用户名: 密码: 验证码:
桅杆结构纤绳连接拉耳风致疲劳裂纹萌生与扩展寿命预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桅杆结构是一种主要承受风荷载的高耸结构,由一根直立的细长杆身和3~4个方向沿高度斜向张拉的数层纤绳组成,近年来被广泛应用于无线电通讯、广播电视、海空导航、环境保护、能源开发等国民经济的重要领域。由于其复杂的工作机理尚未被人们完全认识和掌握,桅杆结构发生破坏事故的比例在土木工程界首屈一指。大量桅杆事故研究报告表明:倒塌破坏事故多数是由于疲劳损伤后引起结构失稳或结构构件应力超过极限强度而引起的。因此有必要进行桅杆结构的疲劳损伤分析及疲劳寿命预测,为桅杆结构疲劳剩余寿命评估以及疲劳损伤监测新方法的提出提供重要依据。
     以裂纹萌生寿命控制结构的疲劳是对结构疲劳断裂认识不足的结果,疲劳总寿命包括裂纹萌生和裂纹扩展两部分,完整的疲劳分析既要研究裂纹的起始萌生,也要研究裂纹的扩展。本论文首先采用多轴疲劳理论估算拉耳孔边裂纹萌生寿命。采用基于FFT算法改进的谐波叠加法模拟了桅杆结构沿杆身高度分布的15条脉动风速时程并进行了相关函数与功率谱检验,通过风速风压关系转换得到与自然风基本特性一致的模拟风荷载。
     建立桅杆结构非线性动力计算模型,在时域内分析桅杆结构模拟风荷载作用下的非线性动力响应,获得桅杆结构纤绳应力响应时程。由于桅杆结构的对称性仅计算了0°、30°、60°风向桅杆结构的风振响应,其余方向风振响应根据对称性得到;借助有限元软件计算确定桅杆结构局部拉耳模型疲劳危险点及其应力应变状态,对危险点应力应变状态进行坐标旋转,按一定间隔变化旋转角度搜索最大损伤参量所对应的临界损伤面位置;采用双重雨流计数法提取临界损伤面上的正、剪应变循环并基于von Mises准则合成统一的多轴疲劳损伤参量,然后依据Mason-coffin公式及Miner疲劳累积损伤准则估算桅杆结构纤绳连接拉耳各不同风向不同平均风速作用下的多轴疲劳累积损伤,由总损伤计算出裂纹萌生寿命。
     本文重点采用断裂力学方法研究桅杆拉耳这个局部构造复杂结构在初始疲劳裂纹下的扩展。桅杆结构纤绳连接拉耳裂纹的扩展寿命研究主要解决两个问题:裂纹前缘应力强度因子计算与孔边裂纹扩展分析。本文采用有限元法计算三维表面裂纹前缘应力强度因子。首先借助ANSYS高级网格划分技巧解决了复杂结构裂纹体有限元建模难题;利用布尔运算、高级网格划分技巧等手段采用实体建模法创建三维裂纹体模型。基于裂纹实体建模,采用有限元法分别计算了含中心表面裂纹及孔边角裂纹平板前缘应力强度因子,并与含中心表面裂纹及孔边角裂纹平板结构的Newman&Raju应力强度因子经验公式的计算结果进行对比验证了有限元实体建模及应力强度因子求解过程的可靠性。
     采用前述有限元法计算桅杆结构拉耳各种给定形状、尺寸孔边裂纹裂纹前缘Ⅰ、Ⅱ、Ⅲ型应力强度因子,将全部应力强度因子转化为便于计算的无因次应力强度因子并采用最小二乘法进行多项式拟合,为确保应力强度因子变化趋势以拟合曲线函数值代替离散无因次应力强度因子采用多参数拉格朗日插值法插值计算任意形状孔边裂纹无因次应力强度因子,由无因次应力强度因子计算任意形状孔边裂纹应力强度因子;并就某一形状裂纹的插值计算结果与有限元分析结果进行对比:插值结果与有限元求解非常接近,因此采用数值插值计算近似代替全三维有限元分析简化应力强度因子求解过程。
     在上述插值求解应力强度因子的基础上考虑混合裂纹扩展模式及裂纹闭合效应,以桅杆结构下层纤绳连接拉耳孔边裂纹为例采用Paris裂纹扩展速率公式研究了孔边裂纹的扩展形状变化特性;考虑孔边裂纹扩展形状变化特性采用逐循环直接积分法分别预测了桅杆结构上、下层纤绳连接拉耳不同初始条件孔边裂纹的扩展寿命。
Guyed mast is a kind of highrising structure which mainly subjects to wind load, and consists of a slender bar body and several layer cables of 3 or 4 orientation stretching obliquely along height which has been widely used on radio communication,broadcast television,ocean and air navigation,environment protection,energy explore and other important fields of national economy.The ratio of guyed mast failure accidents is the second to none in civil engineers on account of the complicate working mechanism of guyed mast has yet not been understood and mastered completely.Reports of many guyed mast failure accidents show that most collapse and failure accidents are result of structural instability or the stress of structural member has exceeded the strength limit due to fatigue damage.So it is necessary to study fatigue damage and predict the fatigue life of guyed mast in order to provide important basis for guyed mast on evaluation of fatigue residual life and proposition of new method of fatigue damage detection.
     Taking crack germination life as fatigue criterion is the result of having no enough knowledge of fatigue fracture.Fatigue total life includes crack germination and crack propagation,and complete fatigue analysis should not only study crack germination but also crack propagation.This dissertation studied crack germination lift with multi-axial analytic theory.15 series of wind load along the height of the guyed mast have been simulated with harmonic wave superpose method improving by introducing FFT algorithm.Also the cross-correlation function and power spectrum have been checked and simulated wind load with the same characteristic of natural wind has been obtained by transformation wind velocity to wind pressure.
     A nonlinear dynamic model has been established and the nonlinear dynamic response has been analyzed via Newmark-βdirect integration combining to Newton-Raphson integration,so we can get the stress response time history of cable. On account of the symmetry of guyed mast only 0°、30°、60°orientation of wind responses have been calculated and wind response of other orientation can be obtained according to symmetry.The stress or strain state of dangerous point of fatigue on guyed mast's ear plate has been calculated via finite element software. Rotate the coordination of stress or strain with angle changes per certain interval to search the critical plane relation to maximum damage.The shear and normal strain cycle of critical plane are extracted with double rain-flow counting method and be composed a unified multi-axial fatigue damage parameter basing on Von-Mises rule. Then The multi-axis fatigue accumulative damages of different wind orientation and wind average velocity of guyed mast's ear plate connecting with sub-layer cable have been evaluated on basis of Mason-coffin formula and Miner fatigue accumulative damage rule.And germination life of crack has been calculated according to total damage.
     The emphasis of this dissertation is studying the propagation of initial fatigue crack of complicate structure guyed mast's ear plate with fracture mechanics.The research of crack propagation of ear-plate connecting guyed mast to cable should solve two problems:the calculating of stress intensity factors along crack front and the analysis of crack propagation.Stress intensity factors along 3-D surface crack have been calculated with finite element method.In view the difficulty on modeling 3-D crack,a solid modeling method has been proposed.This method decreases modeling word greatly by adopting Boolean operation and some super mesh skills which can be used to model all kinds of cracked finite element model with complex configuration.Stress intensity factors of central surface crack and crack at hole have been calculated with finite element method basing on solid modeling method.They are compared with the results deriving from Newman & Raju stress intensity factor empirical formula.By that the procedures of solid modeling and solving of stress intensity factor have been validated.
     With previous described finite element method we calculatedⅠ,Ⅱ,Ⅲtype of stress intensity factor along front of given shape and size crack at hole of guyed mast's ear-plate and transform them all to the form of no-dimension stress intensity factors which are convenient for calculation.Simulate no dimension stress intensity factor with polynomial by least square method.In order to maintain the changing trend of no-dimension stress intensity factor we replace the dispersed no-dimension stress intensity factor with data of polynomial function to calculate no-dimension Stress intensity factors of any shape crack at hole by multi-parameter Lagrange interpolation method.And then calculate stress intensity factor of any shape crack at hole.There is a comparison between interpolation value and the finite element analytical results of a certain shape crack which shows that they are close to each other.So we can replace whole 3-D finite element analysis with numerical interpolation calculation approximately.
     Take guyed mast' ear plate connecting with sub-layer cable as objects,we studied the characteristic of crack propagation shape by adopting Paris propagation velocity formula with consideration of mix crack propagation pattern and crack close phenomenon on the basis of above solving of stress intensity factor.Propagation life of crack at hole of different initial situation of ear-plates connecting with guyed mast's upper and lower layer cables have been predicted with one by one cycle direct integration method with the consideration of the characteristic of crack propagation shape.
引文
[1]王肇民,王之宏,颜明忠.桅杆结构.北京:科学出版社,2001.
    [2]张其林,U·Peil.欧美塔桅钢结构研究状况--IASS塔桅工作组95会议简介.特种结构,1996.13(2):58-63.
    [3]M.Shinozuka.Simulation of multivariate and multidimensional random processes.J.Acoust.Soc.Amer,1971.49(1):357-367.
    [4]M.Shinozuka,C.M.Jan.Digital simulation of random processes and its applications.Journal of Sound and Vibration,1972.25(1):111-128.
    [5]星谷胜(日).随机振动分析.北京:地震出版社,1977.
    [6]Imre.Kovacs.Analytical aerodynamic investigation of cable-stayed helgeland bridge.Journal of Structure Engineering,1992.118(1).
    [7]M.Grigoriu.Simulation of non-stationary Gaussian processes by random trigonometric polynomials.Journal of Engineering Mechanics,1993.119(2).
    [8]刘春华,项海帆,顾明.多个互相关随机过程的计算机模拟及其应用.同济大学学报(自然科学版),1994.22(增):61-68.
    [9]王之宏.风荷载的模拟研究.建筑结构学报,1994.15(1):44-52.
    [10]张志强,李爱群,蔡丹绎等.合肥电视塔人造脉动风荷载的仿真计算.东南大学学报(自然科学版),2001.31(01):69-73.
    [11]罗俊杰,韩大建.谐波合成法模拟随机风场的优化算法.华南理工大学学报(自然科学版),2007.35(7):105-109.
    [12]T.Naganuma,G.Deodatis,M.Shinozuka.ARMA model for two dimensional processes.Journal of Engineering Mechanics,1987.113(2):234-251.
    [13]C.Borri,F.Crocchini.Numerical simulation of stationary and nonstationary stochastic processes:a comparative analysis for turbulent wind fields,in 9ICWE.1995.New Delhi,India.
    [14]张晓洁,殷志祥.电视塔脉动风荷载研究.工程建设与设计,2004(9):12-13.
    [15]董军,邓洪洲,刘学利.高层建筑脉动风荷载时稗模拟的AR模型方法.南京建筑工程学院学报,2000.53(02):20-25.
    [16]舒新玲,周岱.风速时程AR模型及其快速实现.空间结构,2003.9(04):27-32.
    [17]J.N.Yang.On the normality and accuracy of simulated random processes.Journal of Sound and Vibration,1973.26(3):417-428.
    [18]M.Shinozuka.Digital simulation of random processes in engineering mechanics with the aid of FFT technique.Waterloo:University of Waterloo Press,1974.
    [19]G.Deodatis,M.Shinozuka.Simulation of seismic ground motion using stochastic waves.Journal of Engineering Mechanics,1989.115(12):2723-2737.
    [20]G.Deodatis.Simulation of ergodic multivariate stochastic processes.Journal of Engineering Mechanics,1996.122(8):778-787.
    [21]曹映泓,项海帆,周颖.大跨度桥梁随机风场模拟.土木工程学报,1998.31(3):72-78.
    [22]陈艾荣,王毅.基于小波分析方法的随机脉动风模拟.同济大学学报(自然科学版),2005.33(4):427-431.
    [23]刘锡良,周颖.风荷载的几种模拟方法.工业建筑,2005.35(05):81-84.
    [24]K.I.Beitin.Dynamic response of guyed towers to wind loading,in Americal Society Civil Engnieering Annual and Environment Meeting.1969.Chiago.
    [25]M.Shears.Static and dynamic behaviour of guyed masts:[PHD],1968.
    [26]H.M.Irvine.Cable structures.Massachusets and London:Cambridge,1981.
    [27]U.Peil,H.N(o|¨)lle.Guyed masts under wind load.Journal of Wind Engineering and Industrial Aerodynamics,1992.41-44:2129-2140.
    [28]U.peil,H.N(o|¨)lle.Measurement of wind load and response of a guyed mast.in Proceeding of the European Conference on Structure Dynamics.1991.
    [29]U.peil,H.N(o|¨)lle,Z.H.Wang.Nonlinear dynamic behaviour of guys and guyed masts under turbulent wind load.Journal of International Association for Shell and Spatial Structures,1996.37:77-88.
    [30]王肇民,程勇凌.桅杆结构动力特性研究.建筑结构学报,1993.14(5):2-10.
    [31]欧阳可庆,岳昌智.空间桁架法计算桅杆的整体稳定.同济大学学报(自然科学版),1989.17(3):409-414.
    [32]张其林,欧阳可庆.桅杆结构非线性稳定与振动的杆索有限元分析法.土木工程学报,1993.26(5):31-42.
    [33]李树逊,王肇民.桅杆结构在模拟风荷载下的非线性动力分析.建筑结构,1999(9):44-46.
    [34]何艳丽.桅杆结构的动力稳定性分析:[博士学位论文].上海:同济大学,1999.
    [35]A.G.Davenport.The application of statistical concepts to the wind loading of strutures,in Proc.Inst.Civ.Eng.1961.
    [36]A.G.Davenport.The response of slender link-like structures to a gust wind.in Proc.Inst Civ.Eng.1962.
    [37]J.Vellozzi,E.Cohen.Gust response factors.Journal of Structure Division,ASCE,1968.94:295-313.
    [38]B.J.Vickery.On the reliability of gust loading factors,in Proceedings of the Technicians Meet Concerning Wind Loads on Buildings and Structures.1970.Washington D C.
    [39]E.Simiu.Equivalent static wind loads for all buildings design.Journal of Structure Division,ASCE,1976.102:19-37.
    [40]E.Simiu.Revised procedure for estimating along wind response Journal of structures Division,ASCE,1980.106:1-10.
    [41]G.Solari.Along wind response estimation:closed-form solution.Journal of structures Division,ASCE,1982.108:225-244.
    [42]M.Kaspershi,H.J.Niemann.The LRC method-a genral method for estimating unfavorable wind load distributions for linear and nonlinear structural behavior.Journal of Wind Engineering and Industrial Aerodynamics,1992(41-44):1753-1763.
    [43]J.D.Holmes.Along-wind response of lattice towers:part Ⅰ:Derivation of expressions for gust response factors.Engineering Structures,1994.16:287-292.
    [44]张相庭.结构风压和风振计算.上海:同济大学出版社,1985.
    [45]张相庭.工程结构风荷载理论与抗风计算手册.上海:同济大学出版社,1990.
    [46]王肇民.桅杆的风灾事故及风振控制、结构工程研究及进展.第七届全国结构风效应学术会议论文集.1995.重庆:重庆大学出版社.
    [47]王肇民,何艳丽,马星.桅杆结构风洞实验研究.建筑结构学报,2000.21(6):55-61.
    [48]王肇民,颜明忠.桅杆结构横风向振动响应研究.建筑结构学报,1996.17(3):2-8.
    [49]S.H.Crandall,W.D.Mark.Random vibration in mechanical systems.New York:Academic Press,1963.
    [50]C.D.Lutes,M.Corazao,S.J.Hu.Stochastic fatigue damage accumulation.Journal of Structure Engineering,1984.110:2585-2561.
    [51]G.Jiao,T.Moan.Probabilistic analysis of fatigue due to Gaussian load processes.Probabilistic engineering mechanics,1990(5):76-83.
    [52]S.R.Winterstein.Non-linear vibration models for extremes and fatigue.Journal of Engineering Mechanics,ASCE,1986.114:1772-1790.
    [53]V.V.Bolotin.About life estimation at stationary random loads.Mashinostroenije,1959.
    [54]G.K.Chaudhury,W.Dover.Fatigue analysis of offshore platforms subject to sea wave loading.International Journal of Fatigue,1985(7):13-19.
    [55]C.L.Chow,D.L.Li.An analytical solution for fast fatigue assessment under wide-band random loading.International Journal of Fatigue,1991(5):395-404.
    [56]P.H.Wirsching.Fatigue under wide band random stresses.Journal of Structure Division,1980.106:1593-1607.
    [57]J.D.Holmes.Fatigue life under along-wind loading:closed form solutions.Engineering Structures,2002.24:109-114.
    [58]U.peil,H.N(o|¨)lle.On fatigue of guyed masts due to wind load.in Proc.ICOSSAR.1993.
    [59]U.Peil,G.Telljohann.Fatigue of high and slender structures under wind load.Aspects on Mode Computational Structure Anslysis,1997:77-83.
    [60]王之宏.桅杆结构的风振疲劳.特种结构,1994.11(3):3-8.
    [61]屠海明,邓洪洲.基于频域的桅杆结构风振疲劳分析.特种结构,1999.16(4):34-36.
    [62]邓洪洲,屠海明,王肇民.桅杆结构随机风振疲劳研究.土木工程学报,2003.36(4):19-23.
    [63]徐建波,邓洪洲,王肇民.基于可靠性理论的桅杆焊缝风振疲劳分析.2004.32(12):1608-1612.
    [64]温应龙.桅杆结构随机风振疲劳及可靠性研究:[硕士学位论文].上海:同济大学,2004.
    [65]I.S.Raju,J.C.Newman.Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates.Engineering Fracture Mechanics,1979.11:817-829.
    [66]T.Fett.Estimation of stress intensity factors for semi-elliptical surface crack.Engineering Fracture Mechanics,2000.66:349-356.
    [67]N.A.Noda.Stress intensity formulas for three-dimensional cracks in homogeneous and bonded dissimilar materials.Engineering Fracture Mechanics,2003.71:1-15.
    [68]J.C.Newman,I.S.Raju.Analysis of surface crack in finite plate under tension or bending loads.1979.
    [69]罗祖道.三维裂纹应力强度因子的一个近似计算方法,上海交大技术资料报告.上海,1978.
    [70]陆寅初,唐国令.第四界全国断裂力学会议.1985.
    [71]陈志刚.平面SH波在界面任意孔洞和孔边裂纹上的散射:[博士学位论文].哈尔滨:哈尔滨工程大学,2003.
    [72]李英志.含裂纹板壳及三维裂纹体裂纹尖端应力应变场及应力强度因子计算:[博士学位].北京:中国科学院力学研究所,1985.
    [73]吴绍富.三维含裂纹体应力场分析与应力强度因子解法:[博士学位论文].北京:北京航空学院.
    [74]吴学仁,黄新跃.受任意钉载圆孔边径向裂纹分析.航空学报,1998.9(9):434-439.
    [75]陆山,黄其青.复杂载荷三维裂纹分析双重边界元法.力学学报,2002.34(5):715-725.
    [76]谢伟.工程复杂结构三维裂纹断裂特性分析:[硕士学位论文].西安:西北工业大学,2005.
    [77]刘金依,薛河,刘永军.三维中心裂纹板中J积分的计算及分析.西安科技学院学报,2002.22(1):91-94.
    [78]王峰,黄其青,殷之平.三维裂纹应力强度因子的计算分析.航空计算技术,2006.36(3):125-127.
    [79]林晓斌,R.A.Smith.应用三维有限单元法计算应力强度因子.中国机械工程,1998.11(9):39-42.
    [80]刘青峰,谢基龙,缪龙秀.半椭圆表面裂纹的有限元仿真.计算机辅助工程,2006.15(supp):400-403.
    [81]瞿伟廉,鲁丽君,李明.工程结构疲劳裂纹最大应力强度因子计算.地震工程与工程振动,2007.27(6):58-63.
    [82]瞿伟廉,鲁丽君,李明.带三维穿透裂纹结构的有限元实体建模方法.武汉理工大学学报,2008.30(1):87-90.
    [83]M.S.Alam,M.A.Wahab.Modeling the fatigue crack growth and propagation life of a joint of two elastic materials using interface elements.International Journal of Pressure Vessels and Piping,2005.82:105-113.
    [84]W.T.Riddell.experimental observations and numerical predictions of three-dimensional fatigue crack propagation.Engineering Fracture Mechanics,1997.58(4):293-310.
    [85]X.B.Lin,R.A.Smith.Finite element modeling of fatigue crack growth of surface cracked plates:part Ⅲ Stress intensity factor and fatigue carck growth life.Engineering Fracture Mechanics,1999.63:541-556.
    [86]X.B.Lin,R.A.Smith.Fatigue shape analysis for comer cracks at fastener holes.Engineering Fracture Mechanics,1997.59(1):73-87.
    [87]X.B.Lin,R.A.Smith.Stress intensity factors for comer cracks emanating from fastener holes under tension.Engineering Fracture Mechanics,1999.62(3):535-553.
    [88]Masayuki,Kamaya.Growth evaluation of multiple interacting surface cracks.Part Ⅱ:Growth evaluation of parallel cracks.Engineering Fracture Mechanics,2008.75:1350-1366.
    [89]周太泉.桥梁构件局部热点应力分析及其疲劳累积损伤过程模拟:[博士学位论文].浙江:东南大学,2003.
    [90]卢炎麟.焊趾半椭圆表面裂纹前缘应力强度因子分布的实用计算法.中国海洋平台,1996.11(3):118-126.
    [91]卢炎麟.焊趾表面裂纹的形态发展曲线与疲劳寿命预测.应用力学学报,1999.16(1):81-87.
    [92]卢炎麟,王自力,杜水友.T型管节点焊趾表面裂纹扩展行为的三维断裂力学分析.中国造船,1995.129(2):51-59.
    [93]徐志宏.桅杆结构焊接节点风致疲劳分析:[硕士学位论文].上海:同济大学,2005.
    [94]刘尚培等译.风对结构的作用.风工程导论.上海:同济大学出版社,1992.
    [95]张相庭.结构风工程.北京:中国建筑工业出版社,2006.
    [96]黄健.桅杆结构随机风振疲劳及控制研究:[博士学位论文].上海:同济大学,2004.
    [97]袁波,应惠清,徐佳炜.基于线性滤波法的脉动风速模拟及其Matlab程序的实现.结构工程师,2007.23(04):55-61.
    [98]王吉民,李琳.脉动风的计算机模拟.浙江科技学院学报,2005.17(01):34-37.
    [99]韩大建,邹小江,苏成.大跨度桥梁考虑桥塔风效应的随机风场模拟.工程力学,2003.20(06):18-22.
    [100]A.Kareem,T.Kijewski.Time frequency analysis of wind effects on strumctures.Journal of Wind Engineering and Industrial Aerodynamics,2002.90:1435-1452.
    [101]吴筑海,马骏,周岱.空间结构风时程模拟及分析.第四届全国现代结构工程学术研计会.宁波.2004.
    [102]徐建波.桅杆结构响应及风振疲劳分析:[博士学位论文].上海:同济大学,2004.
    [103]沈世钊,徐崇宝,赵臣.悬索结构设计.北京:中国建筑工业出版社,1997.
    [104]张其林,欧阳可庆.纤绳初应力对桅杆受力性能的影响.特种结构,1992(2).
    [105]何鹏飞.桅杆结构疲劳分析及振动控制:[硕士学位论文].上海:同济大学,2004.
    [106]李树逊.桅杆结构非线性振动:[博士学位论文].上海:同济大学,1999.
    [107]郝文化.ANSYS土木工程应用实例.北京:中国水利水电出版社,2005.
    [108]王仲刚.桅杆结构风振响应及混沌振动研究:[博士学位论文].上海:同济大学,2001.
    [109]崔俊芝,梁俊.现代有限元软件方法.北京:国防工业出版社,1995.
    [110]张相庭,王志培,黄本才.结构振动力学.1994,同济大学出版社:上海.
    [111]程华.基于时频分布的桅杆结构损伤识别方法及试验研究:[博士学位论文].重庆:重庆大学,2005.
    [112]俞载道.随机振动理论及其应用.上海:同济大学出版社,1988.
    [113]W.N.Findely.A theory for the effect of mean stress on fatigue of metals under combined torsional and axial load or bending.Journal of Engineering for Industry,1959.81:301-306.
    [114]D.L.Mciarmid.A general criterion of fatigue under multiaxial stress,in International Conference on Pressure Vessel Technology.1973.
    [115]M.W.Brown,K.J.Miller.A theory for fatigue failure under multiaxial stress strain conditions.in Proc.Inst.Mechanical Engineers.1973.
    [116]E.H.Jordan,W.M.Brown,K.J.Miller.Fatigue under severe nonproportional loading.ASTM,1985.STP853:569-585.
    [117]陈传尧.疲劳与断裂.武汉:华中科技大学出版社,2002.
    [118]D.F.Socie,L.A.Waill,D.F.Dittmer.Biaxial fatigue of inconel 718 including mean stress effects.Multiaxial Fatigue,1985.ASTM STP 853:7-36.
    [119]D.F.Socie.Multiaxial fatigue damage models.J.Engng.Mater.Tech.,1987.109:293-298.
    [120]王雷,王德俊.一种随机多轴疲劳的寿命预测方法.机械强度,2003.25(02):204-206.
    [121]徐灏.疲劳强度.北京:高等教育出版社,1988.
    [122]程育仁,缪龙秀,候炳麟.疲劳强度.北京:中国铁道出版社,1990.
    [123]李庆芬.断裂力学及其工程应用.哈尔滨:哈尔滨工程大学出版社,2004.
    [124]中国航空研究院.应力强度因子手册.北京:科学出版社,1993.
    [125]刘进征.整体翼梁结构断裂特性分析与研究:[硕士学位论文].西安:西北工业大学,2006
    [126]ANSYS Help Manual.
    [127]周宁.ANSYS机械工程应用实例.北京:中国水利水电出版社.
    [128]林晓斌.疲劳裂纹工程评定方法的新进展.压力容器,1996.13(03):241-248.
    [129]冯奇,张相庭.桅杆结构风致破坏机理研究.力学季刊,2000.21(4):421-426.
    [130]李皓月,周田朋,刘相新.ANSYS工程计算应用教程.北京:中国铁道出版社,2003.
    [131]李庆扬,王能超.数值分析.北京:清华大学出版社,2001.
    [132]袁海庆,蒋沧如.有限单元法的理论与工程应用.武汉:武汉工业大学出版社,1997.
    [133]H.W.Lui.Discussion in respect to:the fracture mechanics approach to fatigue of P C Paris,in fatigue-an interdisciplinary approach,ed.J.J.Burke.Syracuse NY:Syracuse University Press,1964.
    [134]A.C.E-24.Proposed ASTM test method for measurement of fatigue crack growth rates,in fatigue crack growth measurement and data analysis.1981.
    [135]中国国家标准局.金属材料疲劳裂纹扩展速率试验方法.1986,中国标准出版社.p.1-27.
    [136]师小红,徐章遂,康健.基于断裂力学的疲劳裂纹扩展速率公式研究.机械设计与制造,2007(10):11-12.
    [137]洪起超.工程断裂力学基础.上海:上海交通大学出版社,1987.
    [138]Keisuke,Tanaka.Fatigue crack propagation from a crack inclined to the cyclic tensile axis.Engineering Fracture Mechanics,1974(6):493-507.
    [139]W.H.Grestle.Finite and boundary element modeling of crack propagation in two and three dimensions using interactive computer graphics[PhD].Ithaca NY:Cornell University,1986.
    [140]李强,王波.T型焊接接头疲劳裂纹应力强度因子的3D的边界元计算.重庆建筑大学学报,2000.22(6):29-33.
    [141]王中光(译).材料的疲劳.北京:国防工业出版社,1999.
    [142]董乐义,罗俊,程礼.雨流计数法及其在程序中的具体实现.计算机技术与应用,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700