用户名: 密码: 验证码:
巨桉林草复合种植模式初期土壤养分库及物理性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在林草复合系统中,土壤养分含量的多少直接影响植物生长发育,同时,植物生长吸收、植物地下根系的分布、植物凋落物的数量和质量反过来也影响土壤养分含量。试验分别设置三个模式,即巨桉+鸭茅、巨桉+高羊茅、巨桉+牛鞭草(以下分别简称为模式Ⅰ、模式Ⅱ、模式Ⅲ),五个密度,即2222株/hm~2、1667株/hm~2、1333株/hm~2、1111株/hm~2、833株/hm~2(以下分别以Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ表示),测定了不同林分密度下的巨桉林草复合模式种植初期养分含量及其物理性质树冠内外差异及随生长季节变化的规律。主要研究结果如下:
     三个模式土壤全氮含量在整个5月至11月期间呈现出下降趋势。这可能因为各个模式中的鸭茅、高羊茅和牛鞭草均为禾本科牧草,而禾本科牧草在生长发育期间需氮量较大;其次,试验区处于华西雨屏区,年降雨量丰富,因此,淋洗损失要占氮的损失的一部分;另外,各个模式每次牧草刈割后,要带走部分氮。由于生物体在8月至11月产生的枯枝落叶和死亡根系进入土壤中的有机氮,使得土壤全氮以有机态储存起来,推测是模式Ⅰ、Ⅲ在8月至11月全氮含量回升的主要原因。
     三个模式在5月至8月期间,水解氮含量均不同程度增加。因为在6、7月,温湿度较高,有机氮易矿化成分高。三个模式水解氮含量在8月至11月均为下降,可能是在这个期间,土壤温湿度不及夏季,有机氮矿化成分降低;而此时仍然保持一定长势的牧草和巨桉也需要吸收氮素。三个模式水解氮在5月至11月整个期间均呈下降趋势。
     各个模式中土壤全磷含量在5月至8月期间均呈不同程度上升趋势。在8月至11月,土壤全磷含量均为下降趋势,整个期间均呈下降趋势。可能因为在这个期间,系统中巨桉和牧草仍保持生长,土壤中的全磷转化为有效磷供植物体吸收,导致了全磷的消耗。
     有效磷含量在5月至11月各个模式均呈下降趋势,虽然此时较高的温湿度有利于有机磷矿化作用,但此时植物处于生长期,推测生物固定速率大于矿化速率,所以此时有效磷呈下降趋势。前面在各个模式中,土壤全磷含量整体呈下降趋势,也会影响全磷向有效磷的转化量。
In the forest-grass compound planting patterns, the content of soil nutrients affects the plants's growth. On the other hand, the absorb ability of plant, distributing of roots system, quantity and quality of litters influence the content of soil nutrients. Three patterns, the E.grandis+Dactylis glomerata L; E.grandis +Festuca arundinacea L; E.grandis +Hemarthria compressa(L..f)R.BY(the shorted form of each was pattern I , pattern II and pattern III) were set in this experiment. Each pattern has five density, namely 2222,1677,1333,1111 and 833 tree/hm~2(the shorted form of each was I , II ,HI,IV,V). The content of soil nutrients and physical properties under and out of crown of tree were measured. For the analysis of the seasonal changing role of soil nutrients and physical properties are as following:
    The total nitrogen content of pattern I was declined at whole stages (May to November) . The reason may be as follows: 1.Dactylis glomerata L,Festuca arundinacea L and compressa(L.f)R.BY were gramineous herbs and need large amounts of nitrogen in growing periods. 2. The experimental plot was located at the high precipitation of western China and has enough precipitation, so the increasing the nitrogen leaching loss.3. The litters and dead roots system were yielded in soil increasing the organic nitrogen between August and November. Then the total nitrogen was deposited by organic form, which may lead to the total nitrogen of model I and III increasing mainly between August and November.
    The content of hydrolysable nitrogen ascended between May and August, for the organic nitrogen was easily mineralized in June and July, and decreased at August to November in each patterns, may be the mineralization between August and November was lower than before, and the growths of herbs and E.grandis still need the nitrogen. In general, the hydrolysable nitrogen of all models was declined at whole stages.
    The content of total phosphorus ascended between May and August and decreased at August to November in each patterns, and were declined at whole stages. For the growth of E.grandis and herbs need the total phosphorus translating into available phosphorus, and was likely to lead to the total phosphorus decreased.
引文
[1] 王海明,李贤伟,李守剑,等.林草复合经营模式研究.四川林勘设计,2003,1:6-9
    [2] 龚伟,胡庭兴,宫渊波,等.退耕还林中林草模式效益评价与物种的选择与配置.四川林勘设计,2004,3:1-7
    [3] 徐太敏,黄敬平,刘大华.奉节县退耕还林地林草间作发展兔业生产思路.四川草原.2004.0(7):47-48
    [4] 樊巍,高喜荣.林草牧复合系统研究进展.林业科学研究,2004,17(4):519-524
    [5] 赵粉侠,李根前.林草复合系统研究现状.西北林学院学报,1996,11(4):81-86
    [6] Lundgren. B O. ICRAF into 1990s. Agroforestry Today, 1990, 2(4): 14-16
    [7] Buck LE. Agroforestry policy issues and research directions in the US and less developed countries: insights and challenges from recent experience. Agroforestry Systems, 1995, 30(1/2): 57-73
    [8] Mead DL. The role of agroforestry in industrialized nations: the southem hemisphere perspective with special emphasis on Australia and New Zealand. Agroforestry Systems, 1995, 31(2): 143-156
    [9] Schultz RC. Agroforestry opportunities for the United states of America. Agroforestry Systems, 1995, 32(2): 117-132
    [10] Garrett HEG. Agroforestry practice and policy in the United States of America. Forestry Ecology and Management, 1997, 91(1): 5-15
    [11] Herzog G..Streuobst: a traditional agroforestry system as a model for agroforestry development in temperature Europe. Agroforestry systems, 1998, 42: 61-80;
    [12] Zinkhan FC. An assessment of agroforestry systems in the southern USA. Agroforestry Systems, 1997, 35(3): 303-321
    [13] Ahuja LD. Contribution of grass component(ground story) in afforested areas in arid regions. Journal of Indian Forestry, 1985, 111: 542-547;
    [14] Yunusa IAN. Process studies in a pinus radiate-pasture agroforestry system in a subhumid temperature environment. Ⅱ. Analysis of dry matter yields in the third year. Agorforestry systems, 1995, 32: 163-183
    [15] 汪万福,王涛,李最雄,等.敦煌莫高窟崖顶灌木林带防风固沙效应.生态学报,2004,24(11):2492-2500
    [16] Roshan Thapa. Agroforestry can reverse land degradation in Nepal. Appropriate Technology, 2003, 30(4): 40-41
    [17] 刘玉西.川中丘陵高效林草复合系统的建立与效益研究.四川林业科技,1995,16(3):63-68
    [18] Samson, B, K. Upland development technologies. In Man, agriculture, and tropical forest. Winrock International Institute for Agricultural Developments. S. Fujisaka, P, E. Sajise, and R. A. Castillo(eds.) Bangkok, 1986, 117-167
    [19] Steiner, F. Agriforestry's coming of age. Soil and Water Cons, 1988, 43(2): 157-158
    [20] Young A. Agroforestry for soil conservation. CAB International, Wallingford, UK. 1991
    [21] Kusumandari A, Mitchell B. Soil erosion and sediment yield in forest agroforestry areas in West Java, Indonesia. Journal of Soil and Water Conservation, 1997; 52(5): 376-380
    [22] 陈凯,胡国谦,饶辉茂,等.红壤坡地柑桔园栽培香根草的生态效应.生态学报,1994,14(3):249~253
    [23] 王建江,杨永辉,张万军.太行山干旱山区林草复合生态系统效益分析.生态农业研究,1996,4(1):62-64
    [24] 杨万军.白银地区优良林草品种选择与林草复合经营技术试验.防护林科技,2002,4:25-28
    [25] 季志平.油茶复合林功能的研究.经济林研究,1997,(5):16~19
    [26] 何艺玲,傅懋毅.人工林林下植被的研究现状.林业科学研究,2002,15(6):727-733
    [27] 姚茂和,盛炜彤.林下植被对杉木林地力影响的研究.林业科学研究,1991,4(3):247~251
    [28] 盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用研究.生态学报,1997,17(4):377~385
    [29] 廖观荣等.雷州半岛桉树人工林地力退化的成因与防治措施.土壤与环境,2002,011(003):268-273
    [30] 舒洪岚,马晓玲.杉木材地力退化及持续经营对策.江西林业科技,1999,000(001):20-22
    [31] 黄承标.三种不同植被恢复模式地上生物量及其营养元素含量研究.森林工程,2004,20(1):9-13
    [32] 曹成有等.小叶锦鸡儿人工固沙区植被恢复生态过程的研究.应用生态学报,2000,11(3):349-354
    [33] 周厚诚.广东南澳岛植被恢复过程中的群落动态研究.植物生态学报,2001,25(3):298-305
    [34] 应金花.第1茬林分密度对2茬2年生杉木林生长影晌.福建林学院学报,2003,23(3):225-228
    [35] 束庆龙等.火炬松林分密度对衰退病和土壤含水量的影响.安徽农业大学学报,2001,28(3):251-254
    [36] Bucher T. B. Havel J J. Influence of moisture relationships on thinning practice. New Zealand Journal of Forestry Scicience. 1976, 6(2): 158-170
    [37] 李惠宝,史玉虎.鄂西三峡库区端坊溪小流域优良林分小气候效益研究.湖北林业科技,1999,(3):1-5
    [38] 张庆费,徐绒娣.1999.浙江天童常绿阔叶林演替过程的凋落物现存量.生态学杂志,18(2):17~21
    [39] Laclau JP, Amaud M, Bouillet JP, et al. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients. Tree Physiol., 2001, 21: 129~136.
    [40] Laclau JP。Ranger J, Nzila JD, et al. Nutrient cycling in clonal stand of Eucalyptus and an adjacent savanna ecosystem in Congo 2. Chemical composition of soil solutions. FOr. Ecol. Man., 2003, 180: 527~544
    [41] 胡曰利,吴晓芙,王尚明,等.桉树人工林地有机物和养分库的衰退及防治.中南林学院学报,2000,20(4):36-40
    [42] 吴勇刚,张健,冯茂松.不同密度巨桉纸浆林的生长效果初步研究.四川农业大学学报,2003,21(2):109-112
    [43] 吴继林.影响巨桉人工林生长的主要土壤因子.福建林学院学报,1999,19(2):160-163
    [44] 黄秀美,巨桉造林密度与整地规格试验研究.桉树科技,2003,1:22-25
    [45] Coetzee J.陈少雄译.林分密度对巨桉收获量的影响--好立地和差立地在4年生时的比较,桉树科技,1998,1:53-60
    [46] 黎华寿,骆世明,草类在生态环境保护中的地位和作用.生态科学,2001,20(1):121-126
    [47] Rice EL. Allelopathy. New Yoke: Acedemic Press, 1974
    [48] 李军玲,张金屯,郭逍宇.关帝山亚高山灌丛草甸群落优势种群的生态位研究.西北植物学报,2003,23(12):2081-2088
    [49] 卢巧仪,卢成林.混交林建设及其营造技术的应用推广.林业建设,1997,6:14-17
    [50] 张剑斌,赵永和,徐连峰等.银中杨人工混交林经济效益和生态效益的研究.防护林科技,1997,3:16-19
    [51] 付贵生,姜鹏.哲盟针阔混交林调查研究初报.内蒙古林业科技,1997,2:33-36
    [52] 宋西德,刘粉莲,罗伟祥等.黄土丘陵沟壑区混交林类型与模式.陕西林业科技,2003,4:38-42
    [53] 毕绪岱,曹铁森.山区生态经济林复合结构模式及其应用.林业生态工程研究文集,云正明,刘金铜主编,北京:气象出版社,1996,9:207-208
    [54] 洪伟,吴承祯等.邻体干扰指数通用模型及其应用.植物生态学报,1997,21(2):149-154
    [55] 赵粉侠,李根前.林草复合系统研究现状.西北林学院学报,1996,11(4):81-86
    [56] 申太波,李旭光.重庆四面山采伐迹地杉檫林干扰效应.西南师范大学学报(自然科学版),1998,23(2):206-211
    [57] 李根前,唐德瑞.邻体干扰推广模型及其在林草生态系统的应用.南京林业大学学报(自然科学版),1999,23(3):16-20
    [58] 陈建波,蒙庆卓.巨桉家系试验研究初报.桉树科技,2003,2:11-16
    [59] 彭燕,张新全.鸭茅种质资源多样性研究进展.植物遗传资源学报,2003,4(2):179-183
    [60] 李先芳,丁红.鸭茅生物学特性及栽培技术.河南林业科技,2000,20(3):24-25
    [61] 徐胜,张新全.分子标记技术在草坪草遗传改良中的应用..业科学,2001,18(6):51~54
    [62] 王新海.草坪草新秀—高羊茅.四川草原,2003,(5):60
    [63] 张进国,黎纪凤.扁穗牛鞭草的引种栽培试验.贵州畜牧兽医,2003,27(4):37~38
    [64] Eckstein RL and Karlsson PS, Above-ground growth and nutrient use by plants in a sub arctic environment; Effect of habitat, life-form and species. Oikos, 1997, 79: 311-324
    [65] 刘艳,周国逸,褚国伟,等.鼎湖山针阔叶混交林土壤酸度与土壤养分的季节动态.生态环境,2005,14(1):81-85
    [66] 候扶江,肖金玉,南志标.黄土高原退耕地的生态恢复.应用生态学报,2002,13(8):923-929
    [67] Molla MAZ, Chow dhury AA. Microbial mineralization of organic phosphate in soil. Plant and soil, 1984, 78: 393-399
    [68] 俞元春,赵永艳,曾曙才.苏南丘陵不同林分类型土壤养分的动态特征.浙江林学院学报,1998,15(1):32-36
    [69] 徐秋芳,姜培坤,董敦义,等.毛竹林地土壤养分动态研究.竹子研究汇刊,2000,19(4):46-50
    [70] 鲁叶江,王开运,杨万勤.缺苞箭竹群落密度对土壤养分库的影响.应用生态学报,2005,16(6):996~1001
    [71] 万雪琴.坡耕地退耕还林后的植被恢复及改土效应.四川农业大学硕士学位论文,2003
    [72] David A. Wedin A. Tilman D. Species effects on nitrogen cycling: A test with perennial grasses. Oecologia. 1990, 84: 433~441
    [73] Melillo JM, Aber JD. Muratore JF. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology. 1982, 63: 621~626
    [74] 胡曰利,吴晓芙,王尚明,等.桉树人工林地有机物和养分库的衰退及防治.中南林学院学报,2000,20(4):36-40
    [75] 胡亚林,汪思龙,颜绍馗.影响土壤微生物活性与群落结构因素研究进展.土壤通报,2006,37(1):170-176
    [76] 张东来,毛子军,张玲,等.森林凋落物分解过程中酶活性研究进展.林业科学,2006,42(1):105-109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700