The aquatic macrophyte community of Onondaga Lake:Field survey and plant growth bioassays of lake sediments. Lake and Reservoir Management,1996,12:73-79.
    [131]Madsen JD. Biomass techniques formonitoring and assessing control of aquatic vegetation. Lake and Reservoir Management,1993,7:141-154.
    [132]钱君龙,张连弟,乐美麟.过硫酸盐消化法测定土壤全氮全磷[J].中国学术期刊,]990,5.
    [133]张路,范成新,朱广伟等.长江中下游湖泊沉积物生物可利用磷分布特征[J].湖泊科学,2006,18(1):36-42.
    [134]R. A. Dorich, D. W. Nelson, and L. E. Sommers. Estimating algal available phosphorus in suspended sediments by chemical extraction[J]. Environ Qual.,1985,14(3).
    [135]Jensen H.S., Kristensen P., Jeppesen E.& Skytte A.,1992. Iron:Phosphorus ratio in surface sediment as an inditcator of Phosphate release from aerobic sediment in shallow lakes. Hydrobiologia,235:731-743.
    [136]Haimlton D.P.& Mitchell S. F.,1996. An empirical model for sediment resuspension in shallow lakes. Hydrobiologia, 317(3):209-220.
    [137]Sehulz M., Kozerski H.P., Pluntke T.&Ri nkeK.,2003. The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree(Germany). Water Research,37:569-578.
    [138]Hakanson L.,2004. Internal loading:A new solution to an old problem in aquatic sciences. Lakes & Reservoirs:Research and Management,9(1):3-23.
    [139]Malmaeus J. M.& Hakanson L.2004. Development of a Lake Eutrophication model. Ecological Modelling,171(1-2):35-63.
    [140]Levine S.N., Zehrer R. F.& Burns C.W.2005. Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshwater Biology,50:1515-1536.
    [141]Hakanson L.& Jansson M.1983. Principles of lake sedimentology. Springer-Verlag, Berlin郑光赝译,湖泊沉积学原理,1992,北京:科学出版社,P119-169.
    [142]杨达源,李徐生,张振克.2000.长江中下游湖泊的成因与演化.湖泊科学,12(3):226-232.
    [143]Evans R.D.1994.Enpirical evidence of the importance of sediment resuspension in lakes. Hydrobiologia,284:5-12.
    [144]Tartari G. & Biasci G,1997. Trophic Status and Lake Sedimentation Fluxes Water,Air,& Soil Pollution,99(1-4):523-531.
    [145]Noges P., Tuvikene L., Feldmann T., Touno I., Kunnap H, Luup H., Salujoe J.& Noges T.,2003. The role of charophytes in increasing watert ranspareney:a case study of two shallow lakes in Estonia. Hydrobiologia,506-509(1-3):567-573.
    [146]Hilton J., Lishman J. P.& Allen P. V.1986. The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnol. Oceanogr.,31:125-133.
    [147]James W. F.,Best E. P.& Barko J. W.2004a. Sediment resuspension and light attenuation in Peoria Lake:can macrophytes improve water quality in this shallow system? Hydrobiologia,515:193-201.
    [148]Horppila J.& Nurminen L.,2001. The effect of an emergent macrophyte(Typha angustifolia)on sediment in a shallow northtern temperate lake. Freshwater Biology,46:1447-1455.
    [149]Vermaat J. E, Santamaria L & Roos P. J.2000. Water flow across and sediment trapping in submerged macrophytes beds of contrasting growth form. Archiv fur Hydrobiologie,148:549-562.
    [150]Kufel L.& Kufel I.,2002. Chara beds acting as nutrient sinks in shallow lakes-a review. Aquatic Botany,72:249-260.
    [151]陈望,高光,李一平,等.太湖水体中悬浮物的静沉降特征[J].湖泊科学,2006,18(5):528-534.
    [152]Qin Boqiang. Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu,China[J].Chinese Science Bulletin,2004,49(1):54-64.
    [153]张运林,秦伯强,陈伟民,等.太湖水体中悬浮物研究[J].长江流域资源与环境,2004,13(3):266-271.
    [154]Simon M, Grossart H P, Schweitzer B, et al. Microbial ecology of organic aggregates in aquatic ecosystems[J].Aqual Microb Ecol,2002,28:175-211.
    [155]Turner J T. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms[J]. Aqual Microb Ecol,2002,27:57-102.
    [156]Wang F, Chen J, Forslin W(?) Modelling sorption of trace metals on natural sediments by surface complexation model[J]. Environmental Science and Technology,1997,31:448-453.
    [157]Jannasch H W, Honeyman B D, Murray J W. Marine scavenging:the relative importance of mass transfer and reaction rates [J]. Limnology and oceanography,1996,41:82-88.
    [158]Richard W, Douglas, Brian Rippey, et al. Estimation of the in-situ settling velocity of particles in lakes using a time series sediment trap [J]. Freshwater biology,2003,48:512-516.
    [159]雷坤,杨作升,郭志刚.东海陆架北部泥质区悬浮体的絮凝沉积作用[J].海洋与湖沼,2001,32(3):288-295.
    [160]Riley G A, Stommel H, Bumpus D F. Quantitative ecology of the plankton of the western North Atlantic[J]. Bull Bingham Oceanogr Collec,1949,12:1-169.
    [161]N M Burns, Rosa F. In situ measurement of the settling velocity of organic carbon particles and 10 species of phytoplankton[J].Limnol Oceanogr,1980,25(5):855-864.
    [162]Isabelle Larocque, Mazumder A, Proulx M, et al. Sedimentation of algae:relationships with biomass and size distribution[J].Can J Fish Aquat Sci,1996,53:1133-1142.
    [163]Marc Schallenberg, Carolyn W Burns. Effects of sediment resuspension on phytoplankton production:teasing apart the influences of light, nutrients and algal entrainment [J]. Freshwater Biology,2004,49:143-159.
    [164]杨铁笙,熊祥忠,詹秀玲,杨美卿.粘性细颗粒泥沙絮凝研究概述[J].水利水运工程学报,2003,2:65-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700