用户名: 密码: 验证码:
配位氧化均匀沉淀法制备纳米氧化铜及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于其介观效应而表现出不同于常规材料的独特物理化学性质,因而对纳米材料的合成与表征研究己经成为材料科学、物理学以及化学学科的前沿.纳米氧化铜除具有一般纳米材料所特有的表面效应、量子尺寸效应和体积效应外,还因为它是一种禁带宽度很窄(1.2 eV)的P型半导体,在电、磁、催化等领域表现出不寻常的特性,故在超导、催化、气体传感、电池的阳极材料等方面得到广泛应用,因此,其研制具有重要的理论意义和实用价值。但由于现有绝大多数制备方法存在着一定的问题,如成本高、粒径不均匀、纯度差等,为此,有必要研究一种成本低、粒径小、纯度高的制备纳米材料新方法,使其制备得以工业化。
     本论文研究了一种制备高纯度纳米氧化铜及复合物纳米银/氧化铜的新方法─—配位氧化均匀沉淀法,并用该方法分别制备了纳米级的氧化铜和银/氧化铜复合粒子。采用扫描电镜、透射电镜、X射线衍射、热重-差热分析、红外光谱等手段对粒子的结构及形貌进行了表征分析,并初步探讨了氧化铜和银/氧化铜的催化性能。
     本论文以高纯度金属铜丝为铜源,以空气为氧化剂,廉价的氨水为配位剂,碳酸氢铵为沉淀剂,采用配位氧化均匀沉淀法这一新方法制备出了平均粒径为10-20nm的纳米氧化铜;同时以硫酸铜作为铜源经由配位均匀沉淀法制备出了纳米氧化铜粒子。研究了影响前驱物碱式碳酸铜生成的水释量、反应温度、反应时间及前驱物煅烧温度等因素,确定了最佳制备条件。
     本论文以金属铜和碳酸银为原料,采用配位均匀共沉淀法制备了纳米碱式碳酸铜和碳酸银前驱体,干燥后煅烧得到了分散性好的纳米银/氧化铜复合粒子,平均粒径在10nm纳米左右。
     对制备的纳米氧化铜和纳米银/氧化铜进行催化性能做了初步的研究,结果表明所得纳米产品对过氧化氢的分解都显示很强的催化活性,对苯酚羟基化反应也显示出一定的催化能力。
Nanoparticles and nanocluster materials are a new class of advanced materials exhibiting unique chemical and physical properties compared to those of their bulk material. Nanosized copper oxide have attracted much attention because of their superior properties and applications in catalysis, metallurgy, electrode materials, solar energy transformation, semiconductors, gas sensors and high-Tc superconductors. Therefore, the relative research has very important theory significance and practicality value. Since there are many problems in existing methods, such as high cost, non-homogeneous of particle, and impurity, a new method with low cost, small particle and high purity is necessary to be studied and industrialized.
     A new method, namely, coordination oxidation homogenious precipitation method was described to synthesize high pure CuO and Ag/CuO nanoparticles. Field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), powder X–ray diffraction (XRD), thermal analysis (TG-DTA), infrared absorption spectroscopy (IR) were used to characterize the microstructure and morphologiy of the products. Furthermore, catalytic performances of the products were also investigated preliminarily.
     At first, very pure nanometer CuO with average particle diameters of 10-20nm was successfully prepared using metal copper, silver carbonate, ammonia, and ammonium bicarbonate as starting materials via coordination oxidation homogeneous precipitation method. Nanometer CuO was also obtained using cupric sulfate as copper source by coordination homogeneous precipitation method. The technological process conditions were explored and optimized in great depth, and the optimum conditions for preparing Cu2(OH)2CO3 precursors and CuO were obtained.
     Ag/CuO composite nanopowder was also successfully prepared using metal copper, silver carbonate, ammonia, and ammonium bicarbonate as starting materials via coordination oxidation homogeneous co-precipitation method. The method is new, facile, no need of washing process, and no need of expensive equipment. TEM images show as-prepared Ag/CuO nano-composites have uniform particle diameter (10nm) with minimal agglomeration.
     Finally, the catalysis of as-prepared products was also investigated in H2O2 decomposition and the phenol hydroxylation with H2O2. The results indicated that the products had a higher catalytic activity in the reactions.
引文
[1]张志昆,崔作林.纳米技术与纳米材料[M].第一版.北京:国防工业出版社, 2001.
    [2]王中林.纳米材料和纳米技术[J].化学通讯, 2001, 6:4-9
    [3]尹邦跃.纳米时代—现实与梦想[M].第一版.北京:中国轻工业出版社, 2001.
    [4]张立德,牟季美.纳米材料和纳米结构[M].第一版.北京:科学出版社, 2001.
    [5] S. Guha, D. Peebles, T. J. Wicting. Zone-center (q=0) optical phonons in CuO studied by Raman and infrared spectroscopy[J]. Phys. Rev. B, 1991, 43:13092-13101.
    [6] X. G. Zheng, N. Tsutsumi, S. Tanaka, M. Suzuki, C. N. Xu. Electric and magnetic anomaly in single crystalline CuO[J]. Physics C, 1999, 321:67-73.
    [7] J. D. Dunitz, L. E. Orgel. Electronic properties of transition-metal oxides-II: Cation distribution amongst octahedral and tetrahedral sites[J]. J. Phys. Chem. Solids, 1957, 3:318-323.
    [8] W. Z. Wang, Y. J. Zhan, X. S. Wang, Y. K. Liu, C. L. Zhen, G. H. Wang. Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant[J]. Materials Research Bulletin, 2002, 37:1093.
    [9]洪伟良,赵风起,刘剑洪,等.制备纳米氧化铜的新方法[J].火炸药学报, 2000, 23(3):7-11.
    [10]俞建群,徐政,方明豹,贾殿赠.一步室温固相化学反应法合成CuO纳米粉体[J].同济大学学报, 2000, 28(3):364-367.
    [11] Xiaogang Wen, Yutao Xie, Chun Lung Choi, Kwun Chung Wan, Xiao-Yuan Li, and Shihe Yang. Copper-Based Nanowire Materials: Templated Syntheses, Characterizations, and Applications[J]. Langmuir 2005, 21:4729-4737.
    [12] X. C. Jiang, Thurston Herricks, Y. N. Xia. CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air[J]. NanoLett., 2002, 2:1333-1338.
    [13] Mamneet Kaur, K. P. Muthe, S. K. Despande, Shipra Choudhury, J. B. Singh, Neetika Verma, S. K. Gupta, J. V. Yakhmi. Growth and branching of CuO nanowires by thermal oxidation of copper[J]. J. Cryst. Growth, 2006, 289:670-675.
    [14] H. W. Hou, Y. Xie, Q. Li. Large-Scale Synthesis of Single-Crystalline Quasi-Aligned Submicrometer CuO Ribbons[J]. Crystal Growth &Design, 2005, 5:201-208.
    [15] Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, VB. C. Tan. Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films[J]. Nanotechnology, 2005, 16:88-92.
    [16] W. X. Zhang, X. Q. Wen, S. H. Yang. Controlled Reactions on a Copper Surface: Synthesis and Characterization of Nanostructured Copper Compound Films[J]. Inorg. Chem., 2003, 42:5005-5014.
    [17] J. P. Liu, X. T. Huang, Y. Y. Li, K. M. Sulieman, X. He, F. L. Sun. Hierarchical nanostructures of cupric oxide on a copper substrate: controllable morphology and wettability[J]. J. Mater. Chem., 2006, 16:4427-4434.
    [18] Z. P. Zang, X. Q. Shao, H. D.Yu, Y. B. Wang, M.Y. Han. Morphosynthesis and Ornamentation of 3D Dendritic Nanoarchitectures[J]. Chem. Mater., 2005, 17:332-336.
    [19] Y. Liu, Y. Chu, M. Y. Li, L. H. Dong. In situ synthesis and assembly of copper oxide nanocrystals oncopper foil via a mild hydrothermal process[J]. J. Mater. Chem., 2006, 16 :192-198.
    [20] Yu Chang, Hua Chun Zeng. Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons[J]. Crystal Growth & Design, 2004, 4(2):397-402.
    [21] Yanyan Xu, Dairong Chen, Xiuling Jiao. Fabrication of CuO Pricky Microspheres with Tunable Size by a Simple Solution Route[J]. J. Phys. Chem. B, 2005, 109:13561-13566.
    [22] J. P. Liu, X.T. Huang, Y.Y. Li, K. M. Sulieman, X. He, F. L. Sun. Self-Assembled CuO Monocrystalline Nanoarchitectures with Controlled Dimensionality and Morphology[J]. Crystal Growth & Design, 2006, 6:1690-1696.
    [23] B. Liu, H. C. Zeng, Mesoscale Organization of CuO Nanoribbons: Formation of“Dandelions”[J]. J. Am. Chem. Soc., 2004, 126:8124-8125.
    [24] Y. Chang, H. C. Zeng. Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons[J]. Crystal Growth & Design, 2004, 4: 397-402.
    [25] R.Yang, L. Gao. Novel way to synthesize CuO nanocrystals with various morphologies[J]. Chem. Lett., 2004, 33:1194-1199.
    [26] G. F. Zou, H. Li, D. W. Zhang, K. Xiong, C. Dong, Y. T. Qian. Well-aligned arrays of CuO nanoplatelets[J]. J. Phys. Chem. B, 2006, 110:1632-1637.
    [27] S. Z. Li, H. Zhang, Y. J. Ji, D.R.Yang. CuO nanodendrites synthesized by a novel hydrothermal route[J]. Nanotechnology, 2004,15:1428-1432.
    [28] Yasuhiro Konishi, Toshiyuki Nomura, Dai Satoh. Solvothermal preparation of cuprous oxide fine particles by hydrolysis of copper (II) carboxylate in two-phase liquid-liquid system[J]. Ind. Eng. Chem. Res., 2004, 43:2088-2092.
    [29] S. C. Tsang, Y. K.Chen, P. J. F. Harris, M. L. H.Green. A simple chemical method of opening and filling carbon nanotubes[J]. Nature, 1994, 372:159-162.
    [30] H. J.Dai, E .W. Wong, Y Z. Lu, S. Fan, C. M. Lieber. Synthesis and characterization of carbide nanorods[J]. Nature, 1995, 375:769-772.
    [31] Y. K.Chen, A. Chu, J. Cook, M. L. H. Green, P. J. Harris, R. Heesom, M. Humphries, J. Sloan, S. C.Tsang, J. F. C. Turner. Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies[J]. J. Mater.Chem., 1997, 7:545-549.
    [32] H. Q .Wu, X.. W. Wei, M. W. Shao, J. S. Gu, M. Z. Qu. Synthesis of copper oxide nanoparticles using carbon nanotubes as templates[J]. Chem. Phys. Lett., 2002, 364:152-156.
    [33] G. H. Du, G. Van Tendeloo. Cu(OH)2 nanowires, CuO nanowires and CuO nanobelts[J]. Chem.Phys.Lett., 2004, 393:64-69.
    [34] C. L. Zhu, C. N. Chen, L.Y. Hao, Y. Hu, Z. Y. Chen. In-situ preparation of 1D CuO nanostructures using Cu2(OH)2CO3 nanoribbons as precursor for sacrifice-template via heat-treatment[J]. Solid State Commun., 2004, 130:681-686.
    [35] C. L. Zhu, C. N. Chen, L. Y. Hao, Y. Hu, Z .Y Chen. Template-free synthesis of Cu2Cl(OH)3 nanoribbons and use as sacrificial template for CuO nanoribbon[J]. J. Cryst. Growth, 2004, 263:473-479.
    [36] Maria-Magdalena Titirici, Markus Antonieti, Arne Thomas. A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach[J]. Chem.Mater., 2006, 18:3808-3812.
    [37]谷云庆,侯振雨.微乳液法合成的CuO纳米材料的气敏性[J].郑州轻工业学院学报(自然科学版), 2004, 19:53-54.
    [38]崔若梅,庞海龙,张文礼,等.微乳液中制备ZnO、CuO超微粒子[J].西北师范大学学报, 2000, 36(4):46-49.
    [39]夏晓红,贾志杰,范中丽,陈正华.纳米CuO制备研究[J].材料科学与工程学报, 2003, 2:10-13.
    [40] K. S. Suslick, S. B. Choe, A. A. Cichowals, et al. Ultrasonic destruction of phenol and substituted phenols: A review of current research[J]. Phys.Today, 1991, 44:17-25.
    [41] R. Vijaya Kumar, Y. Diamant, A. Gedanken. Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates[J]. Chem. Mater., 2000, 12:2301-2305.
    [42] R. Vijaya Kumar, R. Elgamiel, Y. Diamant, A. Gedanken. Sonochemical Preparation and Characterization of Nanocrystalline Copper Oxide Embedded in Poly (vinyl alcohol) and Its Effect on Crystal Growth of Copper Oxide[J]. Langmuir 2001, 17:1406-1410.
    [43]周幸福,褚道葆,何惠,等.电化学溶解金属铜制备纳米CuO[J].应用化学, 2002, 19(7):708-710.
    [44]王积森,杨金凯,鲍英,等.氧化铜纳米粉体的制备新方法[J].中国粉体技术, 2003, 9(4):39-11.
    [45] F. P. Koffyberg, F. A. Bnko. A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO[J]. J. Appl. Phys., 1982, 53:1173-1180.
    [46] P. Poizot, S. L aruelle, S. Grugeon, L. Dupont, J. M. Taracon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407:496-499.
    [47] R. V. Kumar, Y. Diamant, A. Gedanken. Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates[J]. Chem. Mater., 2000, 12:2301.
    [48] H. Cao, S. L. Suib. Highly Efficient Heterogeneous Photooxidation of 2-Propanol to Acetone with Amorphous Manganese Oxide Catalysts[J]. J. Am.Chem.Soc., 1994, 116:5334-5342.
    [49] M. Singhal, V. Chhabra, P. Kang, D. O. Shah. Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol ot microemulsion[J]. Mater. Res. Bull., 1997,32:239-247.
    [50] H. E. Curry-Hyde, H. Musch, A.Baiker. Selective catalytic reduction of nitric oxide over amorphous and crystalline chromia I. Comparative study of activities[J]. Appl.Catal., 1990, 65:211-233.
    [51] Y. Jiang, S. D. ecker, C. Mobs, K. J. Klabunde. Catalytic Solid State Reactions on the Surface of Nanoscale Metal Oxide Particles[J]. J. Catal., 1998, 180:24-35.
    [52] M. K. Wu, J. R. Ashburn, C. J.Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y.Q.Wang, C. W. Chu. Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure[J]. Phys.Rev.Lett., 1987, 58:908-910.
    [53]赵忠贤,陈立泉,等. Ba-Y-Cu氧化物液氮温区的超导电性[J].科学通报, 1987, 32:412-414.
    [54]余建群,徐政,方明豹,贾殿赠.一步室温固相化学反应法合成CuO纳米粉体[J].同济大学学报(自然版), 2000, 28:364-367.
    [55]洪伟良,刘剑洪,田德余,王芳.室温固相化学反应制备纳米CuO粉体研究[J].深圳大学学报(理工版), 2000, 17:66-68.
    [56]师江柳,刘金尧,朱起明. CuO/ZrO2超细粒子催化剂的制备和物性结构表征[J].催化学报, 1996, 17:277-280.
    [57]陈玉凤,林宝启,黎先财,陈卫玲.由海绵铜制备高纯超微CuO粉末的研究[J].南昌大学学报(理工版), 1999, 23:132-134.
    [58]吉林大学化学系《催化作用基础》编写组.催化作用基础[M].北京:科学出版社, 1980.
    [59]张汝冰,刘宏英,李风生.复合纳米材料制备研究(Ⅱ)[J].火炸药学报, 2000, 23(1):59.
    [60]罗元香,李丹,杨娟.沉淀法制备纳米CuO及微结构控制[J].火炸药学报. 2002, 25(3):53.
    [61]洪伟良,刘剑洪,陈沛,等.纳米CuO的制备及其对RDX热分解特性的影响[J].推进技术, 2001, 22(3):254-257.
    [62] Larsson P. O., Andersson A. Complete Oxidation of CO, ethanol, and ethylacetate over copper oxide supported on titania and ceria modified titania[J]. J.Catal., 1998, 179:72-89.
    [63]王月娟,周仁贤,蒋晓原,等. ZrO2负载过渡金属催化剂的结构和催化性能[J].石油化工, 1999,28:588-592.
    [64]董国利,王建国. CeO2-TiO2复合氧化物的制备及其表征[J].无机材料学报. 1999, 14:873-880.
    [65] Zheng Gu, Keith L. Hohn. Catalytic oxidation of methanol on nanoscale copper oxide and nickel oxide[J]. Ind. Eng. Chem. Res., 2004, 43:30-35.
    [66] M. V. Jorge, R. O. Jorge, M. A. Victro, et al. Cyclohexane oxidation over Cu2O-CuO and CuO thin films deposited by CVD process on fiberglass[J]. Applied Catalysis, 2003, 238:1-9.
    [67] M. Iwamoto, H. Yaharo, I. Mine, et.al. Excessively copper ion-exchanged ZSM5 zeolites as highly active catalyst for direct decomposition of nitrogen monoxide[J]. Chem. Lett.1989, 18:213-216.
    [68]蒋晓源,丁光辉,刘琪,等. CuO在CeO2和γ-A12O3上的表面性质及对NO+CO反应性能的研究[J].浙江大学学报(理学版), 2003, 30(3):289-295.
    [69] Tae Won K, Min Woo S, Hyoung-Lim K, et al.Surface properties and reactivity of CuO/γ-Al2O3 catalysts for NO reduction by C3H6. Influence of calcinations temperatures and additives[J]. Applied Catalysis: General, 2001, 210:35-44.
    [70]艾仕云,鲜跃冲,陈俊水,等.纳米CuO/TiO2的光催化降解及其应用[J].华东师范大学学报(自然科学版), 2003, 3:62-67.
    [71]张守民,辛建华,齐广东,等.纳米TiO2复合氧化物的制备及其光催化降解对硝基苯胺的性能研究[J].南开大学学报(自然科学版), 2004, 37(4):14-18.
    [72]岳林海.锌铜复合氧化物光催化降解甲基对硫磷[J].上海环境科学, 1999, 18(6):277-280.
    [73]王乐夫,张美英.片状纳米的CuO的合成及用于异丙苯氧化反应的催化性能研究[J].茂名学院学报, 2003, 13:1-4.
    [74] Komandur V. R. Chary, Guggilla Vidya Sagar, Chakravarthula S. Srikanth, Vattikonda Venkat Rao. Characterization and Catalytic Functionalities of Copper Oxide Catalysts Supported on Zirconia[J]. J. Phys. Chem. B, 2007, 111:543-550.
    [75]罗元香,汪信,陆路德,杨绪杰,刘孝恒.纳米CuO的制备及应用研究进展[J].上海化工, 2003, 2:24-27.
    [76] Frietsch M., Zudock F., Goschnick J., Bruns M. CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors[J]. Sensors and Actuators B, 2000, 65:379.
    [77] Gakuji Uozumi, Masaru Miyayama, Hiroaki Yanagida. Fabrication of a CuO-infiltrated ZnO composite and its gas sensing properties[J]. Journal of materials science, 1997, 32:2991-2996.
    [78]侯振宇,谷永庆,张玉泉,庞奇红.纳米铜氧化物的制备及气敏特性研究[J].郑州轻工业学院学报, 2004, 19:3.
    [79] Y. Nakamura, A. Ando, T. Tsurutani, O. Okada, M. Miyayama, K. Koumoto, H.Yanagida. Gas sensitivity of CuO/ZnO hetro-contact[J]. Chem. Lett. 1986, 15:413-416.
    [80] Y. Hu, X. Zhou, Q. Han, Q. Cao, Y.Huang. Sensing properties of CuO-ZnO heterojunction gas sensors[J]. Mater. Sci. Eng. B, 2003, 99:41-43.
    [81] Seymen Aygu1n, David Cann. Response Kinetics of Doped CuO/ZnO Heterocontacts[J]. J. Phys. Chem. B, 2005, 109:7878-7882.
    [82]钟晓,摘译.可广泛应用的纳米氧化铜抗菌剂[J].化工新型材料, 2003, 12:46.
    [83]祖延兵,董庆华.锂-氧化铜电池反应机理-III放电电流对阴极过程的影响[J].武汉大学学报, 1995, 41:185-189.
    [84] X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, D. Y.Song. Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery[J]. J. Phys. Chem. B, 2004, 108:5547.
    [85]李凤生,杨毅,等.纳米功能复合材料及应用[M].北京:国防工业出版社, 2003.
    [86]钟兴厚,徐绍龄,吕云阳.无机化学丛书.第六卷.铜分族[M].北京:科学出版社, 1995.
    [87]常文保,李克安.简明分析化学手册[M].北京:北京大学出版社, 1981.
    [88]黄惠忠,等.纳米材料分析[M].北京:化学工业出版社, 2003, 330.
    [89] E. C. Heltemes. Far-infrared properties of cuprous oxide[J]. Phys. Rev., 1966, 141:803-805.
    [90]周健,王河锦. X射线衍射峰五基本要素的物理学意义与应用[J].矿物学报, 2002, 22(2):95-99.
    [91]傅献彩.大学化学[M].北京:高等教育出版社, 1999.
    [92]井立强,蔡伟民,孙晓君. Pd/ZnO和Ag/ZnO复合纳米粒子的制备、表征及光催化活性[J].催化学报, 2002, 23(4):336-340.
    [93]何超,于云,周彩华. Ag掺杂对TiO2粉末结构的影响[J].无机材料学报, 2003, l8(2):16-19.
    [94]王彬,毛健,侯廷红.载银多孔SiO2的抗菌性能[J].有色金属, 2006, 58(1):15-17.
    [95]田英,郭灵姬,刘刚. Ag+CuO/ZrO2催化剂的制备与表征[J].哈尔滨师范大学自然科学学报, 2004, 20(1):57-58.
    [96]日本化学学会.无机化合物合成手册[M].第二卷.北京:化学工业出版社, 1986:531.
    [97]李东升,史振民,王文亮.超声沉淀法制备CuO-Fe2O3纳米粉体催化剂[J].延安大学学报(自然科学版). 2001, 20(1):56-58.
    [98]张长栓,赵峰,张继军.纳米尺寸氧化铝的红外光谱研究[J].化学学报, 1999, 57:275-280.
    [99]雷娟萍.过氧化氢催化剂及其催化剂床技术综述[J].火箭推进, 2005, 31(6):30-34.
    [100] E. Hurlbert, J. Applewhite, T. Nguyen, B. Reed, Z. Baojiong, W. Yue. Nontoxic Orbital Maneuvering and Reaction Control Systems for Reusable Spacecraft[J]. J. Propul. Power, 1998, 14:676.
    [101]黄方,詹怀宇.金属离子对过氧化氢漂白的影响[J].东北林业大学学报, 2001, 29(4):51-54.
    [102] J. R. Goldstein, A. C. C. Tseung. The kinetics of hydrogen peroxide decomposition catalyzed by cobalt-iron oxides[J]. J. Cata., 1974, 32:452-465.
    [103]罗澄源.物理化学实验[M].第四版.北京:高等教育出版社, 1992:111-115.
    [104]韩德刚,等.物理化学[M].北京:高等教育出版社, 2001.
    [105]李荣生,等.催化作用基础[M].第二版.北京:科学出版社, 1990.
    [106]徐如人,庞文琴.无机合成及制备化学[M].北京:高等教育出版社, 2001.
    [107]程传煊.表面物理化学[M].北京:科学技术文献出版社, 1995.
    [108]傅献彩,等.物理化学[M].第四版.北京:高等教育出版社, 1990.
    [109] A. M. Turky. Electrical surface and catalytic properties of NiO as influenced by doping with CuO and Ag2O [J]. Appl. Catal. A: Gen., 2003, 247:83–93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700