用户名: 密码: 验证码:
碳化钨纳米晶的制备及其对YG8硬质合金性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质合金是一种重要的刀具材料和模具材料,对工业的发展和社会的进步有着举足轻重的作用。近年来人们发现当WC-Co硬质合金的晶粒尺寸达到纳米或超细级别时,将具有更高的硬度、断裂韧性、耐磨性和疲劳强度,这样就能够满足更大的工业和社会发展需要。基于此,本课题采用机械合金化方法制备了纳米WC-8Co复合粉末,并研究了其成型特点、烧结工艺以及纳米晶的添加量对YG8硬质合金性能影响情况。
     本文首先采用高能球磨工艺制备纳米晶颗粒,研究了不同球磨时间对硬质合金原料粒度的影响,通过粒度检测和扫描分析发现,随着球磨时间的增加,粉料的颗粒越来越细,球磨48h和60h后平均粒径分别达到0.37μm和0.29μm。对球磨36h的粉料进行X射线衍射分析,发现球磨过程中粉料中出现了贫碳相以及出现了α-Co向ε-Co的同素异构转变。
     随后研究了添加两种不同的成型剂对试样成型性能的影响,通过热重(TGA)和差热(DSC)等分析发现SBS(苯乙烯·乙二烯·苯乙烯)成型剂对硬质合金有最佳的成型效果。并通过进一步实验证实了SBS成型剂的优良成型性能。
     实验还研究了真空烧结工艺对合金的力学性能和组织结构的影响,对烧结后的WC-Co硬质合金的密度、硬度等性能进行了测试分析,确定了最佳的烧结工艺参数:烧结温度为1380℃,烧结时间为60分钟,试样性能最佳。
     最后本文研究了WC纳米晶的添加量对YG8硬质合金性能的影响,通过对合金的组织结构和力学性能分析发现添加量为12%时试样的性能最佳,晶粒最小达到500nm,硬度达到93HRA。
WC-Co hardmetals is a kind of important cutting tool material and die material, which has the pivotal function to the industry development and society's progress. Recently,researchers have found that ultra-fine or nanostructured WC-Co hardmetals was of superior hardness,superior toughness,superior wearing strength and fatigue strength. In this work,the experiment have been done to study the preparation of nanocrystalline WC-Co powder through high energy ball milling method,the molding of the powder and the binders’influence on it,the vacuum sintering process of the WC-8Co flan and the nanocrystalline WC’s influence on YG8 hardmetals were also studied.
     The preparation of ultra-fine WC-Co raw powder through high energy ball milling was studied at first. This research showed that the powder got smaller and smaller as the milling time went by. By means of the particle size test equipment and scanning electron microscope (SEM),the results showed that the average size of the particle had reached 0.37μm and 0.29μm when the raw powders were milled for 48 hours and 60 hours. The carbon-lack cemented carbide phase andε-Co phase were both found in the produced powders using X-ray diffraction (XRD). It can be concluded that some of the carbon had been lost from WC-base and someα-Co had changed intoε-Co during the high energy ball milling process.
     At the same time two different binders were studied to invest their influence on the moulding of the composite powders. By means of thermal gravity analysis(TGA) and differential scanning calorimeter (DSC),we found that SBS was the best binder for the moulding of hardmetals. The further experiment also proved this conclusion.
     The dependence of microstructure and mechanical property on the technical parameters of vacuum sintering was also investigated in this paper; the density,hardness and microstructure of the sintered nanostructured WC-Co hardmetals was measured and analyzed to have determined the optimal vacuum sintering parameters. It can be concluded that the sintering temperature at 1380℃,the sintering time lasting for 60 minutes was the optimal parameters of vacuum sintering.
     At last the nanocrystalline WC’s influence on the properties of YG8 hardmetals was studied. The parameters of microstructure and mechanical property reveled that the best amount of the nano-sized WC addition was 12wt%. When addition was at that level,the sintering sample’s grain size would reach 500nm,with the hardness 93HRA.
引文
[1] Brookes K. J. A.世界硬质合金指南与手册.株洲硬质合金厂情报科译, 1982. 3-35
    [2]株州硬质合金厂.硬质合金生产.北京:冶金工业出版社, 1974. 13-85
    [3]《国外硬质合金》编写组编.国外硬质合金.北京:冶金工业出版社, 1976. 168- 519
    [4]曾德麟主编.粉末冶金材料.第1版.北京:冶金工业出版社, 1989. 190-201
    [5]贾佐诚.超细晶硬质合金的发展.硬质合金, 2000, 17(1): 58-62
    [6]王社权.影响超细硬质合金性能的几个因素.硬质合金, 2000, 17(3): 9-12
    [7]于启勋.刀具材料的回顾与展望.机械工艺师, 1999, 11: 5-6
    [8]孙景,王波,李宝银.添加稀土的WC-20(Fe/Co/Ni)硬质合金的组织、性能及发展.硬质合金, 1993, 10(6): 50-53
    [9]许育东,刘宁,李华等.纳米改性金属陶瓷刀具切削参数优化.合肥工大学学报, 2001, 24(4): 98-103
    [10]王辉平,胡茂中.纳米技术与硬质合金.中国钨业, 2001, 16(2): 30-32
    [11]刘宁,胡镇华,崔昆.加稀土元属的硬质合金的组织、性能及发展.硬质合金, 1993, 10(1): 50-53
    [12]李沐山.八十年代世界硬质合金技术进展.第1版.株洲:《硬质合金》编辑部出版社, 1992. 390-400
    [13]张立德,牟季美.纳米材料和纳米结构.第2版.北京:科学出版社, 2001. 65- 139
    [14]李风生,杨毅编著.纳米/微米复合技术及应用.第1版.北京:国防工业出版社, 2002. 1-5
    [15]高荣根.纳米结构WC-Co复合粉末的制备与应用.稀有金属与硬质合金, 1999, 137: 49-54
    [16]刘舜尧,张春友.纳米硬质合金开发与应用.矿业工程, 2000, 1(20): 1-12
    [17]邵刚勤.超细晶粒WC硬质合金的研制动态.武汉工业大学学报, 1999, 12(6): 18-21
    [18] Gao L, Li W, Wang H Z, et al. Fabrication of nano Y-TZP materials by superhigh pressure compaction. Europe Ceramic Society, 2001, 21(2): 135-138
    [19]高家化,沈志坚,丁子上.陶瓷基纳米复合材料.复合材料学报, 1994, 11(1): 1-7
    [20]金正爱,丘向东.纳米陶瓷复合材料的制备及特性.中国有色金属学报, 1998, 8(3): 124-128
    [21]王景唐,沈同德.机械合金化研究与进展.物理学报, 1993, 22(8): 456-467
    [22]高玉来,孙剑飞,王刚等.粉末冶金工艺对大块非晶合金性能的影响.粉末冶金技术, 2003, 12(2): 22-35
    [23]甘卓华,肖建中.块状纳米磁性材料研究进展.材料导报, 2001, 15(9): 23-25
    [24]朱心武.机械合金化的研究及进展.粉末冶金技术, 1999, 17(6): 291-294
    [25] Benjamin J S. Fundamentals of mechanical alloying. Material Science Forum, 1992, 88(12): 1-5
    [26]计汉容.固态反应的机械合金化技术.云南冶金, 1998, 27(1): 43-44
    [27]吴年强.机械合金化的机制.材料导报, 1997, 11(5): 20-23
    [28]杨君友.机械合金化过程粉末的变形及其能量转化.金属学报, 1998, 34(10): 161 -167
    [29] Murty B S. Mechanical alloying-a novel synthesis route for amorphous phase. Bull- etin of Material Science, 1993, 16(1): l-17
    [30] Davis R M, Koch C. Mechanical alloying of brittle components-silicon and germa- nium. Scriptal Materialia, 1987, 2(1): 305-310
    [31] Suyanara C. Mechanical alloying and milling. Progress in Materials Science, 2001, 46: 1-184
    [32] Maurice D R, Courtney T H. The physics of mechanical alloying. Metallurgical and Materials Transactions, 1990, A21: 289-303
    [33] Huang Y, Wu Y K, Ye H Q. Allotropic transformation of cobalt induced by ball milling. Acta Materialia, 1996, 44(3): 1201-1209
    [34] Magini M, Iasonna A. Energy transfer in mechanical alloying. Transactions of JapanInstitute of Metals, 1995, 36(1): 23-33
    [35] Suzuki K. Effects of fluids on vibration ball mill grinding. Journal of Chemical En- gineering of Japan, 1986, 19(4): 191-195
    [36]林信平,曹顺华,李炯义.纳米硬质合金用成型剂设计的探讨.中国钨业, 2003, 18(6): 34-37
    [37]王久芬,徐宏妍,段红万.低相对分子质量的聚乙烯醇的合成研究.华北工学院学报, 2005, 26(7): 285-288
    [38]陈勇,谢洪泉. SBS和SBS环氧化与顺酐化研究.弹性体, 2005, 15(2): 37-72
    [39]熊剑飞. SBS新型成型剂的开发与应用研究.硬质合金, 1999, 16(3): 142-146
    [40]陈雪松,张进新.硬质合金新型成型剂SBP的应用试验.硬质合金, 2000, 17(3): 167-170
    [41]程秀兰,吕永亮. SBS新成型剂在硬质合金上的应用.硬质合金, 1998, 15(8): 160 -162
    [42] Gethin D, Ariffin A, Tran D, et al. Compaction and ejection of green powder comp- acts. Powder Metallurgy, 1994, 37(1): 42-52
    [43] Fischmeister H F, Arzt E. Densification of powders by particles deformation. Po- wder Metallurgy, 1983, 26(2): 82-83
    [44] Kuhn H A. Deformation characteristics and plasticity theory of sintered powder ma- terials. International Journal of Powder Metallurgy, 1971, 7: 15-25
    [45] Shima S, Oyane M. Plasticity theory for porous metallurgy. Journal of Mechanical Science, 1996, 18: 286-291
    [46]黄伯云,周继承.硬质合金的挤压成型和注射成型.高技术通讯, 1998, 3(10): 54-57
    [47]周继承,黄伯云.粉末挤压成型的进展.材料导报, 1997, 11(6): 13-15
    [48]陈中春,池田圭介,武田武信.二元粉末混合物的挤压行为及微观组织.首届留日中国学者21世纪材料科学技术研讨会论文集. 2000. 240-248
    [49]余晓华,劭刚勤,段兴龙等.纳米复合WC-Co粉末的热压烧结.硅酸盐通报, 2004, 2: 8-10
    [50] Averback R S, Hofler H J, Tao R. Pressing of nano-grained materials. MaterialScience Engineering, 1993, A166: 169-177
    [51] Schubert W D, Bock C H, Lux P. General aspects and limits of conventional ultrafi- ne WC powder manufacture and hard metal production. Refractory Metal and Hard Materials, 1995, 13: 281-296
    [52]郭庚辰.液相烧结粉末冶金材料.第2版.北京:化学工出版社, 2002. 68-170
    [53] Aport P, Bartha L, Porat R, et al. Solid or liquid phase sintering of nanocrystalline WC/Co hardmetals. Nanostructured Materials, 1998, 10(11): 245-255
    [54]王国栋编.硬质合金生产原理.第1版.北京:冶金工业出版社, 1988. 86-139
    [55]江东亮主编.精细陶瓷材料.北京:中国物资出版社, 2000. 32-41
    [56]余振辉.硬质合金烧结技术的发展.硬质合金, 1998, 15(13): 49-53
    [57]曾德麟,张怀泉.超固相线液相烧结.粉末冶金工业, 1995, 1: 6-11
    [58] Carroll D F. Sintering and microstructural development in WC/Co-based alloys made with superfine WC powder. International Journal of Refractory Metal and Hard Materials, 1999, 17: 123-132
    [59] Choi K, Huang N M, Kim D Y. Effect of VC addition on microstructural evolution of WC-Co alloy mechanism of grain growth inhibition. Powder Metallurgy, 2000, 43(11): 168-172
    [60] Azcona I, Ordonez A, Sanchez J M, et al. Hot isostatic pressing of ultrafine tungsten carbide-cobalt hardmetals. Journal of Materials Science, 2002, 37: 189-195
    [61] Rodiger K, Dreyer K, Gerdes T, et al. Microwave sintering of hardmetals. Internatio- nal Journal of Refractory Metal and Hard Materials, 1998, 16: 409-416
    [62] Shetty D K, Wright I G, Minceretal P N. Indentation fracture toughness of WC-Co cermets. Journal of Material Science, 1985, 20: 1873-1882
    [63] Schubert W D, Neumeister H, Kinger G, et al. Hardness to toughness relationship of fine-grained WC-Co hardmetals. International Journal of Refractory Metal and Hard Materials, 1998, 16: 133-142
    [64] Charles W. Cermet cutting tools. Manufacturing Engineering, 1987, 99(6): 35-40
    [65] Smith D. Microstructural-property relationships for ultrafine grained materials. Met- allurgy, 2001, 8: 7-9
    [66] Richter V. Research on hardness and toughness of ultrafine and nanocrystalline hardmaterials. International Journal of Refractory Metal and Hard Materials, 1999, 17: 141-152
    [67] Prakash L J. Application of fine grained tungsten carbide based carbides. Interna- tional Jounal of Refractory Metal and Hard Materials, 1995, 13: 257-264
    [68] Gille G., Szesny B, Dreyer K, et al. Submicron and ultrafine grained hardmetals for microdrills and metal cutting insert. International Journal of Refractory Metals and Hard Materials, 2002, 20: 3-22
    [69] Mayo M. Search for additional neutral gauge bosons. Internatioanl Material Review, 1996, 41: 85-88
    [70] Liu Y, Patterson B R. Electroless copper metallisation of titanium nitride. Acta Met- allurgica, 1993, 41(13): 2651-2659
    [71] Lee H C, Gurland J. Hardness and deformation of cemented tungsten carbide. Mate- rial Science Engineering, 1978, 33: 125-133
    [72]果世驹.粉末烧结理论.第2版.北京:冶金工业出版社, 1998. 189-190
    [73] Roebuck B. Terminology, testing, properties, imaging and models for fine grained hardmetals. International Journal of Refractory Metal and Hard Materials, 1995, 13: 265-279
    [74]廖为鑫,解子章.粉末冶金过程热力学分析.第1版.北京:冶金工业出版社, 1984. 256 -260
    [75]范雄.金属X射线学.第2版.北京:机械工业出版社, 1996. 103-122
    [76]李世普.特种陶瓷工艺学.第1版.武汉:武汉工业大学出版社, 2000. 158-167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700