用户名: 密码: 验证码:
W-Ni和W-Ni-Cu纳米复合粉末的制备及其激光烧结成型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用行星高能球磨机设备,高能机械合金化微米级的W/Ni和W/Ni/Cu体系,成功制备了纳米W-Ni和W-Ni-Cu复合粉末,并研究了W-Ni和W-Ni-Cu纳米复合粉末压坯在激光高能作用下的显微组织演变及性能变化。利用XRD、SEM、EDS分析和检测手段,研究了纳米复合粉末及粉末压坯烧结样的物相、晶粒大小、颗粒形貌和显微组织,并阐明了纳米复合粉末的形成机理。
     球磨转速为400rpm下球磨W-10%Ni混合粉末,随球磨时间的延长,衍射峰逐渐宽化,晶格畸变严重。球磨至10h,即可产生金属间化合物Ni4W。球磨至20h后,粉末颗粒的粒度分布均匀,颗粒尺寸细化至~3μm。
     球磨转速为400rpm下球磨W-20%Ni混合粉末,随球磨时间的延长,衍射峰逐渐宽化,衍射强度逐渐下降。球磨至1h,粉末的粒径约为5μm。球磨至5h,即可产生金属间化合物Ni4W。复合粉末的衍射强度和晶粒粒径随着球磨时间的延长而降低。
     球磨转速为400rpm下球磨W-Ni-Cu混合粉末,随着球磨时间的延长,Ni峰逐渐消失,复合颗粒形貌由不规则发生扁平化,最终变为等轴状。当球磨至50h,颗粒尺寸细化至~5μm。球磨100h形成W/Ni金属间化合物Ni4W。
     在相同的激光参数条件下烧结W/Ni复合粉末压坯。W-10%Ni复合粉末激光烧结试样,由于液相与W晶粒之间接触程度低,润湿性较差,不能获得致密的烧结组织。W-30%Ni复合粉末激光烧结试样,液相增多,导致熔体过热,出现“球化”现象。Ni质量分数为20%能获得良好的表面形貌、烧结组织和致密度。
     在相同的激光参数条件激光烧结W/Ni/Cu复合粉末压坯。不同成分的W-Ni-Cu经激光烧结后的显微组织也有很大差异,20W-40Ni-40Cu获得连续柱状晶组织,40W-20Ni-40Cu获得枝晶组织。并对W-Ni-Cu复合粉末激光烧结凝固理论进行探讨。
Nano-W/Ni and Nano-W/Ni/Cu composite powders were successfully obtained via high energy ball milling (HEBM), using the micrometric W/Ni and W/Ni/Cu powders as the raw materials. Meanwhile, the structural evolution and performance of laser sintering of W/Ni and W/Ni/Cu powders compacts were studied. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS) were used to investigate the phases, crystal size, morphological changes and microstructure of nanocomposite powders and laser sintering samples. The mechanism regarding the formation of nanocomposite powders is elucidated.
     W-10%Ni mixed powders were milled using the rotation speed of 400 rpm. With increasing the milling time, the X-ray diffraction peaks are broadening and lattice distortions are serious. After milling for 10h, the intermetallic compound Ni4W was found. After milling for 20h, the particulates were homogeneously distributed and the size changed to ~3μm. W-10%Ni mixed powders were milled using the rotation speed of 400 rpm. With increasing milling time, the X-ray diffraction intensity and grain size of the composite powders were reduced. After milling for 1h, the particulate size changed to ~5μm. After milling for 5h, the intermetallic compound Ni4W was found.
     W-Ni-Cu mixed powders were milled using the rotation speed of 400 rpm. With increasing milling time, the X-ray diffraction peaks of Ni disappeared and the starting irregular powders became flattened, eventually became equiaxed. After milling for 50h, the particulate size changed to ~5μm. After milling for 100h, the intermetallic compound Ni4W was found. W/Ni composite powder compacts were laser sintered using the same laser processing parameters. It shows that using W-10%Ni composite powders results in poor densification, due to a limited liquid phase and poor wettability. Poor densification with severe balling phenomena and a superheating of the melt is obtained at a high Ni content of 30wt.%, because of a excessive liquid formation. Using an optimal Ni content of 20 wt.% leads to a compatible interfacial microstructure, so as to obtain a favorable sintered density.
     W/Ni/Cu composite powders compacts were laser sintered using the same laser processing parameters.The scanning electron microscope(SEM) analyses show that mass fraction of W-Ni-Cu effects microstructure. It can be seen that columnar crystals were formed for 20W-40Ni-40Cu system and dendritic crystals for 40W-20Ni-40Cu system. Theories of metal solidification for laser sintering were discussed.
引文
[1]陈进,黄伯云.我国金属粉末及其制备工艺的发展[J].材料导报, 1994, 2(4): 15-18.
    [2] ITER group. ITER final design report[R]. ITER-EDA Documentation Series[C]. Vienna, IAEA, l999.
    [3]赵慕岳,范景莲,王伏生.我国钨基高密度合金的发展现状与展望[J].中国钨业, 1999, 14(5/6): 38-42.
    [4] Yuji Ktisunai, Hiroaki Kurishita, Hideo Kayano, et a1. Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC[J]. Journal of Nuclear Materials, 1999, (271/272): 423-428.
    [5] Koch C C, Cavin O B, Mckamey C G, et a1. Preparation of‘amorphous’Ni60Nb40 by mechanical alloying[J]. Applied Physics Letters, 1983, 43(11): 1017-1019.
    [6] Schwarz R B, Pe ch R R, Saw C K. The synthesis of amorpous Ni-Ti alloy powders by mechanical alloying[J]. Journal of non-crystalline solids, 1985, 76: 281-302.
    [7]范景莲,刘军,严德剑,等.细晶钨铜复合材料制备工艺的研究[J].粉末冶金技术, 2004, 22(2): 83-87.
    [8]孙和,郑子樵.热化学方法制备钨铜合金及性能研究[J].硬质合金, 2006, 23(3): 143.
    [9] Kim D G, Lee B H, Oh S T, Kim Y D, et al. Mechanocheroical process for W-15wt%Cu nanocomposite powders with W03-CuO powder mixture and its sintering characteristics[J]. Materials Science and Engineering A, 2005, 395: 333.
    [10] Benjamin J S. Dispersion strengthened superalloys by mechanical alloying[J] Metallurgical transactions, 1970, 8(1): 2934-2940.
    [11] Suryanarayana C. Mechanical alloying and milling[J]. Progress in Materials Science, 2001, 46: 1-184.
    [12] Kim J S, Povstugar I V, Choi P P , et al. Synthesis of Al-Y-Ni-Co composites by mechanical alloying and consecutive spark-plasma sintering[J]. Journal of Alloys and Compounds, 2009, 486(1/2): 511-514.
    [13]杨君友,张同俊,李星国,等.材料制备新技术[J].材料导报, 1994, (2): 11-14.
    [14] Schaffer G B, Mccormick P G. Reduction of metal oxides by mechanical alloying[J]. Applied Physics Letters, 1989, 55(1): 45-46.
    [15] Eckert J, Schultz L, Urban K. Formation of quasi crystals by mechanical alloying[J]. AppliedPhysics Letters, 1989, 55(2): 117-119.
    [16] Calka A. Formation of titanium and zirconium nitrides by mechanical alloying[J]. Applied Physics Letters, 1991, 59(13): 1568-1569.
    [17]杨华明,邱冠周.机械合金化技术的新进展[J].稀有金属, 1998, 22(4): 313-316.
    [18]郭德博.铝合金的机械合金化研究[D].广西:广西大学, 2005.
    [19]齐民,朱敏. Ti-Al混合物粉末在机械合金化过程中的固态相变[J].金属科学与工艺,1992, 11(3): 25-30.
    [20] Aikinb J M, Courtney T H, Maurice D R. Reaction rates during mechanical alloying[J].Materials Science & Engineering A, 1991, 147(2): 229-237.
    [21] Rigal E, Bucci P, Le Marois G. Fabrication of monoblock high heat flux components for ITER divertor upper vertical target using hot isostatic pressing diffusion welding[J]. Fusion Engineering and Design, 2002: 303.
    [22] Zhang F L, Zhu M, Wang C Y. Parameters optimization in the planetary ball milling of nanostructured tungsten carbide/cobalt powder[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26: 329-333.
    [23] Ward-Close C M, Fores F H. Developments in the Synthesis of Light weight Metals[J]. JOM, 1994, 46(1): 28-31.
    [24] Katter M, Wecker J, Krhrt C, et al. Magnetic Properties and Thermal Stability of Sm2Fe17Nx with Intermediate Nitrogen Concentrations[J]. Journal of Magnetism and Magnetic Materials, 1992, 117(3): 419-427.
    [25]卡恩.金属与合金工艺[M].北京:科学出版社, 1999: 309.
    [26] Ding J, Tsuzuki T, Mccormick P G, et al. Structure and magnetic properties of ultrafine Fe powder by mecha-nochemical processing[J]. Journal of Magnetism and Magnetic Materials, 1996, 162(2/3): 271-276.
    [27]高岩,罗堪高,李伯林,等. Ti-Fe二元系在机械合金化过程中的结构转变及纳米晶Ti-Fe储氢合金的制备[J].功能材料, 1998, 29(3): 256-259.
    [28]晏建武,周继承,鲁世强,等.钨基高比重合金的制备研究进展综述[J].材料导报, 2004, 11(2): 33-35.
    [29]于福文,吴玉程,陈勇等.等离子壁材料钨基纳米粉末的制备[J].核聚变与等离子体物理, 2008, 28(1): 81-85.
    [30]吕大铭.钨铜材料的生产、应用与进展[J].中国钨业, 2004, 19(5): 69-74.
    [31]范景莲,刘涛,成会朝,等.钨基合金穿、破甲材料的研究进展[J].中国钨业, 2007, 22(1):Physics Letters, 1989, 55(2): 117-119.
    [16] Calka A. Formation of titanium and zirconium nitrides by mechanical alloying[J]. Applied Physics Letters, 1991, 59(13): 1568-1569.
    [17]杨华明,邱冠周.机械合金化技术的新进展[J].稀有金属, 1998, 22(4): 313-316.
    [18]郭德博.铝合金的机械合金化研究[D].广西:广西大学, 2005.
    [19]齐民,朱敏. Ti-Al混合物粉末在机械合金化过程中的固态相变[J].金属科学与工艺,1992, 11(3): 25-30.
    [20] Aikinb J M, Courtney T H, Maurice D R. Reaction rates during mechanical alloying[J].Materials Science & Engineering A, 1991, 147(2): 229-237.
    [21] Rigal E, Bucci P, Le Marois G. Fabrication of monoblock high heat flux components for ITER divertor upper vertical target using hot isostatic pressing diffusion welding[J]. Fusion Engineering and Design, 2002: 303.
    [22] Zhang F L, Zhu M, Wang C Y. Parameters optimization in the planetary ball milling of nanostructured tungsten carbide/cobalt powder[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26: 329-333.
    [23] Ward-Close C M, Fores F H. Developments in the Synthesis of Light weight Metals[J]. JOM, 1994, 46(1): 28-31.
    [24] Katter M, Wecker J, Krhrt C, et al. Magnetic Properties and Thermal Stability of Sm2Fe17Nx with Intermediate Nitrogen Concentrations[J]. Journal of Magnetism and Magnetic Materials, 1992, 117(3): 419-427.
    [25]卡恩.金属与合金工艺[M].北京:科学出版社, 1999: 309.
    [26] Ding J, Tsuzuki T, Mccormick P G, et al. Structure and magnetic properties of ultrafine Fe powder by mecha-nochemical processing[J]. Journal of Magnetism and Magnetic Materials, 1996, 162(2/3): 271-276.
    [27]高岩,罗堪高,李伯林,等. Ti-Fe二元系在机械合金化过程中的结构转变及纳米晶Ti-Fe储氢合金的制备[J].功能材料, 1998, 29(3): 256-259.
    [28]晏建武,周继承,鲁世强,等.钨基高比重合金的制备研究进展综述[J].材料导报, 2004, 11(2): 33-35.
    [29]于福文,吴玉程,陈勇等.等离子壁材料钨基纳米粉末的制备[J].核聚变与等离子体物理, 2008, 28(1): 81-85.
    [30]吕大铭.钨铜材料的生产、应用与进展[J].中国钨业, 2004, 19(5): 69-74.
    [31]范景莲,刘涛,成会朝,等.钨基合金穿、破甲材料的研究进展[J].中国钨业, 2007, 22(1):
    [48]彭掌珠,孙雯,余世鑫.纳米钨镍铁复合氧化物粉的新法制备[J].武汉工程大学学报, 2008, 30(2): 47-51.
    [49]李强.纳米晶W粉和W-Ni-Fe预合金粉的制备[A].中国工程物理研究院科技年报, 2001.
    [50]陈献峰,张晖,丁秉钧.纳米级W粉的制备及烧结性能[J].稀有金属材料与工程, 1998, 27(5): 294.
    [51]范景莲. W-Ni-Fe高比重合金纳米晶预合金粉末的制备[J].粉末冶金技术, 1999, 17(2): 89.
    [52]盖国盛.超细粉碎与分级技术进展[J].中国粉体技术, 1999, 5(1): 22.
    [53]范景莲,汪登龙,黄伯云,等. MA制备W-Ni-Fe纳米复合粉末的工艺优[J].中国有色金属学报, 2004, 14(1): 6-12.
    [54] Zhang Z W, Zhou J E, Xi S Q, et al. Formation of crystalline and amorphous solid solutions of W-Ni-Fe powder during mechanical alloying[J]. Journal of Alloys and Compounds, 2004, 370(1/2): 186-191.
    [55] Cai S, Ma X F, Tang H G, et al. Preparation of W-Al-Mo ternary alloys by mechanical alloying[J]. Journal of Alloys and Compounds, 2007, 430(1-2): 77-80.
    [56] Zhao B, Zhu C J, Ma X F. High strength Ni based composite reinforced by solid solution W(Al) obtained by powder metallurgy[J]. Materials Science and Engineering A, 456(1-2): 337-343.
    [57] Kurishita H, Kuwabara T, Hasegawa M. Development of ultra-fine grained V–W–Y alloys with superior mechanical properties by effective usage of WC debris introduced during mechanical alloying[J]. Materials Science and Engineering A, 2006, 432(1/2)245–252.
    [58] Maneshian M H, Simchi A, Razavi Hesabi Z. Structural changes during synthesizing of nanostructured W–20wt% Cu composite powder by mechanical alloying[J]. Materials Science and Engineering A, 2007, 445-446: 86-93.
    [59]李风生.超细粉体技术[M].北京:国防工业出版社. 2000.
    [60]黄丹,熊剑,郭乙木. BCC和FCC三维纳米单晶固体的拉伸剪切破坏[J].兵器材料科学与工程. 2008, 31(3): 1-4.
    [61] Shingu P H, Ishihara K N. Metastable melting phenomena and solid state amporphhization(SSA) by mechanical alloying[J]. Journal of Alloys and Compounds, 1993, 194, (2,):319-324.
    [62]陈振华,陈鼎.机械合金化与固液反应球磨[M].北京:化学工业出版社, 2006.
    [63]侯增寿,卢光熙.金属学原理[M].上海科学技术出版社, 1995, 188.
    [64] Koch C C. Materials synthesis by mechanical alloying[J]. Annual Review of Materials Science, 1989, 19: 121-143.
    [65] Harris A M. The morphological evolution of hollow shells during the mechanical milling ofductile metal[J] Scripta Material, 1999, 34(1): 67-73.
    [66] Shokrollahi H. The magnetic and structural properties of the most important alloys of iron produced by mechanical alloying[J]. Materials & Design, 2009, 30(9): 3374-3387.
    [67]朱剑英.增材制造法-MIM技术[J].航空精密制造技术, 1997, (5): 29-31.
    [68]葛媛媛,赵建社.金属粉末激光烧结快速原型制造技术发展现状[J].泰山学院学报, 2006, 28(3): 89-93.
    [69]尹贻国,白培康,刘斌.金属粉末激光烧结快速原型制造技术发展现状[J].粉末冶金技术, 2006, 24(2): 142-150.
    [70]郭华锋,周建忠,胡增荣.材料特性和工艺参数对DMLS制件质量的影响[J].热加工工艺, 2006, 9: 86-91.
    [71] Agarwala V. A study on the development and wear characteristics of rhocast Al-5Cu-2Pb alloy and Al-5Cu/Pb-18Sn wire composites[J]. Materials Science and Engineering A, 2002, (327): 186-202.
    [72] Wholers Torry T. Rapid Prototyping & Tools[R]. State of Industry Worldwide Progress Report, 1998: 10-14.
    [73]郭作兴,胡建东,关庆丰,等.铜基粉末材料激光烧结机理研究[J].应用激光, 1997, 17(3): 119-121.
    [74] Feng P Z, Xiao-hong Wang X H, Qiang Y H, et al. Energy analysi of mechanical alloying of molybdenum dislicide in a new-type high energy vibrating ball mill[J]. Journal of China University of Mining and Technology, 2008, 18(3): 449-453.
    [75]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社, 2002.
    [76] Chattopadhyay P P, Manna I, Talapatra S. A mathematical analysis of milling mechanics in a lanetary ball milling[J]. Materials Chemistry and Physics, 2001, 68(1-3; 85-94.
    [77]杨元政.机械合金化Fe-B非晶合金及纳米合金的形成[J].材料研究学报, 1995, 9(1): 33-39.
    [78]侯增寿,卢光熙主编.金属学原理[ M ].上海科学技术出版社1995, 188.
    [79] Zhang H A, Liu X Y. Analysis of milling energy in synthesis and formation mechanisms of molybdenum disilicide by mechanical alloying[J]. International Journal of Refractory Metals and Hard Materials, 2001, 19: 203-208.
    [80] Yen B K,Aizawa T, Kihara J. Synthesis and formation mechanisms of molybdenum silicides by mechanical alloying[J]. Materials Science and Engineering A, 1996, 220: 8-14.
    [81] Atzmon M. Insituthermal observation of explosive compound-formation reaction during mechanical alloying[J]. Physical Review Letter, 1990, 64: 487-490.
    [82] Kirakosyan Kh G, Manukyan Kh V, Kharatyan S L, et al. Synthesis of tungsten carbide-carbon nanomaterials by combustion reaction[J].Materials Chemistry and Physics,2008, l10(2/3): 454-456.
    [83]杨宏孝,凌芝,颜秀茹,等.无机化学[M].高等教育出版社, 2002.
    [84] Villars P, Prince A, Okamoto H. Hand of Ternary Alloy Phase Diagrams[M]. Ohio: ASM, 1997, 8734.
    [85] Wang C L, Zhao Y, Wu W T, et a1. Densification phenomenon of powders by hot pressing[A].Kosuge K.Proceedings of 2000 Powder Metallurgy world Congress[C]. Kyoto, Japan, 2000, 793.
    [86]曹中秋.三元Cu60Ni20Cr20合金的制备及其显微组织[J].中国有色金属学报. 2004, 14(5): 791-797
    [87]郑锋.高能球磨法制备超细不锈钢粉末的研究及应用前景[J].金属材料与冶金工程, 2009,37(2): 10-14.
    [88]介万齐.合金凝固过程中的溶质再分配与成分偏析[J].中国科学基金, 1999, 6: 343-348.
    [89]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社, 1998: 11-15.
    [90]臧渡洋王海鹏魏炳波.深过冷三元Ni-Cu-Co合金的快速枝晶生长[J].物理学报, 2007, 56(8): 4804-4810.
    [91] Lipton J, Kurz W, Trivedi R. Rapid dendrite growth in undercooled alloys[J]. Acta Metallurgica, 1987, 35, (4): 957-964.
    [92] Soto J, Aramburo G, Gonzalez C. Distribution and prediction of solute in Al-Zn-Mg alloys[J]. Materials Science and Engineering A, 2005, 408(1-2, 5): 303-308.
    [93] Wood R F. Effect of growth rate dependent partition coeficient on the dendrtic growth in undercooled melts[J]. Journal of Physics Review, 1982,25: 2786-2793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700