用户名: 密码: 验证码:
磨盘山水库水力及水质数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对水环境质量进行科学的分析评价和预测进而对其进行有效的规划治理和管理,对保证社会经济的可持续发展具有十分重要的意义。应用水动力学和水质模型,对水体的水动力学规律和水质情况进行分析预测,是水环境分析和预测的重要基础。本论文研究目的是:应用三维水动力学和水质模型,对磨盘山水库水动力学规律和水质情况进行模拟研究,并根据模拟结果对磨盘山水库水动力学规律和水质情况进行评价分析。
     本文首先阐述了水环境数值模拟的国内外研究现状,简述了磨盘山水库的水文、水文地质以及环境污染方面的概况。介绍了由美国国家环保署资助开发的EFDC(Environmental Fluid Dynamics Code)三维水动力学—水质模拟软件,对其组成结构及基本理论进行分析与阐述,建立了磨盘山水库三维水动力学—水质模型。流场的模拟结果显示,磨盘山水库流场受风应力影响较大,表层以下水体流态复杂。文章分析了流场对水质的影响。
     温度场的模拟结果显示,磨盘山水库水温在全年都处于分层状态,4月垂向温差较小,6、7月份分层最明显,至9、10月份出现秋季翻滚,垂向掺混加强。根据各时期水温分布,本文分析了水库的温度分层对水库水质的影响以及对农业灌溉的影响。并结合实际情况,给出了导流洞的最佳位置。
     本文选取常用的水质参数溶解氧DO,化学需氧量COD,和氨氮NH3-N作为水库水质的研究对象。水质模拟结果显示,溶解氧DO全年处于分层状态。根据溶解氧DO的分层规律,文章给出了水库取水口的最佳位置;磨盘山水库整体水质情况良好。文章最后对水质参数COD进行了敏感性分析。
In order to keep the social economy to develop sustainably, it is very important that the water environment quality is analyzed, evaluated and predicted rationally, and it is therefore planned, harnessed and managed efficiently. To conduct the water environment analysis and prediction, an important basic work is to analyze and predict the hydrodynamic behaviors and water situations of the water body with hydrodynamic behaviors and water pollution situations of the water body with hydrodynamics and water models. The objective of this research is to study the hydrodynamic behavior and water quality in Mopanshan reservoirs with 3D hydrodynamics and water quality models, and lastly hydrodynamic behavior and water quality was evaluated and analyzed based on the simulation results.
     The current research domestic and abroad about water environment numerical simulation is elaborated firstly. Hydrology, hydrogeology and environmental pollution of Mopanshan reservoir is described orderly. A 3D hydrodynamic-water quality model is set up after introducing the basic structure and theory of EFDC(Environmental Fluid Dynamics Code). EFDC is supported by U.S.EPA. The simulation results of the flow field shows that, the flow field in Mopanshan reservoirs is significantly influenced by wind stress. Water flow below the surface is complicated. The article analyses the influence of flow field on water quality.
     The hydrodynamic results show that the thermal stratification exists during the period of whole year .The vertical water temperature difference is lower in April , is the largest in June and July. In September and October, the cold water on surface settles down and strengthens the vertical mixture. Based on the water temperature stratification in different periods, the influence of water temperature over water quality and agriculture irrigation is analyzed. Combined with the actual situation, the optimal location of the diversion tunnel is presented.
     This article selects the common quality parameters, like COD, DO and NH3-N as the research objects. The water quality results show that the water quality constituents are also stratified during the time of whole year. Based on the distribution of dissolved oxygen, the paper gives the best position for the reservoir intake. Water in Mopanshan reservoir is in good condition. Finally, the sensitivity analysis of COD is done.
引文
1叶守泽.水利水电工程环境评价.武汉水利水电大学.水利电力出版社.北京: 1993
    2蔡建安,张文艺.环境质量评价系统分析.合肥工业大学出版社.合肥:2003
    3 G. e.佩茨著,王兆印,曾庆华等译.蓄水河流对环境的影响.中国环境科学出版社.北京: 1988
    4孟庆义.国内湖泊水质污染及富营养化治理.北京水利. 2001(5):45~62
    5陈鸣钊,水环境系统分析与规划.河海大学内部教材,1990
    6金腊华,徐峰俊.水环境数值模拟与可视化技术.北京:化学工业出版社, 2004
    7 Saint-Venant B De.Theories du Movement Non-permannent des seaux avec Application aux cures des Rivers el [J]. Pintroduction des maeres dansleur lit, Acad. Sci. Comptesrekus, 1871, 73(1): 148~154
    8 Lasscson R E, Stoker J J, Troesch B A. Numerical Solution of Flood Prediction and River Regulation Problems(Ohio-Missippi floods) [J], 1954
    9 G. t. orlob. Mathematical Modeling of Water Quality: Streams, Lakes, and Reservoirs, IIASA: 1983
    10 G. t. orlob, L. G.selna. Temperature Variation in Deep Reservoirs. J of Hydr Div, ASCE, hy2(96), 1970: 654~662
    11 D. R. harleman. Hydro-thermal Analysis of Lakes and Reservoirs. J of Hydr.Div, ASCE, hy3(108), 1982: 301~325
    12 W. c. huber, D. R. harleman. Temperature Prediction in Stratified Reservoirs. J of Hydr. Div., ASCE, hy4(98), 1972: 290~301
    13 Leendertse J J. A Three-dimensional Model for Estuaries and Coastal Seas [M]. Santa Manica: The Rord Corporation, 1973: 78~86
    14 Yanenko N. N. The Method of Fractional Stps [M]. Springer-Verleg, Berlin& New York, 1971
    15李云生,刘伟江,吴悦颖等.美国水质模型研究进展综述.水利水电技术2006(2):68~73
    16 Juerg Troesce. Diffusion in a Lake, Comparison of Mathematical Models Hydrodynamics of Lake(3):1978
    17 Huber. W. C., Harleman DRF. Temperature Prediction in Stratified Reservoirs,J. of the Hyd. Div., ASCE, HY4(98), 1972
    18 Imboden D. M. Phosphorus Model of Lake Eutrophication, Limnol. Ocanogr., Vol. 19(2), Mar. 1974
    19水质模型研究进展及发展趋势.装备环境工程. 2008(4):32~35
    20 Zeng, Guang Ming, Jiang, Yimin, Modeling of River Water Quality. International Journal HYDROELECTRICENERGY. 1999, 17(4): 62~65
    21 J. imberger, John Patterson, Bob Hebbert, Etal. Dynamics of Reservoir of Medium Size. J of Hydr Div , ASCE, hy5(104), 1987: 725~743
    22 G. A. Ougolnitsky, A. B. Usov. Water Quality Control in Watercourses. Water Resources. 2003, 30(2): 226~232.
    23赵士清.长江口三维潮流数值模拟[J].水利水运研究, 1985, 1:18~20
    24吴坚.数据模拟方法在湖泊学中的应用[J].湖泊科学, 1986, 3(1):74~81
    25姜加虎,黄群.洪泽湖混合流数值模拟[J].水动力学研究与进展,1998, 13(2):147~151
    26张利民,蹼培民.一个三维斜压水动力模型的建立及在日本琵琶湖的应用[J].湖泊科学, 1994:27~28.
    27王惠中等.考虑垂直涡粘系数非均匀分布的太湖风生流准三维数值模拟[J].湖泊科学, 2001, 14(3):233~239
    28彭文奇,张详伟.现代水环境质量评价理论与方法[M].北京:化学工业出版社, 2005
    29陈小红.湖泊水库垂向二维水温分布预测.武汉水利电力学院学报, 1992
    30陈小红,刘美南,林艳珊.水库垂向二维水质分布研究.水利学报, 1997, 15(3):1~7
    31江春波,张庆海,高忠信.河道立面二维非恒定水温及污染物分布预报模型.水利学报, 2000(9):20~24
    32黄胜,卢启苗.河口动力学.北京:水利电力出版社, 1995, 6
    33冯民权.大型湖泊水库平面及垂向二维流场与水质数值模拟.西安理工大学博士论文. 2003
    34郭磊,高学平,张晨等.北大港水库水质模拟及分析.长江流域资源与环境, 2007, 16(1):11~16.
    35申满斌,陈永灿,刘昭伟等.岸边排放污染物浓度场三维浑水水质模型研究.水力发电学报, 2005, 4(3): 93~98.
    36王欣.漫湾水库水温水质的回顾评价.水电站设计,第15卷第3期, 1999:71~75
    37 Hamrick J M. A Three-dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects [R]. Gloucester, Massachusetts: Virgina Institute of Marine Science, the College of William and Mary, 1992: 1~63
    38 Wool, T. A., S. R. Davie, and H. N. Rodriguez. Development of Three-dimensional Hydrodynamic and Water Quality Models to Support TMDL. Decision Process for the Neuse River Estuary, North Carolina[J], Journal of Water Resources Planning and Management, 2003, 129: 295~306
    39 Jin, K.-R., Hamrick, J. H. & Tisdale, T. Application of a Three-dimensional Hydrodynamic Model for Lake Okeechobee. Journal of Hydranlic Engineering ASCE. 2001, 126:13~14
    40贺彬.滇池流域水污染控制仿真系统研究[J].云南环境科学, 2004, 23(2):14~16.
    41陈景秋,赵万星,季振刚.重庆两江汇流水动力模型[J].水动力学研究与进展, 2005, 12:829~835
    42 Blumberg. A. F., and G. L.Mellor. Three-dimensional Coastal Ocean Models. N. S. Heaps, ed., American Geophysical Union, Washington, D. C. 1987:1~16
    43 Johnson, B. H., K. W. Kim, R. E. Heath, B. B. Hsieh, and H. L. Butler. Validation of Three-dimensional Hydrodynamic Model of Chesapeake Bay. J. Hyd. Engrg., 2003, 119: 2~20.
    44 Smolarkiewicz, P. K. and Margolin, L. G. On Forward-in-time Differencing for Fluid: Extension to a Curvilinear Framework. Monthly Weather Rev. 1993, 121: 1847~1859
    45 John. M. Hamrick. User’s Manual for The Environmental Fluid Dynamics Code. Virginia Institute of Marine Science. Gloueester Point, 1996
    46 Vinokur, M. Conservation Equations of Gas Dynamics in Curvilinear Coordinate Systems. J. Comp. phy., 1974, 50(8): 71-100
    47 Blumberg. A. F., and G. L. Mellor. A Description of a Three-dimensional Coastal Ocean Circulation Model. American Geophysical Union, New York, 1987
    48 G. L. Mellor, T.Yamada. Development of Turbulence Closure Model for Geophysical Fluid Problems. Rev. Geophysical. Space Phys. 1982, 20(6): 851~875
    49 Zhen-Gang Ji. Hydrodynamics and Water Quality: Modeling Rivers, Lakes,and Estuaries. John Wiley & Sons, Inc. New York, 2008:385~386
    50 Lemmin, U. and D’Adamo, N. Summertime Winds and Direct Cyclonic Circulation: Observations From Lake Geneva. Annal. Geophys., 1996, 14:1207~1220
    51朱忠得.试论水库的分层现象.四川环境水利, 1985:10~19
    52李锦绣,杜斌,孙以三.水动力条件对富营养化影响规律探讨.水利水电技术. 2005(5): 23~28
    53 CHapra, S. C. Surface Water Quality Modeling. McGraw-Hill. New York. 1997:844~845
    54林晗,韩晓君.磨盘山水库水资源保护面临的问题与对策.黑龙江水利科技. 2007(6): 115~116
    55朴香花.大连湾海域氨氮、磷酸盐及藻类生长的数值模拟研究.大连理工大学博士论文. 2008:55~56
    56吴英海. OOMAs模型在太湖水环境模拟中的应用研究[D].南京:河海大学, 2004
    57 James, R.T., Bierman, Jr. V. J. Erickson, M. J., and Hinz, S. C. The Lake Okeechobee Water Quality Model(LOWQM) Enhancement, Calibration, Validation and Analysis. Lake Reser. Manag. 2005, 21:231~260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700