用户名: 密码: 验证码:
家用燃气快速热水器全预混燃烧的数值模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城镇天然气的发展,民用燃气具燃烧过程产生的NOx和CO对室内环境品质的的影响,越来越多地受到人们的关注。作为一种被广泛使用的民用燃气具,家用快速式燃气热水器普遍采用部分预混燃烧方式,氮氧化物的排放量可达90~95ppm,对室内环境的污染严重。针对这一问题,本文开发了一种稳定燃烧且低污染物排放的家用燃气快速热水器全预混燃烧器,通过数值模拟和实验验证,研究了全预混燃烧器混气系统的混合效果和燃烧特性,解决了全预混燃烧器开发过程的关键技术问题,指出了该技术在燃气具中应用潜力。
     本文提出了利用多个引射器实现燃气和空气全预混概念,并建立了数学模型,进行了数值模拟研究。结果表明:喷嘴的直径越小,燃气压力增大,喷嘴位置对燃气压力影响可以忽略;喷嘴直径应大于1.3mm,否则燃气的质量流量不能满足热负荷要求;当喷嘴位置和空气系数不变时,喷嘴直径越大,风压越大;当喷嘴位置大于4mm时,燃气和空气的混合效果较好,但混气出口速度分布的均匀性差。在此基础上,提出了在混气系统出口加分配孔板技术,有效解决混气出口速度分布均匀问题。实验证明了本文研制的混气系统可以实现燃气和空气的完全预混。
     建立了燃烧器污染物排放数学模型,研究了空气系数、火孔直径、火孔热强度对燃烧室内温度场、NO和CO浓度场的影响。结果表明,当空气系数一定时,CO的排放量随着火孔热强度的增加而减少;当火孔热强度不变时,CO的排放量随着空气系数的增加而迅速降低;方火孔和圆火孔族间、圆火孔族间产生气流涡旋,导致该区域温度的升高,氧气浓度的降低,使得NO和CO的生成量增加。通过增大火孔簇中小火孔的间距,减小火孔族与火孔族的间距,对火孔板进行了优化。结果表明,NO浓度较高的面积缩小,NO排放量降低。
     论文开展了燃气快速热水器全预混燃烧器整机燃烧工况的实验研究。搭建了全预混燃烧器实验台,研究了全预混燃烧器污染物排放量和燃烧稳定性随喷嘴位置、喷嘴直径、空气系数和热负荷(火孔热强度)的变化。实验表明:空气系数对CO生成量的影响显著,当1.1<α<1.2时, CO的生成量受空气系数的影响显著,空气系数稍有增大,CO生成量急剧降低;当α>1.2时,CO的生成量降低的速度缓慢;当α>1时,NO与空气系数呈线性变化;喷嘴位置远离引射器入口有助于降低污染物的排放量;燃气负荷(火孔热强度)降低,污染物排放量呈下降趋势。
     本文开发的全预混式燃烧器经整机实验验证燃烧稳定、污染物排放量低,为全预混燃气燃烧设备的研发提供了重要的技术支撑。
With the development of town gas, people increasely pay attention to the effect ofNOxand CO produced in combustion process on indoor air quality. Domestic gasinstantaneous water heater is widely used as a kind of domestic appliances. Partlypremixed combustion is employed generally by domestic gas instantaneous waterheater. However, partly premixed combustion would have high NOxemission, about90~95ppm, which caused serious indoor environmental pollution. Aiming at thisproblem, a premixed burner of gas instantaneous water heater, with stable combustionand low pollutant emission, was developed in this paper. Through numericalsimulation and experimental validation method, the effect of mixing gas system andthe combustion characteristics of the premixed burner were discussed, the keytechnology problem during the process of premixed burner development was sovled,and the potential application of this technology in the field of gas appliance was alsopointed out.
     In this paper, a concept that multi-ejectors were employed to realize premixing ofgas and air was put forward, and a mathematic model was set up based on this concept,then a numerically simulated study on it was carried out. It was found that the smallerthe nozzle diameter, the more gas pressure, and the influence of the NXP on the gaspressure required could be ignored; nozzle diameter should be greater than1.3mm,otherwise, the mass flow rate could not meet with the heat load requirement; when theNXP and air coefficient were constant, the greater the nozzle diameter, the greater theair pressure; when NXP>4mm, the mixing effect of gas and air was better, however,the uniformity of the velocity distribution at the mixed system outlet was poor. Basedon this problem, a technology that a distribution orifice plate was installed at theoutlet of the mixed gas system was proposed, which could effectively solve theproblem of the uniformity of the velocity distribution at outlet of the mixing system.The experiment proved that the mixed gas system developed in this paper couldrealize the premixing of gas and air.
     The numerical model simulating pollutant emission of burner was established,and the effects of air coefficient, fire hole diameter and thermal intensity of fire holeon the temperature field and the concentration fields of NO and CO in the combustion chamber were explored. Simulation results showed that the CO emission decreasedwith the increase of the thermal intensity of fire hole when air coefficient α wasconstant; and the CO emission decreased quickly with the increase of air coefficientwhen the thermal intensity of the fire hole was constant; the flow vortex produced inthe areas which include two parts, one area is between the square fire hole group andthe round fire hole group, another area is between the round fire hole groups, couldcause the rapid increase of the temperature and drop of the oxygen concentration,therefore, the concentration of NO and CO increased. Based on the simulated results,the fire orifice plate was optimised, the spaces between the small fire holes in the firehole cluster were increased, and the spaces between fire hole groups were decreased.The simulated results showed that in the new burner, the area of high NOconcentration reduced, therefore, the NO concentration also reduced.
     The whole machine experiment of the premixed burner of gas instantaneouswater heater was carried out, and the combustion condition was studied. Thelaboratory furniture used for premixed burner was set up, and the variation ofpollution emission and combustion stability of the premixed burner with NXP, nozzlediameter, air coefficient and heat load (thermal intensity of fire hole)were researched.Experiments showed that the effect of air coefficientα on the CO emission wassignificant, when1.1<α <1.2, if α increased slightly, the CO emission reducedsharply; whenα>1.2, the CO emission reduced slowly. When α>1, the variation ofNO emission with air coefficient was linear; the nozzle position away from ejecorentrance could help reducing pollutants emission; when the heat load (thermalintensity of fire hore) reduced, the pollutants emission was on a declining curve.
     Through the verification of the whole machine experiment, the completelypremixed burner with stable combustion and low pollutant emission, could supply animportant technology references for the research of the completely premixed gascombustion appliance.
引文
[1]窦贻俭,李春华.环境科学原理[M].南京:南京大学出版社,1998.
    [2]郝吉明,马广大.大气污染控制工程[M].2版.北京:高等教育出版社,2002.
    [3]宋广生.室内环境质量评价及检测手册[M].北京:机械工业出版社,2002.
    [4]袭著革.室内空气污染与健康[M].北京:化工工业出版社,2003.
    [5]杨庆泉,周庆芳,全惠君,等.制定民用燃具NOx排放强制性标准的必要性[J].煤气与热力,2004,24(9):520-524.
    [6]傅忠诚,要大荣,潘树源,等.制定燃具NOx排放标准的必要性[J].煤气与热力,2003,24(2):73-75.
    [7]傅忠诚,徐鹏,刘彤,等.燃气热水器氮氧化物排放标准的探讨[J].煤气与热力,2003,4(2):211-213.
    [8]项友谦,王启.天然气燃烧过程与应用手册[M].北京:中国建筑工业出版社,2008.
    [9]同济大学,等.燃气燃烧与应用[M].3版.北京:中国建筑工业出版社,2000.
    [10] Miller J. A., Bowman C. T.. Mechanism and modeling of nitrogen chemistry incombustion[J]. Progress in Energy and Combustion Science,1989,15(4):287-338.
    [11] Nishioka M., Kondoh Y., akeno T.. Behavior of key reactions on formation inmethane-air flames[C]//The26th Symposium(International) on Combustion. Naples,Italy,1996:2139-2145.
    [12]傅忠诚,艾效逸,王天飞,等.天然气燃烧节能环保新技术[M].北京:中国建筑工业出版社,2007.
    [13] Nishioka M., Ishigami Y., Horii H., et al. NOxreduction mechanism of amethane–air smithells flame[J]. Combustion and Flame,2006,147(1-2):93-107.
    [14]周怀春,盛风,姚洪,等.高温空气燃烧技术—21世纪关键技术之一[J].工业炉,1998,(1):19-27.
    [15]朱彤,饶文涛,刘敏飞,等.低NOx高温空气燃烧技术[J].热能动力工程,2001,16(93):328-330.
    [16]陈强,仇性启.燃烧过程NOx控制技术[J].工业加热,2008,37(4):1-7.
    [17]蒋绍坚,彭好义,艾元方,等.高温低氧气氛中气体燃料的火焰特性[J].中南工业大学学报,2000,31(3):228-231.
    [18]苍大强,关运泽,毛一心,等.高温空气燃烧技术的超低NOx研究[J].燃烧科学与技术,2003,9(2):190-193.
    [19] Hasegawa T., Tanaka R., Niioka T.. High temperature air combustioncontributing to energy saving and pollutant reduction in industrial furnace[C]//Proceedings of The1997International Joint Power Generation Conference, Part1(of2). Denver, USA,1999:102-114.
    [20] Tsuji H., Gupta A., Hasegawa T., et al. High Temperature Air Combustion: FromEnergy Conservation to Pollution Reduction[M], CRC Press LLC, New York,2003.
    [21] Katsuki M., Hasegawa T.. The science and technology of combustion in highlypreheated air[C]//The27th Symposium(International) on Combustion, Boulder, USA,l998:3135-3147.
    [22]武立云,马重芳,杨永军.减少蓄热式燃烧系统NOx排放量的研究[C]//高温蓄热式工业炉应用学术会议论文集.北京,中国,2001:50-53.
    [23] Shimo N., Satoh M., Yoneyama M., et al. Clean combustion of heavy oil withhigh temperature air combustion technology[C]//International Conference on PowerEngineering. Kobe, Japan,2003:239-244.
    [24] Ichiro N., Asri G., Keiju M.. Fundamental characteristics on co-combustion oflow-rank coal with biomass[J]. Nippon Kikai Gakkai Kankyo Kogaku SogoShinpojiumu Koen Ronbunshu,2003,13:262-265.
    [25] Mochida S., Hasegawa T., Gupta A. K.. Development of advanced industrialfurnace using highly preheated combustion air[J]. Journal of Propulsion and Power,2002,18(2):233-239.
    [26] Isiguro T., Tsuge S., Furuhata T., et al. Homogenization and stabilization duringCombustion of Hydrocarbons with Preheated Air[C]//The27thSymposium(International) on Combustion. Boulder, USA,1998:3205-3213.
    [27] Plessing T., Peters N., Wiinning J. G.. Laser optical investigation of highlypreheated combustion with strong exhaust gas recirculation[C]//The27thSymposium(International) on Combustion. Boulder, USA,1998:3197-3204.
    [28] Dugue J., Louedin O., Ieroux B., et al. Ultra low NOxOxy-combustion systemwith adjustable flame length and heat transfer profile[C]//The4th InternationalSymposium on High Temperature Air Combustion and Gasification. Rome, Italy,2001.
    [29]孙晖,周庆芳,全惠君,等.浓淡燃烧组合火焰NOx生成因素的正交模拟分析[J].上海煤气,2006,(2):16-19.
    [30]庆芳,杨庆泉,沈亦冰,等.燃气热水器浓淡燃烧低NOx燃烧器的模拟分析[J].煤气与热力,2004,24(12):665-669.
    [31]刘丽珍.浓淡燃烧低NOx燃烧器研制的探讨[J].煤气与热力,2000,20(5):349-351.
    [32]刘丽珍,李清,邵震宇.一种新型低NOx家用燃烧器[J].城市燃气,2002,32(3):15-19.
    [33]邹祖桥,孙学信,丘纪华,等.富氧喷煤燃烧过程的三维数值模拟[J].华中理工大学学报,1999,27(5):97-99.
    [34]赵虹,郭风,周永刚,等.卧式炉富氧燃烧试验及其三维数值模拟[J].热力发电,2007,(6):33-37.
    [35]王浩,邹琳江.空气分级燃烧低NOx排放技术的研究[J].工业加热,2008,(4):8-9.
    [36]肖理生,曾汉才,金峰,等.分级燃烧最佳一次风空气系数的实验研究[J].动力工程,2001,21(1):1042-1045.
    [37]顾恒祥.燃料与燃烧[M].西安:西北工业大学出版社,1993.
    [38] Brenner G., Pickenacker K., Pickenacker O., et al. Numerical and experimentalinvestigation of matrix-stabilized methane/air combustion in porous inert media[J].Combustion and Flame,2000,123(1):201-213.
    [39] Hsu P. F., Evans W. D., Howell J. R.. Experimental and numerical study ofpremixed combustion within nonhomogeneous porous ceramics[J]. CombustionScience Technology,1993,90(1-4):149-172.
    [40] Mobbauer S., Pickenacker O., Pickenacker K., et al. Application of the porousburner technology in energy and heat-engineering[J]. Clean Air,2002,3(2):185-198.
    [41] Howell J. R., Hall M. J., Ellzey J. L.. Combustion of hydrocarbon fuels withinporous inert media[J], Progress in Engergy and Combustion Science,1996,22(2):121-145.
    [42] Hall M. J., Hiatt J. P.. Exit flow from highly porous media[J]. Physics ofFluids,1994,6(2):469-479.
    [43]王慧,曹令可,张海文,等.多孔陶瓷—绿色功能材料[J].中国陶瓷,2002,38(3):6-8.
    [44]陈磊,陈达谦.多孔陶瓷及其发展[J].现代技术陶瓷,2001,(3):7-11.
    [45] Hardesty D. R., Weinberg F. J.. Burners producing large excess enthalpies[J].Combustion Science and Technology,1974,8(5-6):201-214.
    [46] Hardesty D. R., Weinberg F. J. Converter efficiency in burner systems producinglarge excess enthalpies (Reply by author to comment)[J]. Combustion Science andTechnology,1976,12(4-6):153-157.
    [47] Takeno T., Sato K., Hale K.. Theoretical study on an excess enthalpy flame[C]//The18th Symposium (International) on Combustion. Waterloo, Canada,1981:465-472.
    [48] Kotani Y., Takeno T.. An experimental study on stability and combustioncharacteristics of an excess entralpy flame[C]//The19th Symposium (International)on Combustion. Haifa, Israel,1983:1503-1509.
    [49] Kotani Y., Behabahani F., Takeno T.. An excess enthalpy flame combustor forextended flow ranges[C]//The20th Symposium (International) on Combustion.Pittsburgh, USA,1984:2025-2033.
    [50] Takeno T., Hase K.. Effects of solid length and heat loss on an excess enthalpyflame[J]. Combustion Science and Technology,1983,31(3-4):207-215.
    [51] Chen Y. K., Matthews R. D., Howell J. R.. The effect of radiation on the structureof a premixed flame within a highly porous inert medium[C]//Radiation, PhaseChange, Heat transfer and Thermal Systems. Boston, USA,1987:35-42.
    [52] Hsu P. F., Howell J. R.. The necessity of using detailed chemical kinetics inmodels for premixed combustion in porous media[J]. Combustion and Flame,1993,93(4):457-466.
    [53] Lim L. G., Matthews D. R.. Model for turbulent premixed combustion withinporous inert media[C]//Proceedings of The16th Annual Energy-sources TechnologyConference and Exhibition. Houston, USA,1993:85-94.
    [54] Lim L. G., Matthews D. R.. Development of a model for turbulent combustionwithin porous inert media[J]. International Journal of Fluid MechanicsResearch,1993,25(1-3):631-636.
    [55] Khanna V., Goel R., Ellzey J. L.. Measurement of emissions and radiation formethane combustion within a porous medium burner[J]. Combustion Science andTechnology,1994,99(1-3):133-142.
    [56] Henneke M. R., Ellzey J. L.. Modeling of filtration combustion in a packedbed[J]. Combustion and Flame,1999,117(4):832-840.
    [57] Ellzey J. L., Barra A. J., Diepvens G., et al. Numerical study of the effects ofmaterial properties on flame stabilization in a porous burner[J]. Combustion andFlame,2003,134(4):369-379.
    [58] Barra A. J., Diepvens G., Ellzey J. L., et al. Numerical study of the effects ofmaterial properties on flame stabilization in a porous burner[J]. Combustion andFlame,2003,134(4):369-379.
    [59] Barra A. J.. Computational study of a two-section porous burner[D]. Universityof Texas at Austin, Master's Thesis,2003.
    [60] Barra A. J., Ellzey J. L.. Heat recirculation and heat transfer processes in porousburners[J]. Combustion and Flame,2004,137(1-2):230-241.
    [61] Vogel B., Ellzey J. L.. Subadiabatic and superadiabatic performance of atwo-section porous burner[J]. Combustion Science and Technology,2005,177(7):1323-1338.
    [62] Hackert C. L., Ellzey J. L., Ezekoye O. A.. Combustion and heat transfer inmodel two-dimensional porous burners[J]. Combustion and Flame,1999,116(1-2):177-191.
    [63] Barra A. J., Ellzey J. L.. Heat recirculation and heat transfer in porous burners[J].Combustion and Flame,2004,137(1-2):230-241.
    [64]吕兆华,Matthews R., Howell J..多孔陶瓷材料中的预混火焰[J].华东工学院学报,1989,(3):25-29.
    [65]吕兆华,王志武,孙思诚,等.多孔陶瓷燃烧器火焰温度的测定[J].发电设备,1997,(8-9):35-38.
    [66]吕兆华,孙思诚,裴锦华,等.多孔泡沫陶瓷中预混火焰燃烧速率的试验研究[J].燃烧科学与技术,1995,1(2):129-134.
    [67]吕兆华,孙思诚.多孔介质中预混火焰燃烧速率的预示[J].燃烧与科学技术,1998,4(3):242-246.
    [68]吕兆华,Matthews R. D..分段多孔介质燃烧器二次进气燃烧排放研究[J].燃烧科学与技术,2000,6(2):124-128.
    [69]史俊瑞.多孔介质中预混气体超绝热燃烧机理及其火焰特性的研究[D].大连:大连理工大学能源与机械学院,2007.
    [70]杜礼明,解茂昭.预混合燃烧系统中多孔介质作用数值研究[[J].大连理工大学学,2004,44(1):70-75.
    [71]杜礼明.稀薄预混气体在多孔介质中超绝热燃烧的研究[D].大连:大连理工大学能源与机械学院,2003.
    [72]王恩宇.气体燃料在渐变型多孔介质中的预混燃烧机理研究[D].杭州:浙江大学能源工程学系,2004.
    [73]赵平辉.惰性多孔介质内预混燃烧的研究[D].合肥:中国科学技术大学热科学和能源工程系,2007.
    [74]李艳红,徐吉浣,张鹤声.多孔陶瓷板中城市燃气预混燃烧的试验研究与数值计算[J].工程热物理学报,1997,18(3):385-388.
    [75]李艳红,胡国新,徐吉浣,等.多孔陶瓷板燃气燃烧器氮氧化物的排放特性[J].上海交通大学学报,1999,33(8):997-1000.
    [76]李艳红,程惠尔,徐吉浣,等.多孔陶瓷板城市燃气预混燃烧的数学模拟[J].上海交通大学学报,1999,33(8):1001-1003.
    [77]张帆,徐吉浣,葛志祥.燃气红外辐射器在干燥工艺中的应用[J].煤气与热力,2000,20(3):184-186.
    [78]李艳红,徐吉浣,简瑞民,等.引射式大负荷陶瓷红外辐射燃烧器的研究[J].煤气与热力,1997,17(3):34-38.
    [79]李艳红,徐吉浣.燃气红外灶的燃烧性能及其开发[J].公用科技,1996,12(1):8-12.
    [80]段常贵,贾敬秋.多孔陶瓷板式辐射器作为家用燃气灶问题的探讨[J].哈尔滨建筑工程学院学报,1993,26(3):125-128.
    [81]黄志甲,张旭,胡国祥.金属纤维表面燃烧技术的研究与应用[J].工业加热,2002,(4):16-19.
    [82] Rortveit G. J., Zepter K., Skreiberg O., et al. A comparison of low-NOxburnersfor combustion of methane and hydrogen mixtures[J]. Proceedings of CombustionInstitute,2002,29(1):1123–1129.
    [83] Bizzi M., Saracco G., Specchia V.. Improving the flashback resistance of catalyticand non-catalytic metal fiber burners[J]. Chemical Engineering Journal,2003,95(1-3):123-136.
    [84] Saracco G., Cerri I., Specchia V., et al. Catalytic pre-mixed fibres burners[J].Chemical Engineering Science,1999,54(15-16):3599-3608.
    [85] Cerri I., Saracco G., Geobaldo F., et al. Development of a methane pre-mixedcatalytic burner for domestic applications[J]. Industrial&Engineering ChemistryResearch,2000,39(1):24-33.
    [86] Cerri I., Saracco G., Specchia V., et al. Improved-performance knitted fiber matsas supports for pre-mixed natural gas catalytic combustion[J]. Chemical EngineeringJournal,2001,82(1):73-85.
    [87]要大荣,傅忠诚,潘树源,等.金属纤维燃烧器的燃烧特性研究[J].煤气与热力,2005,25(10):1-3.
    [88]黄志甲,张旭,胡国祥.金属纤维燃烧器在中餐燃气炒菜灶的应用[J].煤气与热力,2003,23(3):146-148.
    [89]冯良,逯红梅,谭建新,等.大型金属纤维燃气红外辐射板的研究[J].上海煤气,2004,(3):11-16.
    [90]仇中柱,李芃.金属纤维燃烧器及其头部阻力特性分析[J].同济大学学报(自然科学版),2005,33(2):217-220.
    [91]傅忠诚,要大荣,艾效逸,等.金属纤维燃烧器CO和NOx排放特性[J].煤气与热力,2006,26(2):28-30.
    [92] E. Я.索科洛夫,H.M.津格尔,黄秋云(译).喷射器[M].北京:科学出版社,1973.
    [93] Pianthong K., Seehanam W., Behnia M., et al. Investigation and improvement ofejector refrigeration system using computational fluid dynamics technique[J]. EnergyConversion and Management,2007,48(9):2556-2564.
    [94] Riffat S. B., Gan G., Smith S.. Computational fluid dynamics applied to ejectorheat pumps[J]. Applied Thermal Engineering,1996,16(4):291-297.
    [95] Rusly E., Aye L., Charters W. W. S., et al. CFD analysis of ejector in a combinedejector cooling system[J]. International Journal of Refrigeration-Revue InternationaleDu Froid,2005,28(7):1092-1101.
    [96] Riffat S. B., Omer S. A.. CFD modelling and experimental investigation of anejector refrigeration system using methanol as the working fluid[J]. InternationalJournal of Energy Research,2001,25(2):115-128.
    [97] Bartosiewicz Y., Aidoun Z., Mercadier Y.. Numerical assessment of ejectoroperation for refrigeration applications based on CFD[J]. Applied ThermalEngineering,2006,26(5-6):604-612.
    [98] Sriveerakul T., Aphornratana S., Chunnanond K.. Performance prediction ofsteam ejector using computational fluid dynamics: Part1. Validation of the CFDresults[J]. International Journal of Thermal Sciences,2007,46(8):812-822.
    [99] Sriveerakul T., Aphornratana S., Chunnanond K.. Performance prediction ofsteam ejector using computational fluid dynamics: Part2. Flow structure of a steamejector influenced by operating pressures and geometries[J]. International Journal ofThermal Sciences,2007,46(8):823-833.
    [100] Li X. C., Wang T., Day B.. Numerical analysis of the performance of a thermalejector in a steam evaporator[J]. Applied Thermal Engineering,2010,30(17-18):2708-2717.
    [101] Hemidi A., Henry F., Leclaire S.,et al. CFD analysis of a supersonic air ejector.Part I: Experimental validation of single-phase and two-phase operation[J]. AppliedThermal Engineering,2009,29(8-9):1523-1531.
    [102]黄卫星,陈文梅.工程流体力学[M].北京:化学工业出版社,2002.
    [103]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [104]周光垌,严宗毅,许世雄,等.流体力学[M].2版.北京:高等教育出版社,2000.
    [105]陶文栓.数值传热学[M].2版.西安:西安交通大学出版社,2004.
    [106] Varga S., Oliveira A. C., Diaconu B.. Numerical assessment of steam ejectorefficiencies using CFD[J]. International Journal of Refrigeration,2009,32(6):1203-1211.
    [107] Zhu Y. H., Cai W. J., Wen C. Y., et al. Numerical investigation of geometryparameters for design of high performance ejectors[J]. Applied ThermalEngineering,2009,29(5-6):898-905.
    [108] He S., Li Y., Wang R. Z.. Progress of mathematical modeling on ejectors[J].Renewable and Sustainable Energy Reviews,2009,13(8):1760-1780.
    [109]江帆,黄鹏. Fluent高级应用与实用分析[M].北京:清华大学出版社,2008.
    [110]范维澄,万跃鹏.流动及燃烧的模型与计算[M].安徽:中国科技大学出版社,1992.
    [111]李宇红,祁海鹰,张宏武.甲烷预混燃烧火焰的详细数值模拟[J].工程热物理,2002,23(1):119-121.
    [112] Fluent Inc. FLUENT6.3User's Guide.Fluent Inc.,2006.
    [113] Ilbas M., Yilmaz i., Kaplan Y.. Investigations of hydrogen andhydrogen–hydrocarbon composite fuel combustion and NOxemission characteristicsin a model combustor[J]. International Journal of Hydrogen Energy,2003,30(10):1139-1147.
    [114] Fenimore C. P.. Formation of nitric oxide in premixed hydrocarbon flames[C]//The13th Symposium (international) on Combustion. Salt Lake City, USA,1971:373.
    [115] De Soete G. G.. Overall reaction rates of NO and N2formation from fuelnitrogen[C]//The15th Symposium (International) on Combustion. Tokyo, Japan,1975:1093-1102.
    [116]金志刚,王启.燃气检测技术手册[M].北京:中国建筑工业出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700